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Abstract

Little is known about the extent to which individual microRNAs (miRNAs) regulate common 

processes of tumor biology across diverse cancer types. Using molecular profiles of >3,000 tumors 

from 11 human cancer types in The Cancer Genome Atlas, we systematically analyzed expression 

of miRNAs and mRNAs across cancer types to infer recurrent cancer-associated mi RNA-target 

relationships. As we expected, the inferred relationships were consistent with sequence-based 

predictions and published data from miRNA perturbation experiments. Notably, miRNAs with 

recurrent target relationships were frequently regulated by genetic and epigenetic alterations 

across the studied cancer types. We also identify new examples of miRNAs that coordinately 

regulate cancer pathways, including the miR-29 family, which recurrently regulates active DNA 

demethylation pathway members TET1 and TDG. The online resource http://cancerminer.org 

allows exploration and prioritization of miRNA-target interactions that potentially regulate 

tumorigenesis.

miRNAs are small RNAs that regulate gene expression by binding partially complementary 

sites in target mRNAs1. Dysregulation of miRNAs can contribute to tumor formation and 

progression2,3. For example, genetic and epigenetic alterations target miRNA loci in 

cancer2,3, tumor tissues show distinctive miRNA expression signatures compared with 

normal tissue4,5, and studies in mice show that malignant tumors can form by and depend on 
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dysregulation of a single miRNA6. Notably, miRNAs can be both antagonized and 

mimicked by therapeutic oligonucleotides, potentially offering new targeted approaches to 

cancer treatment7.

Individual miRNAs can target hundreds or thousands of mRNAs on the basis of sequence 

complementarity, but a substantial fraction of these predicted interactions may depend on 

cell type and context1 and on the binding of additional cofactors8. Furthermore, an even 

smaller subset of target interactions is expected to affect tumor development and progression 

in vivo. It is therefore challenging to nominate functionally relevant target genes and 

pathways on the basis of dysregulated miRNA expression profiles in tumor samples. 

Common approaches to studying miRNA target genes and function in cancer involve 

experimental perturbation of miRNA expression in cell lines and mouse models of cancer2,3. 

Although these model systems have yielded important mechanistic insights into cancer cell 

biology, they may not fully capture the complexity of tumorigenesis in patients9. More 

recently, comprehensive multidimensional genetic and molecular profiles of large tumor 

populations generated by research consortia such as The Cancer Genome Atlas (TCGA) 

have enabled integrated analysis of genetic and molecular alterations associated with 

individual human cancer types10,11. These data sets enable tracking of miRNA and mRNA 

expression across a population of tumors. As miRNAs commonly destabilize and degrade 

their target mRNAs12,13, we expect that miRNAs have inverse expression relationships with 

their target mRNAs. Variations of this principle have been used to predict miRNA-target 

interactions on the basis of miRNA and mRNA expression profiles14,15. Such approaches 

have also shown functionally relevant miRNA-target interactions in individual cancer types 

(for example, in TCGA glioblastoma multiforme16–18 and serous ovarian carcinoma data 

sets19,20). However, systematic studies that evaluate miRNA-mRNA associations across 

multiple cancer types are needed to explore the hypothesis that individual miRNAs regulate 

common processes of tumorigenesis that are independent of organ or tissue of origin.

We developed a method and statistical score, the association recurrence (REC) score, that 

uses miRNA and mRNA expression profiles across many cancer types to infer miRNA-

target interactions that could be active and functional in many different cancer types (Fig. 1). 

Using this approach, we inferred recurrent cancer-associated miRNA-target relationships 

from miRNA and mRNA expression profiles of >3,000 tumors and 11 cancer types profiled 

by TCGA. We further analyzed these recurrent target relationships using sequence- and 

conservation-based predictions, experimentally validated target interactions curated from the 

literature, and published data from miRNA perturbation experiments. We derived a high-

confidence pan-cancer network of 143 recurrent target relationships, and we show that these 

relationships include new examples of miRNAs that are likely to coordinately regulate 

multiple members of pathways across many cancer types. All predictions are available 

through an online resource, http://cancerminer.org, which allows exploration and 

visualization of candidate miRNA-target interactions in TCGA data.
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Results

Inferring miRNA targets in individual cancer types

We used comprehensive molecular data sets for ten epithelial cancer types and glioblastoma 

multiforme in TCGA (Table 1; this included 11 TCGA cancer types, but colon and rectal 

cancer data sets were merged). Each cancer type had miRNA and mRNA expression profiles 

measured for 94–671 tumor samples (patients), and the combined data set comprised 3,290 

samples. miRNA expression was profiled by microarrays or small RNA sequencing, and 

mRNA expression by microarrays or mRNA sequencing (depending on cancer type; see 

Online Methods).

Our method first evaluates expression relationships of miRNAs and mRNAs in individual 

cancer types. For each miRNA-mRNA pair, we measured the association between miRNA 

and mRNA expression across the set of tumors using a multivariate linear model that also 

factors in variation (noise) in mRNA expression induced by changes in DNA copy number 

and promoter methylation at the mRNA gene locus (Fig. 1 and Online Methods). This 

multivariate linear model could more accurately evaluate miRNA-mRNA expression 

associations in the presence of DNA copy-number and promoter methylation aberrations 

that extensively influence mRNA expression (see Supplementary Fig. 1 for examples).

In all individual cancer types, we found that miRNA-mRNA pairs with negative expression 

association had markedly more predicted miRNA-target interactions (determined by 

intersection of miRanda and TargetScan predictions21,22, using thresholds of −0.5 and −0.2, 

respectively) compared with weakly or positively associated pairs (Fig. 2a and 

Supplementary Fig. 2). Using the same approach, all cancer types were significantly 

enriched for predicted target interactions in the percentile of pairs with strongest negative 

association (P < 1 × 10−20 in each cancer type, two-tailed Fisher's exact test, n ∼ 15,000 in 

each cancer type). Consistent with earlier analyses of miRNA target determinants, 

negatively associated pairs were enriched in predicted target interactions with high 

repressive efficacy and in binding sites confined to mRNA 3′ untranslated regions (UTRs; 

Fig. 2b). Together these observations indicate that miRNA and mRNA expression 

associations can be used to infer probable active and functional target interactions in tumors 

of all individual cancer types.

Recurrence of target associations across cancer types

To explore the hypothesis that individual miRNA-target relationships are active in multiple 

cancer types and may regulate common cancer traits, we developed a method and rank-

based statistical score, the REC score. The method ranks miRNA-mRNA expression 

associations in the context of miRNA and cancer type and evaluates the null hypothesis that 

no association exists between the miRNA-mRNA pair in all cancer types (Fig. 1 and Online 

Methods). The rank-based approach ensures that individual cancer types are weighted 

equally, and limits bias from cancer data sets with large sample sizes or from strong 

associations measured in only a single cancer type. Furthermore, the REC statistic allows 

different types of cross-cancer relationships to achieve high scores: a miRNA-mRNA pair 

with very strong association in only four cancer types (let-7b:LIN28B, REC = −6.76) and a 
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pair with less strong but consistent association in all cancer types (miR-21:PDCD4, REC = 

−6.49) may each achieve a high REC score.

We computed REC scores for all miRNA-mRNA pairs in which the miRNA and mRNA 

were expressed simultaneously in at least five of the ten cancer types. Of the top ten pairs 

with the strongest negative REC scores, eight had evolutionarily conserved target 

interactions or target interactions predicted by both miRanda or TargetScan (Fig. 2c). At 

least two of the top ten target interactions have previously been studied and are likely to be 

functionally relevant in a cancer context. A target interaction between miR-18a, a member 

of the mir-17-92 cluster, and the transcription factor ZBTB4 has been reported in breast and 

prostate cancer23,24. Our analysis suggests that this interaction could be functionally relevant 

in all analyzed cancer types. The target relationship between miR-141, a member of the 

miR-200 family, and ZEB1 has been widely studied in many cancer types and is a critical 

component of the epithelial-mesenchymal transition25. Similarly, the other recurring 

miRNA-mRNA relationships in the top ten might represent unappreciated functional 

miRNA-target relationships with a general role in tumorigenesis.

We present all predictions in an online resource that allows rapid exploration and 

visualization of candidate miRNA-target interactions in TCGA cancer types. The user may 

query inferred target relationships using an miRNA, gene or pathway identifier, and 

relationships can be scored for recurrence across all or selected subsets of cancer types (Fig. 

2d).

Global analysis of interactions using public data sets

To further analyze whether recurrent pan-cancer miRNA-mRNA associations capture 

miRNA regulatory relationships, we evaluated the extent to which the REC score could 

predict mRNA expression changes induced by experimental perturbation of miRNAs in 

vitro. For six miRNAs with many strong negative associations (miR-106b, miR-29, 

miR-30d, miR-200b, miR-16 and miR-21), we obtained public data sets of mRNA 

expression changes after miRNA perturbation. These data sets captured both miRNA 

inhibition and overexpression experiments, and were all done in cancer cell lines (see Online 

Methods). For each miRNA, we defined, independent of sequence-based predictions, a set 

of putative target mRNAs using a set slightly less conservative REC score threshold (REC < 

−5.7, corresponding to a false discovery rate (FDR) < 0.001). In all analyzed miRNA 

perturbation experiments, we found that these REC target mRNAs were significantly 

downregulated or upregulated after miRNA overexpression or inhibition, respectively (Fig. 

3, range of P values: 0.06–1.9 × 10−13, one-tailed Wilcoxon's rank-sum test, 7 < n < 179), 

consistent with the hypothesis that the recurrent pan-cancer miRNA-mRNA associations 

capture miRNA regulatory relationships.

A pan-cancer network of recurring miRNA-target interactions

We extracted miRNA-mRNA pairs with strong negative REC score (REC < −6.2, FDR < 2 

× 10−4, 4,584 pairs with less than one estimated false positive) and evidence for target 

interaction as predicted by miRanda (score < −0.5), TargetScan (context score < −0.2) and 

evolutionary conservation (TargetScan probability of conserved targeting, PCT, >0.5). These 
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thresholds were chosen to obtain a high-confidence list of candidate miRNA-target 

interactions with possible functional roles across a range of cancer types. The combination 

of the REC score and target prediction filters yielded 143 miRNA-mRNA pairs (Fig. 4a), 

significantly more than was expected by chance (P = 3.1 × 10−85, two-tailed binomial test, k 

= 143, n = 4,584, r = 3.4 × 10−3 = 22,589 predicted targets / 6,642,349 total pairs), 

consistent with the hypothesis that the REC score can be used to augment sequence-based 

miRNA-target predictions and infer functionally relevant target interactions in vivo. These 

143 putative recurring target interactions formed a network of 40 evolutionarily conserved 

miRNAs and 72 target mRNAs (Fig. 4b and Supplementary Table 1). At least 61 of the 143 

putative target interactions have experimental support, and 23 interactions (comprising 16 

miRNAs and 8 genes) have functional relevance in cancer on the basis of earlier studies 

(Supplementary Table 2). Interactions with strong functional evidence include pairs such as 

let-7b:LIN28B, miR-21:PDCD4, miR-16:RECK, miR-19a:ZBTB4 and miR-106:TGFBR2, 

and the interactions between the miR-200 family and ZEB1, ZEB2 and ZFPM2. The network 

also showed several possible and less studied target interactions with genes frequently 

studied in cancer, such as those encoding estrogen receptor α (miR-18a:ESR1), BLIMP-1 

(miR-30c:PRDM1) and Janus kinase 1 (miR-106:JAK1).

In summary, these results suggest that the REC score, in combination with sequence- and 

conservation-based predicted target interactions, can be used to infer candidate target 

interactions with functional roles across many cancer types.

Genetic and epigenetic alterations regulating miRNAs

We explored the possibility that a subset of miRNAs, and thereby also target mRNAs, in the 

inferred pan-cancer network could be regulated by somatic genetic or epigenetic alterations, 

a common property of cancer driver genes. We first considered DNA copy-number 

alterations targeting miRNA loci. For each miRNA, we estimated the extent to which 

changes in DNA copy number at the miRNA locus could explain the variation in miRNA 

expression measured for a given cancer type (R2, Supplementary Table 3). We then 

compared these copy-number correlations (selecting the third highest R2 in the ten cancer 

types) measured for the 40 miRNAs in the pan-cancer network with correlations for all other 

miRNAs also expressed in the studied cancer types (n = 180). This test showed that 

miRNAs in the pan-cancer network were more often regulated by DNA copy-number 

alterations across the different cancer types (P = 1.2 × 10−8, two-tailed Wilcoxon rank-sum 

test, n = 40 versus 180; Fig. 4c), suggesting that dysregulation of these particular miRNAs 

and target mRNAs could be under clonal selection in multiple cancer types. For example, 

mir-30d is encoded in a frequently amplified region (8q24, ∼7 megabases (Mb) from MYC), 

and its expression was strongly regulated by DNA copy-number alterations in breast, 

ovarian and bladder carcinoma (R2 of 0.41, 0.31 and 0.25, respectively).

We then analyzed the influence of promoter DNA methylation on transcription of miRNA 

loci (Supplementary Table 3). A similar statistical approach showed that changes in 

promoter DNA methylation more often influenced expression of miRNAs in the pan-cancer 

network than other expressed miRNAs (P = 3.6 × 10−5, Wilcoxon rank-sum test; Fig. 4c). 

The miR-200 family members, which are encoded at two different loci (1p36 and 12p13), 
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showed the most marked evidence for regulation by promoter DNA methylation across 

multiple cancer types. Expression of miR-200b (1p36) and miR-200c (12p13) was strongly 

correlated with DNA methylation (R2 > 0.2) in six cancer types (LUSC, BRCA, UCEC, 

BLCA, HNSC and LUAD; defined in Table 1), and changes in DNA methylation could 

explain >50% of expression variance of miR-200b (R2 = 0.50) and miR-200c (R2 = 0.67) in 

bladder cancer. In summary, these data are consistent with the hypothesis that the inferred 

recurrent miRNA-target relationships have a role in tumorigenesis of many different cancer 

types.

miR-106 family modulation of TGF-β signaling

Several miRNA families that have been widely studied in cancer were represented by many 

putative target interactions in the inferred pan-cancer network (such as the miR-200, 

miR-30, miR-29 and miR-106 families), and we hypothesized that selection for miRNA 

dysregulation would be particularly advantageous to tumors when miRNAs coordinately 

regulate multiple components of a tumorigenic pathway or process. The miR-106 family of 

miRNAs was represented with several putative target relationships in the network. At least 

two of these targets, TGFBR2 and DAB2, encode known components of the transforming 

growth factor (TGF)-β signaling pathway (TGF-β type II receptor and disabled homolog 2, 

respectively), and our analysis shows consistent negative associations among miR-106 

family members and the two pathway components in all cancer types except for colorectal 

cancer (Fig. 5a). Furthermore, members of the miR-106 family directly target TGFBR2 and 

attenuate TGF-β signaling in cancer cells5,26,27. The function of TGF-β signaling may be 

context dependent during tumorigenesis by inhibiting cell growth at early tumor stages and 

promoting tumor progressive processes at later stages28. Epigenetic silencing of DAB2, 

which encodes an adaptor protein that facilitates interaction of Smad proteins with the 

activated TGF-β receptor complex29, is one mechanism by which cancer cells can switch 

TGF-β signaling from growth suppressive to tumor progressive30.

The miR-106 family members are encoded at three different genomic loci (represented by 

miR-17, miR-106a and miR-106b in Fig. 5a), yet miRNAs from each of these loci 

frequently showed negative association with TGBFBR2 and DAB2 expression in the same 

cancer types, indicating transcriptional or post-transcriptional co-regulation of the three 

miR-106 loci. miR-106b showed the strongest negative association with the two target genes 

across cancer types, and a comparison of tumor and representative normal samples showed 

that miR-106b was generally upregulated, whereas TGFBR2 and DAB2 were 

downregulated, in tumors of most cancer types (Fig. 5b). We analyzed DNA copy-number 

alterations targeting miRNA loci and found that mir-106b showed moderate and consistent 

regulation by copy-number alterations across most cancer types (R2 > 0.08 in nine of ten 

cancer types). Although cases of significantly recurring focal alterations targeting miRNA 

loci were generally rare (as inferred by the Gistic algorithm31), we identified a significantly 

recurring focal amplification targeting mir-106b in endometrial cancer (FDR < 0.18, Gistic; 

Fig. 5c). In endometrioid tumor samples for which both DNA copy-number and miRNA 

expression profiles were available, 4% (18 of 479) of samples had evidence of focal 

chromosomal amplification of the mir-106b locus, and these tumors showed significant 

miR-106b upregulation compared with diploid mir-106b tumors (two-fold on average, P = 

Jacobsen et al. Page 6

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.9 × 10−5, two-tailed Wilcoxon rank-sum test, n = 16; Fig. 5d). The focally amplified 

region contained six additional genes, but only the host gene encoding the intronic mir-106b, 

MCM7, and the neighboring gene, COPS6, showed consistent mRNA expression 

upregulation in amplified samples (P = 3.0 × 10−5 and 2.0 × 10−5, respectively, two-tailed 

Wilcoxon rank-sum test, n = 16). Finally, the tumors with focal amplification and 

overexpression of miR-106b also tended to have lower mRNA levels of DAB2 and TGFBR2 

when compared with tumors lacking focal miR-106b amplification (Fig. 5e). In summary, 

these data suggest that the miR-106 family targets and modulates the TGF-β pathway at 

multiple levels in many cancer types.

miR-29 regulates active DNA demethylation pathway

The miR-29 family had multiple inferred target interactions in the pan-cancer network, and 

two of these genes, TET1 and TDG, encode critical components of the active DNA 

demethylation pathway in mammals32–35. In this pathway, TET proteins recognize and 

successively oxidize methylated cytosine nucleotides, and thymine DNA glycosylase (TDG) 

subsequently converts these modified bases to unmethylated cytosine through base-excision 

repair (Fig. 6a). We observed a very strong inverse correlation between miR-29a and TDG 

across all cancer types except kidney cancer, and TET1 expression was strongly negatively 

correlated with miR-29 family members in all cancer types (Fig. 6a). Furthermore, two 

earlier studies provide experimental support for the direct miR-29 target interaction with 

TET1 (ref. 36) and TDG37 in cancer cells. The three miR-29 family miRNAs are encoded at 

two different genomic loci, yet miRNAs from each of these loci (miR-29a and miR-29c) 

frequently showed anticorrelation with TET1 and TDG in the same cancer types (Fig. 6a), 

suggesting strong co-regulation of the miR-29 loci. miR-29a was generally downregulated, 

and TET1 and TDG were generally upregulated, in tumors of most cancer types as compared 

with representative normal samples (Fig. 6b).

Given the observation that TDG and TET1 were probably targeted and coordinately 

upregulated by miR-29 family downregulation in many cancer types, we hypothesized that 

the upregulation of these target genes is associated with patterns of DNA demethylation in 

the tumors. To test this hypothesis, we identified gene promoters with strong correlation 

(positive or negative Spearman correlation coefficient) of DNA methylation and TDG 

mRNA expression across tumor samples. In nine of ten cancer types we found that the 

majority of TDG-associated promoters (top 100) were hypomethylated with TDG mRNA 

upregulation (Fig. 6c), and the average fraction (0.85) of hypomethylated promoters across 

all cancer types was significantly higher than expected by chance (P < 0.001, sample 

permutation test, n = 1,000; Fig. 6c). These data are consistent with earlier observations that 

TDG and TET1 regulate active DNA demethylation, and they support a functional role for 

the miR-29 family as a possible master regulator of this process in many cancer types.

miR-29b and NREP form a double-negative feedback loop

The pan-cancer network included known examples of regulatory miRNA-mRNA double-

negative feedback loops, such as let-7b:LIN28, ref. 38, and miR-200:ZEB1 (ref. 25). We 

hypothesized that miR-29 family expression is regulated by such a relationship with NREP, 

which showed the strongest recurrent negative association of all mRNAs; we observed 
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strong anticorrelation of miR-29b and NREP expression in all cancer types studied (REC = 

−19.6; Fig. 7a). miR-29b had a single evolutionarily conserved and unusually highly 

complementary predicted target site in the NREP 3′ UTR, with base pairing potential for 20 

of 23 miRNA bases (Fig. 7a). miR-29a and miR-29c also showed extensive 

complementarity with the NREP target site (18–19 bases with pairing), and both of these 

miRNAs also had strong recurring negative association with NREP expression (REC < 

−8.4). NREP was generally upregulated in tumors compared with normal samples, but 

unlike miR-29a, miR-29b showed less consistent down-regulation in tumor samples (Fig. 

7b). We experimentally tested the putative target interaction between miR-29b and NREP in 

cancer cell lines. Overexpression of miR-29b caused at least 40% reduction of NREP 

mRNA expression in HeLa and U251 glioma cell lines relative to experiments with control 

siRNAs (P = 0.03 and P = 0.07 respectively, one-tailed t-test, ntreatment = 2, ncontrol = 4, 

mean ± range of two measurements for treatment and mean ± s.e.m. for control groups; Fig. 

7c). Inhibition of miR-29b expression using antisense oligonucleotides resulted in less 

potent but consistent upregulation of NREP mRNA expression across the two cell lines 

relative to experiments with control antisense oligonucleotides (P = 0.03 and P = 0.2 

respectively, one-tailed t-test, ntreatment = 2, ncontrol = 4, mean ± range of two measurements 

for treatment and mean ± s.e.m. for control groups; Fig. 7d). These data strongly suggest 

that miR-29b targets and destabilizes NREP mRNA. NREP encodes a small protein (P311, 

68 amino acids) that is associated with wound healing and glioma migration39,40 but whose 

specific biological function is largely unknown. Knockdown of NREP mRNA expression 

(using two different small interfering RNAs (siRNAs), yielding 35–70% NREP mRNA 

reduction) led to strong (1.6- to 2.8-fold) upregulation of miR-29b expression in the two 

cancer cell lines (P = 0.002 and P = 0.02, respectively, one-tailed t-test, ntreatment = 4, 

ncontrol = 4, mean ± s.e.m.; Fig. 7e), suggesting that NREP could directly or indirectly 

repress miR-29b expression. In summary, these data indicate that miR-29b and NREP 

expression could in part be regulated through a novel double-negative feedback loop that 

might also involve the other miR-29 family members, and this could provide conditions for 

a bistable system balancing miR-29 activity and active DNA demethylation (Fig. 7f).

Discussion

In this study, we demonstrate that miRNA-mRNA expression covariation in patient tumors 

can augment sequence-based miRNA target predictions to infer probable active and 

functional miRNA-target interactions in vivo. We used this observation to develop a robust 

rank-based statistical approach that infers recurrent miRNA-target relationships across 

multiple cancer types. By applying this method to transcriptomes of >3,000 tumors in 11 

different cancer types, we have inferred a pan-cancer network of 143 evolutionarily 

conserved miRNA-target interactions, comprising 40 miRNAs and 72 target mRNAs. These 

candidate interactions show strong evidence of regulatory activity across many cancer types, 

and miRNAs in the network were more likely to be dysregulated by genetic and epigenetic 

alterations than were other miRNAs also expressed in the studied cancer types, consistent 

with the hypothesis that these interactions could be implicated in tumorigenesis. 

Furthermore, several miRNA families that have been widely studied in cancer were 
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represented by many target interactions in the pan-cancer network, and there is functional 

evidence for at least 23 interactions from earlier experimental studies in cancer.

The association patterns we observe between miRNA and target mRNA expression may 

reflect a trace left on target mRNA expression by perturbation of miRNA expression 

through multiple and varying genetic, epigenetic and regulatory alterations across the set of 

tumors. We acknowledge that our approach cannot be used to infer target mRNAs for 

miRNAs with very low expression in tumors because variation in expression for such 

miRNAs would in most cases not have a strong impact on target mRNA expression. 

Furthermore, some miRNA-target interactions primarily influence mRNA translation 

efficiency, and our approach may miss such interactions if there is not an associated change 

in mRNA stability. Our pan-cancer network of candidate miRNA-target relationships also 

sacrifices sensitivity in favor of specificity by applying stringent sequence- and 

conservation-based filters, and it may also miss interactions that are functional only in a few 

cancer types. However, our online resource allows rapid exploration and visualization of any 

miRNA-mRNA association independent of sequence-based filters, and it can also explore 

relationships specific to individual cancer types.

Our analysis highlights at least two cases in which miRNA families are predicted to 

coordinately target and regulate multiple members of a cancer-related pathway across many 

cancer types. In the first case, our method predicts that the miR-106 family directly targets 

and regulates TGFBR2 and DAB2, two genes encoding components of the TGF-β signaling 

pathway. Consistent with the hypothesis that miR-106 miRNAs are oncogenic, we identified 

a novel recurring focal amplification targeting the mir-106b loci in endometrial cancer, and 

tumor samples with focally amplified mir-106b showed significant miR-106b upregulation 

in combination with TGFBR2 and DAB2 downregulation. Although earlier studies have 

shown that members of the miR-106 family directly target TGFBR2 and attenuate TGF-β 

signaling in cancer cells5,26,27, DAB2 has not been reported as a functional target of the 

miR-106 family. Moreover, our analysis suggests that all three miR-106 family loci, and in 

particular mir-106b (at 7q), contribute to TGFBR2 and DAB2 mRNA repression in vivo. In 

summary, these results suggest that activation of miR-106 family expression is a potent 

mechanism by which cancer cells can target the TGF-β pathway at multiple levels to switch 

TGF-β signaling from growth suppressive to tumor progressive.

We also identified a strong recurring negative correlation between members of the miR-29 

family and two genes encoding recently discovered core components of the active DNA 

demethylation pathway, TET1 and TDG32–35. Active DNA demethylation is important for 

embryonic development and tissue differentiation41. Although somatic mutations in genes 

encoding TET protein family members (TET1 and TET2) have been reported in various 

hematologic malignancies42, it is currently unknown to what extent dysregulation of active 

DNA demethylation pathways has a general role in cancer development. Two studies 

experimentally support direct miR-29 target interaction with TET1 (ref. 36) and TDG37 in 

acute myeloid leukemia and nasopharyngeal carcinoma, respectively. Furthermore, miR-29 

miRNAs directly regulate expression of TDG and TET proteins with downstream effects on 

DNA 5-hydroxymethylcytosine (5hmC) levels in noncancer cells43. In this study we show 

that both these genes are probably potent miR-29 targets in a wide range of cancer types, 
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suggesting that miR-29 dysregulation may have profound consequences for active DNA 

demethylation processes in cancer. Additionally, miR-29 miRNAs target genes encoding 

DNA methyltransferases (DNMT3A and DNMT3B) in cancer44,45 (as supported by our 

analysis, for example, miR-29a:DNMT3A, REC = −4.36), and in combination these data 

suggest a model in which miR-29 dysregulation in cancer induces a phenotype of DNA 

methylation instability that could facilitate tumorigenesis. Our analysis also shows that 

miR-29 dysregulation in tumors cannot generally be attributed to changes in DNA copy 

number or promoter methylation at the two miR-29 loci. Instead, we found that the top 

recurring miRNA-mRNA association in our analysis, miR-29b:NREP, represents a novel 

double-negative feedback loop that could impose a bistable system for miR-29 regulatory 

activity and active DNA demethylation activity.

Finally, we present our predictions in an online resource, http://cancerminer.org. The 

resource will continuously evolve as the TCGA consortium profiles additional cancer types, 

and we think these in vivo miRNA target predictions will be important for future efforts to 

unravel the role of miRNAs in tumorigenesis and for the design of miRNA-targeted 

therapeutics in human cancers.

Online Methods

Statistical evaluation of miRNA-mRNA association

To avoid measuring associations related to cis regulation of neighboring miRNAs and 

mRNAs (for example through regional epigenetic regulation or DNA copy-number 

aberrations), we evaluated expression association only for pairs of miRNAs and mRNAs 

that were on different chromosomes or that were > 10 Mb apart on the same chromosome. 

Alterations in gene DNA copy number and promoter DNA methylation often alter the 

mRNA expression of a given gene and may introduce noise into the evaluation of a possible 

post-transcriptional regulatory interaction between a given pair of miRNA μ and mRNA j. 

To account for such effects, we used a multivariate linear regression model in which mRNA 

j expression (log2) changes as a linear function of DNA copy number (log2 tumor/normal 

ratio), DNA methylation (beta value, [0,1]) and miRNA μ expression (log2) across tumor 

samples of a given cancer type (see Supplementary Note for details).

To evaluate the recurrence of a given miRNA-mRNA association across multiple cancer 

types, we had to combine the associations measured in each individual cancer data set. The 

P value computed for individual cancer types using the linear regression model above might 

strongly bias associations found in single studies with large sample sizes. We also observed 

that the distribution of associations found for individual ubiquitously and highly expressed 

miRNAs varied notably among different cancer studies. This could, for example, be due to 

study-dependent confounding effects such as differences in tumor heterogeneity between 

cancer types or the purity of tumor samples used for a given study. To account for these 

types of bias, we used a rank-based statistic to evaluate the relative strength of associations 

in the context of a specific miRNA and cancer type, and we evaluated the null hypothesis 

that that no negative association exists between miRNA μ and mRNA j across all n cancer 

types (see Supplementary Note for details).
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TCGA data

All miRNA expression data sets were obtained from the TCGA open access data directory 

(https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/, 

December 2012). miRNA expression was profiled by Agilent microarrays in the GBM and 

OVA studies, and by small RNA sequencing in the remaining studies. For microarray data 

sets, TCGA level 1 microarray expression data were processed and normalized using the 

AgiMicroRna R package (using between-array quantile normalization)46. For miRNA 

sequencing data sets, miRNA-mapped reads (level 3) were used to quantify miRNA 

expression by computing the ratio of mature miRNA reads (adding a pseudo count) relative 

to the total number of reads mapping to annotated miRNAs in the given sample. To filter 

miRNAs with very low expression across most samples in a cancer-type data set, we 

removed miRNAs that were detected in <5% of samples (using the ‘detected’ flag in the 

microarray data sets and a read count threshold of 10 in the sequencing data sets). The 

microarray and sequencing data expression values were log2 transformed for subsequent 

analysis. Mature and precursor miRNA sequences, coordinates and relationships were 

obtained through miRMaid (http://170.mirmaid.org/)47. For global target interaction 

enrichment analysis (Fig. 1b,c), we defined a set of highly expressed miRNAs in each tumor 

type. This set was defined by miRNAs highly expressed (top 100) in ≥2% of the samples for 

a given tumor type. This threshold led to selection of ∼150 (actual number depends on 

tumor type) mature miRNAs in each cancer type for the statistical evaluation.

All mRNA expression data sets were obtained from the TCGA open access data directory 

(https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/, 

December 2012). Normalized TCGA level 3 Agilent micro-array mRNA expression profiles 

were used for GBM, OVA and COAD/READ studies. For the remaining tumor types, 

mapped and gene-level-summarized (level 3, RPKM) RNA-seq data sets were used. To 

filter mRNAs not expressed across most samples in RNA-seq data sets, we removed 

mRNAs with <20 reads in >95% of samples. To allow log transformation, mRNA RPKM 

expression values of 0 were set to the minimum nonzero RPKM in the given sample. The 

microarray and RNA-seq mRNA expression values were log2 transformed for all subsequent 

analysis.

DNA copy-number (aCGH) data sets were obtained from Firehose (http://

gdac.broadinstitute.org/runs/analyses__2012_12_21/). We used level 4 nondiscretized gene-

summarized log2-transformed aCGH copy-number calls (tumor / normal ratio) computed by 

the Gistic2 algorithm31.

DNA methylation data sets profiled by either Illumina HumanMethylation27 (for GBM, 

OVA and COAD/READ) or HumanMethylation450 (for the remaining cancer types) 

platforms were obtained from Firehose (http://gdac.broadinstitute.org/runs/

analyses__2012_12_21/). We used level 4 data with methylation probes mapped to gene 

promoters, and selected for each gene data corresponding to the methylation probe showing 

strongest negative correlation (Pearson correlation coefficient) of methylation beta-value 

and gene mRNA expression across all samples in a cancer type. We similarly analyzed 

methylation probes mapping to known miRNA promoters (±2 kb of annotated transcription 

start sites) using a manually curated database of miRNA gene transcription start sites48.
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miRNA target predictions

miRanda-miRSVR (August 2010 release) human miRNA target predictions were obtained 

from http://microrna.org22. We used miRanda-miRSVR scores aggregated per gene and 

miRNA. TargetScan version 5.2 human miRNA target predictions were obtained from 

http://targetscan.org21. We used TargetScan context score and evolutionary conservation 

scores aggregated per gene and miRNA. Throughout the manuscript, predicted miRNA 

targets are defined by the intersection of miRanda (score < −0.5) and TargetScan (context-

score < −0.2) unless otherwise stated. miRNA targets were also predicted by matching the 

miRNA seed (position 2–8) complement to the 5′ UTR, coding region and 3′ UTR 

sequences of individual mRNAs. Sequences were obtained from Ensembl (version 63), and 

the longest sequence was selected if a gene had multiple sequences defined for a given 

mRNA region.

Public miRNA perturbation data sets

We obtained public miRNA perturbation data sets from the Gene Expression Omnibus: 

miR-106b and miR-16 overexpression and inhibition in HeLa cervical cancer cells 

(GSE6838), miR-29c overexpression in MKN45 gastric cancer cells (GSE38581), miR-30d 

over-expression in 5B1 melanoma cells (GSE27718), miR-200b overexpression in A498 

kidney cancer cells (GSM911073) and miR-21 inhibition in MCF7 breast cancer cells 

(supplementary data in ref. 49).

Experimental assays

U251 glioma cells and HeLa cells were cultured under 5% CO2 at 37 °C in DMEM (ATCC: 

30-2002) with 10% heat-inactivated calf serum (Colorado Serum Co.). miRIDIAN miRNA 

mimic negative control oligonucleo-tides (n = 2), miRIDIAN miRNA mimics (hsa-

miR-29b), NREP targeting ON-TARGETplus siRNAs (n = 2) and controls (n = 2) were 

purchased from ThermoFisher Scientific. miRCURY LNA microRNA Power Inhibitors 

(hsa-miR-29b) and control LNA inhibitors (n = 2) were purchased from Exiqon. 

Oligonucleotides were transfected to a final concentration of 100 nM using Lipofectamine 

2000 (Life Technologies) according to the manufacturer's instructions. Total RNA was 

extracted using the miR-Vana RNA isolation system (Life Technologies). Expression of 

miR-29b and NREP was measured using TaqMan qPCR assays (Life Technologies) 

according to the manufacturer's instructions, and RNU6B and ACTB were used as 

endogenous controls, respectively. All experimental assays were done with two biological 

replicates, and different control compounds were also treated as control biological replicates 

in the statistical analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of statistical approach. Statistical method used to evaluate recurrence of miRNA-

mRNA expression association across cancer types. In individual cancer types, pairwise 

miRNA-mRNA relationships are evaluated using a multivariate linear model, which also 

factors in variation (noise) in mRNA expression induced by changes in DNA copy number 

and promoter methylation at the mRNA gene locus. Associations are rank transformed in 

individual cancer types, and the method subsequently evaluates the null hypothesis that no 

association exists between the miRNA-mRNA pair in all cancer types.

Jacobsen et al. Page 16

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Concordance with predicted miRNA-target interactions. (a) Enrichment of predicted 

miRNA-target interactions as a function of miRNA-mRNA expression association in the ten 

cancer types (using 100 equally sized bins; cancer types are color coded as in Fig. 1). (b) 

Enrichment for predicted target interactions in the percentile of miRNA-mRNA pairs with 

strongest negative association, evaluated using different thresholds for miRNA target 

prediction methods: miRanda-miRSVR score (−0.15 versus −1.2), TargetScan context score 

(−0.1 versus −0.45) and presence of heptamer in mRNA 5′ UTR, coding sequence and 3′ 

UTR. Enrichment was evaluated using Fisher's exact test. (c) The top ten inferred recurring 

negative miRNA-mRNA associations. Left, inferred association rank (negative to positive) 

in each cancer type. Predicted target interactions with bars corresponding to (absolute) 

scores of three target prediction methods: miRanda-miRSVR, TargetScan context score and 

TargetScan conservation. (d) Results are available at http://cancerminer.org.
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Figure 3. 
Global analysis using public miRNA perturbation experiments. For six miRNAs in the 

inferred pan-cancer network (miR-106b, miR-29c, miR-30d, miR-200b, miR-16 and 

miR-21), we obtained public data sets measuring mRNA expression changes after miRNA 

perturbation (inhibition or overexpression) in different cancer cell lines. In each data set, we 

compared the distribution of expression changes for inferred target mRNAs (REC < −5.7, 

FDR < 0.001) with expression changes for all other mRNAs measured in the given 

experiment (Wilcoxon's rank-sum test, one-tailed).

Jacobsen et al. Page 18

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Pan-cancer network of miRNA-target interactions. (a) Pan-cancer network defined by 

intersection of miRNA-mRNA pairs with strong negative REC scores and strong evidence 

for conservation-based target interaction. (b) Inferred pan-cancer network comprising 143 

putative target interactions between 40 evolutionarily conserved miRNAs and 72 target 

mRNAs. Edge width represents strength of the REC score for a given miRNA-mRNA pair, 

and miRNAs are color coded by seed family relationships (singletons in white). (c) Genetic 

and epigenetic alterations regulating miRNAs. For the 40 miRNAs in the pan-cancer 

network and all other miRNAs also expressed across all the studied cancer types (n = 180), 

we estimated the extent (third highest R2 measured in the ten cancer types) to which changes 

in copy number (left) or promoter DNA methylation (right) at the miRNA locus could 

explain the variation in miRNA expression.
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Figure 5. 
miR-106 family regulation of TGF-β pathway components TGFBR2 and DAB2. (a) 

Association between miR-106 family members and predicted target genes TGFBR2 and 

DAB2 across cancer types. Cancer types are color coded as in Figure 1, and REC scores are 

listed for each pair. (b) The relationship between miR-106b expression and TGFBR2 and 

DAB2 mRNA expression in tumor and representative normal samples in four different 

cancer types. (c) Endometrioid tumors have a recurrent focal genomic amplification 

spanning the mir-106b locus. Copy-number alterations in the region for 18 samples with 

focal amplification of the mir-106b locus. Samples are sorted by copy-number amplification 

level. (d) Expression of miR-106b in endometrioid tumors with diploid mir-106b and tumors 

with focal mir-106b amplification. (e) Expression of miR-106b and TGFBR2 in 

endometrioid tumors; tumor samples with focal mir-106b amplification are highlighted, and 

expression in normal samples is included for comparison.
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Figure 6. 
miR-29 regulation of DNA-demethylation factors TET1 and TDG. (a) Association between 

the three miR-29 family members and predicted target genes TET1 and TDG across cancer 

types. Cancer types are color coded as in Figure 1a, and REC scores are listed for each pair. 

(b) Relationship between miR-29a expression and TET1 and TDG expression in tumor and 

representative normal samples in four different cancer types. (c) Global association between 

TDG expression and gene promoter hypomethylation. In each cancer type, we computed the 

fraction of gene promoters that were hypomethylated with TDG overexpression among the 

top 100 promoters showing strongest correlation (Spearman) of DNA methylation and TDG 

mRNA expression. The average fraction of TDG-associated hypomethylated gene promoters 

across all cancer types was compared with an empirical null distribution computed from 

1,000 sample permutations of the DNA methylation data set in each cancer type.
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Figure 7. 
Experimental validation of regulatory interaction between miR-29b and NREP. (a) 

Association between miR-29b and NREP across cancer types. Bottom, conserved predicted 

miR-29 target site in NREP, Watson-Crick and wobble (G•U) base pairs are highlighted. (b) 

Relationship between miR-29b and NREP expression in tumor and representative normal 

samples in four different cancer types. (c) NREP mRNA expression 24 h after transfection 

with miR-29b mimic (n = 2 biological replicates, mean ± range) and two different control 

hairpins (n = 4 biological replicates, mean ± s.e.m.) in cancer cell lines. (d) Relative NREP 

mRNA expression 24 h after transfection with miR-29b locked nucleic acid (LNA) anti-miR 

(n = 2, mean ± range) and two control LNAs (n = 4 biological replicates, mean ± s.e.m.). (e) 

miR-29b expression 24 h after transfection with two different NREP siRNAs (n = 4 

biological replicates, mean ± s.e.m.) and two different random control siRNAs (n = 4 

biological replicates, mean ± s.e.m.). (f) Putative double-negative feedback loop between the 

miR-29 family of miRNAs and NREP, which is predicted to impact the active DNA 

demethylation pathway.
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Table 1
Summary of analyzed TCGA cancer types and data sets

Cancer type Description Samples miRNAs mRNAs

GBM Glioblastoma multiforme 380 446 17,805

OVA Ovarian serous cystadenocarcinoma 509 589 17,805

CRCb Colon and rectum adenocarcinoma 181 347 15,855

KIRC Kidney renal clear-cell carcinoma 368 376 18,213

LUSC Lung squamous-cell carcinoma 195 439 18,135

BRCA Breast invasive carcinoma 671 419 18,099

UCEC Uterine corpus endometrioid carcinoma 247 498 15,897

BLCA Bladder urothelial carcinoma 94 507 15,377

HNSC Head and neck squamous-cell carcinoma 298 463 15,140

LUAD Lung adenocarcinoma 347 472 15,455

Total 3,290 429a 16,190a

a
miRNAs and mRNAs expressed in at least five cancer types.

b
Data sets for TCGA colon (COAD) and rectum adenocarcinoma (READ) were merged in the analysis, and the merged data set is listed as CRC.
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