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Abstract

Cell walls, constructed by precisely choreographed changes in the plant secretome, play critical roles in plant cell physiology
and development. Along with structural polysaccharides, secreted proline-rich Tandem Repeat Proteins (TRPs) are important
for cell wall function, yet the evolutionary diversity of these structural TRPs remains virtually unexplored. Using a systems-
level computational approach to analyze taxonomically diverse plant sequence data, we identified 31 distinct Pro-rich TRP
classes targeted for secretion. This analysis expands upon the known phylogenetic diversity of extensins, the most widely
studied class of wall structural proteins, and demonstrates that extensins evolved before plant vascularization. Our results
also show that most Pro-rich TRP classes have unexpectedly restricted evolutionary distributions, revealing considerable
differences in plant secretome signatures that define unexplored diversity.
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Introduction

Composed primarily of polysaccharides, plant cell walls provide

critical structural support for terrestrial plant life, and play

important roles in plant growth, development, and interactions

with microbes. In addition, ligno-cellulosic plant cell walls provide

the dietary fiber that facilitates mammalian digestion, represent an

important source of textile materials and combustible biofuels, and

play a major role in the global carbon cycle. Biochemical studies

indicate that wall polysaccharide composition differs among plant

lineages, and two distinct wall types have been characterized in

higher plants to date [1,2]. Gymnosperms and most angiosperms

are known to have Type I cell walls that have a distinctly different

polysaccharide composition from Type II cell walls found only in a

taxonomic group of advanced monocots that includes the grasses

[3]. Generally missing from current systems-level views of the

plant cell wall [1,4,5], however, are the secreted structural

(glyco)protein elements containing 4-trans-hydroxyproline (Hyp)

first discovered more than fifty years ago [6,7].

Nearly ubiquitous in green plants, Hyp-rich glycoproteins,

commonly known as HRGPs or extensins [8,9], compose up to

10% of the cell wall mass of higher plants [6,7], and have been

shown to play critical roles in cell wall structure and function [10–

13]. Post-translationally modified from Pro-rich polypeptides,

secreted HRGPs are generally grouped into three broad classes

based on primary sequence architectures and glycosylation profiles

[9,14–16], and these three classes, the extensin glycoproteins, the

proline-rich proteins (PRPs), and the highly glycosylated arabino-

galactan proteins (AGPs), have been hypothesized to form a

phylogenetic continuum ranging from green algae throughout

land plants [9,17].

Known HRGPs have highly biased amino acid compositions,

and like numerous structural proteins found throughout nature,

extensins and PRPs also have highly repetitive, tandem repeat

(TR), sequence architectures. These sequence characteristics,

along with extensive post-translational modifications often leading

to insoluble cross-linked HRGP networks, have hindered broad

phylogenetic analysis of plant HRGPs. Since commonly applied

sequence analysis methods, such as BLAST [18] or Hidden

Markov Models [19], have considerable limitations for analyzing

sequences with biased amino acid content [15], several groups

have used simple compositional filters or regular expression

queries (based on previously characterized sequence motifs) to

identify Pro-rich proteins from plant sequence databases. For

example, Schultz et al. (2002) [20] and Ma and Zhao (2010) [21]

identified AGPs in Arabidopsis and rice, respectively, using a biased

amino acid filter (50–55% or 35% Pro/Ala/Ser/Thr composition

depending on protein length), and Graham et al. (2004) [22] used

the pattern, PPV(E/Y/V)K, to identify novel PRPs in legumes.

Showalter et al. (2010) [15] developed BIO OHIO, a software tool

that implements a variety of compositional and regular expression

filters, to identify previously defined HRGP groups in the

Arabidopsis genome. Unfortunately, these approaches all rely upon

prior knowledge of repeat patterns and/or composition, limiting
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their utility for analyzing novel Pro-rich TRPs on a global multi-

genomic scale.

In this study, we leveraged computational methods specifically

developed to analyze large sequence databases for TR and TRP

content without prior knowledge, and report a considerable

expansion in our knowledge of the number and diversity of Pro-

rich TRP sequence classes targeted to plant secretomes. In

contrast to previous analyses that have been limited to a handful of

higher plant species (e.g., [15,22]), we analyzed millions of plant

secretome sequences spanning a broad phylogenetic range. Based

on the inherent differences in primary sequence architecture

among secreted Pro-rich TRPs, we propose a new taxonomy and

nomenclature for 31 distinct classes of secreted Pro-rich TRPs. In

addition to furthering our understanding of the phylogenetic

distributions of canonical HRGP TRPs, our data indicate that

nearly half of the identified TRP classes have very narrow

phylogenetic distributions. Such diverse Pro-rich structural TRPs

reveal phylogenetic distinctions that define an abundance of

previously unrecognized secretome signatures.

Results and Discussion

Identification and classification of Pro-Rich TRPs in plant
secretomes

To explore the global diversity of Pro-rich TRPs, we

constructed a database containing 8.3 M full and partial protein

sequences, from genome and EST projects, spanning 36,815 plant

and green algal species (Table S1; note that to expand sequence

diversity, most of data analyzed in this work are plant EST

sequences). These data were analyzed for TR content using

XTREAM (Newman and Cooper, 2007), and ,210,000 Pro-rich

TR motifs were identified, of which ,90,000 are unique (Table

S2, footnoted). All TR-containing sequences with an N-terminal

Met were analyzed for the presence of a secretory signal peptide

using SignalP 3.0 [23] (Table S2). From these sequences, unique

TR motifs that compose protein domains of at least 100 amino

acids, or 50 amino acids and at least 1/3 of the protein length

(Table S2), were clustered without prior knowledge into TR classes

based on sequence similarity. Though necessarily arbitrary, these

TR length criteria ensured that all analyzed TRs are sufficiently

long to compose significant structural domains in their corre-

sponding proteins. The results of this cluster analysis are presented

in Figure 1 as a network diagram depicting the landscape of the

most abundant Pro-rich TRs in plant secretomes, where nodes

correspond to TR motif clusters and edges reflect sequence

similarity. A high-resolution view of this network, together with the

individual TR motif consensus sequences, is shown in Figure S1.

Using this network, we identified 38 distinct TR motif classes

(Table S3, Table S4, and Table S5) that define 31 unique classes

of secreted Pro-rich TRPs (Table S6, Table S7, and Table S8; also

see Text S1, Text S2, and Text S3). Most of these TRP classes

map to one of five large TR motif super-classes (Figures 1 and S2),

and are distinctly different in TR sequence architecture from

previously recognized HRGP groups [14].

To illustrate the sequence architectures of these TRP classes,

representative examples of aligned TR domains are shown in

Dataset S1, and multiple sequence alignments of the N-terminal

and C-terminal regions of selected TRP classes are shown in

Figure 1. Cluster landscape of Pro-rich TR motifs from plant secretome sequences. Each node represents a TR cluster, node labels denote
the original cluster identifier (see Tables S9, S10), and edge thickness represents the fraction of times each pair of TR clusters was co-clustered over
ensemble re-sampling (see Materials and Methods) (also see ‘‘pairwise affinity’’ defined in Figure 4 of [49]). Thin, dotted, edges indicate a co-clustering
of ,10%. Large labeled nodes in the network denote clusters containing secreted TRPs found in at least ten species and twenty protein sequences
(Table S10) while intermediate size labeled nodes satisfy one of these two criteria. Smaller unlabeled nodes do not meet either criterion, but are
shown due to their similarity in motif content to larger, neighboring nodes. Major TRP classes from Tables S6, S7 and S8 are indicated around
corresponding TR motif super-classes (circled in gray). Node color represents the retention rate of the TR taxonomy (Tables S3, S4, S5), defined as the
proportion of all protein sequences corresponding to each cluster that are captured by TR class definitions (for class definitions, see Table S11; for a
quantitative version of the taxonomy retention rate, see Table S10). For a high-resolution version of this network showing all individual TR consensus
sequences, see Figure S1, and see Figure S2 for the same high-resolution network also showing TR super-classes. For details of network construction,
see Materials and Methods. This network was rendered using Cytoscape 2.6.0 [50].
doi:10.1371/journal.pone.0023167.g001

Plant Pro-Rich Proteins Are Unexpectedly Diverse
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Dataset S2 and Figure S3. Aside from two heterogeneous classes

(called EXTM and SPAP), all of the TRP classes we identified

are highly conserved in sequence both within and outside of the

Pro-rich TR domain, generally including the predicted N-

terminal signal peptide (Dataset S2 and Figure S3). Complete

data outputs of the TR motif cluster analysis are available in the

supporting information online (Table S9 and Table S10), and all

identified TRP sequences, including the TR motifs correspond-

ing to each of the 38 TR classes, are available via a web data-

base called PlantPro20Fam (http://jimcooperlab.mcdb.ucsb.

edu/plantpro20fam).

Extensins: ‘‘extensively’’ distributed in the embryophytes
Extensins, the first widely studied class of wall HRGPs, are

generally defined as highly basic glycoproteins composed of

canonical Ser-Pro4 TR motifs, in which nearly every Pro residue is

4-trans-hydroxylated and O-arabinosylated [9,14,17]. In addition,

extensin TR motifs are known to contain isodityrosine (Idt)

crosslinking motifs: either YxY and/or VYK [24,25]. Previous

work found Hyp-Arabinosides to be ubiquitous in green plants [8].

However, due to the difficulty in characterizing full-length

extensin glycoproteins, the evolutionary origins and distribution

of these wall structural molecules has remained obscure [9,14,25].

Our global analysis identified YxY-containing extensins, referred

to as Extensin type alpha (EXTA) (Text S1), throughout most land

plant divisions (Figures 2A, 3A, and Figure S4). In addition to the

core eudicots and ferns [14,25,26], EXTAs are found in at least

some non-grass monocots, including onion, orchids, and aspara-

gus, and in a diversity of non-flowering vascular plants, ranging

from gymnosperms to Selaginella, a member of the oldest extant

vascular plant group [27]. Furthermore, although missing in

mosses, transcripts encoding EXTAs were found in the non-

vascular liverwort species Marchantia polymorpha demonstrating that

EXTAs predate the evolution of plant vasculature (Text S3, also

see PlantPro20Fam).

While green algae are known to secrete HRGPs [28], we found

no evidence for EXTAs in Chlorophytes. Rather, we identified a

wide variety of high molecular weight, low-complexity SPn-

containing proteins with highly heterogeneous architectures

generally lacking Tyr (see PlantPro20Fam), including the SPAP2

containing mating-type agglutinins of Chlamydomonas [28] (Table

S6). These algal Pro-rich TRs generally compose limited sequence

domains within large multi-domain non-TRPs, consistent with the

hypothesis that the extensin class of HRGPs evolved in plants

during the colonization of terrestrial ecosystems.

Given the widespread occurrence of EXTAs in land plant

secretomes, we next examined EXTA TR domains for evidence of

structural conservation. We found that TR periodicities in EXTAs

are highly conserved, with periods of 10 and 16 residues occurring

in nearly two-thirds of EXTA TRs (Figure S5). In addition, at least

one of these two periodicities occurs in every major plant lineage

containing an EXTA sequence (Figure 2A). Circular dichroism

data previously showed that carrot EXTA forms an extended

polyproline II (PPII) helix and appears rod-like when imaged by

electron microscopy [29]. Because of the trilateral symmetry of

PPII helices, TR periodicity will determine the topological

regularity of amino acid side groups along an extended PPII helix

[30]. Both 10 mers and 16 mers have periodicities of length n+1,

where n is a multiple of 3. Lacking intramolecular Idt [25], n+1

(and n21) TR repeats are predicted to have a spiraling pattern

along the PPII helix whereby each repeat is rotated by 120u with

respect to its upstream repeat. As shown in Figure S5, ,92% of

EXTA TRs have periodicities of n+1 (,77%) or n21 (,15%),

implying that natural selection has maintained such a genetically

encoded structural feature in EXTAs throughout land plant

evolution.

In addition to conserved periodicity, most full-length EXTA

sequences also have a conserved C-terminal SPn motif with a Tyr

residue at or near the C-terminus (Dataset S2A; also see

PlantPro20Fam online), as was previously noted for 18 of 20

Arabidopsis extensins [12]. Notably, this terminal SPn,Y domain

may or may not be contiguous with the EXTA TR domain.

As a class, EXTAs have a number of conserved sequence

features, including SPn,Y-containing TRs with basic isoelectric

points (e.g., K-rich), and the general occurrence of an adjacent or

non-contiguous C-terminal SPn,Y domain. Allowing for the

substitution of Thr for Ser, we identified three additional TRP

classes containing all of these conserved EXTA sequence features

that we term extensin subtypes beta, gamma, and delta (Dataset

S2, A–D). Based on EST data (Table S13), each of these four EXT

classes is expressed in all major plant organs at all stages of

development (including both sporophyte and gametophyte for

moss EXTDs). In addition, our analysis revealed a broadly

distributed Hybrid EXtensin class (HEX type alpha) that includes

the leucine-rich repeat HEXs previously called LRXs and PEXs

and studied in Arabidopsis and rice [31] (Dataset S2E), as well as a

miscellaneous extensin-like class that generally lacks C-terminal

SPn,Y (EXTM) (Text S2).

Among the additional extensin classes, type beta (EXTB) differs

from EXTAs by the general absence of YxY motifs and the

presence of the potential crosslinking motif VYK (and variants V/

I-Y/H-K/H) (Text S2). Unlike EXTAs, EXTBs include the P1-

type extensins, while like EXTAs, EXTBs are typically composed

of TRs with periods that are not a multiple of 3 (Figure S6).

Although found predominantly in the non-grass angiosperms and

absent from grasses (Figure 2B), a putative EXTB was also

identified in moss. The completed Arabidopsis and Medicago

genomes each contain a single EXTB protein, compared to

eighteen and ten EXTAs, respectively. If a comparably low ratio

of EXTB to EXTA proteins is common in other genomes, future

genome and deep sequencing projects may reveal a much broader

phylogenetic distribution of EXTBs.

Previously called THRGPs, sequences that compose the extensin

type gamma (EXTC) class are uniquely found in grass secretomes

and have been well characterized in maize [32,33]. In addition to

SP1 (and sometimes SP2), EXTC TR domains are characterized by

TP2TY motifs (Table S3) that are highly homologous to

hydroxylated SPn,Y motifs conserved within the other extensins.

Like EXTAs and EXTBs, EXTCs are also basic (K-rich) and have a

C-terminal SPn,Y domain (Dataset S2C) indicating that these grass

TRPs are bona fide members of the extensin superfamily.

Although moss sequences in our database lack EXTAs (Figure 2,

A and B), analysis of the fully sequenced genome of Physcomitrella

patens, together with EST data from several moss families, revealed a

previously unrecognized extensin class, type delta (EXTD). Defined

by the presence of TRs with SP2 and SPVYX motifs (where X = K/

E/T/S; Table S3), and a C-terminal SPn,Y domain (see Dataset

S2D), EXTDs share conserved sequence features with other

extensins, and like EXTBs, many EXTDs have at least one basic

VYK crosslinking site. A partial sequence encoding a homologous

EXTD, composed of SPPVYXAPP TRs with a carboxy terminal

TP2,Y domain, was also found in the liverwort M. polymorpha

indicating that the distribution of EXTDs may extend to all

bryophytes (GenBank accession BJ851426, also see PlantPro20Fam).

Four conserved classes of non-extensin Pro-Rich TRPs
Like EXTAs, four non-extensin TRP classes were found

broadly distributed throughout plant evolution and expressed

Plant Pro-Rich Proteins Are Unexpectedly Diverse
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throughout plant development, presumably representing impor-

tant structural ‘‘core modules’’ (Figures 2B and 3, Table S13). One

of these classes is defined by TRs enriched in a T/S-P3A motif that

was previously identified in two Arabidopsis AGPs (AGP7 and

AGP9, [34]). Based on its broad distribution (Figures 3B and S7),

we refer to this TRP class as TR-AGP type alpha (AGPA).

Though most AGPs are not TRPs [34], most AGPA sequences

have a predicted GPI-anchor (like the classical AGPs), including

AGPAs present in the major divisions of higher plants: conifers,

eudicots, non-grass monocots, and grasses (76% of AGPA

sequences in Text S3). A highly conserved glutamine residue

found at the N-terminus of mature AGPAs (predicted signal

Figure 2. Phylogenetic distribution of Pro-rich TRP classes targeted to plant secretomes. (A) Dendrogram showing the evolutionary
relationships among major plant divisions as well as the distribution of EXTAs identified in this study and in previous literature [14,25,26]. (To reflect
results of a recent phylogenetic analysis [52], the large divisions, super-rosids and super-asterids are shown rather than rosids, asterids, and other
phylogenetic groups). (B) Heat map showing phylogenetic distributions of 18 secreted Pro-rich TRP classes, 17 of which are represented by more than
a single plant family (abbreviated names are described in Text S2, and Tables S6, S7, S8). TRP classes are divided into the extensin superfamily, the non-
extensin core modules, and the less conserved TRP classes found in .1 plant family. Dark-green rectangles represent TRP classes in which at least one
known protein sequence or full-length ORF with a predicted secretion signal was found in the corresponding TRP class and plant phylogenetic group.
Light-green rectangles with a horizontal line pattern represent TRP classes in which at least one putative member is present in the corresponding
phylogenetic group (e.g. lacking a full-length sequence). Gray rectangles with a diagonal line pattern represent the putative moss AGPA and EXTB
sequences (the AGPA is not predicted to be GPI-anchored; the EXTB sequence is not predicted to be secreted and has a TR domain that encompasses
only half of the sequence). (C) Phylogenetic sampling bias of all ESTs and protein sequences (from Table S1) either captured by our TR taxonomy
(Tables S3, S4, S5) or representing secreted Pro-rich TRPs (Table S2), shown as a log-scale histogram.
doi:10.1371/journal.pone.0023167.g002
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peptide removed) is consistent with the possibility of a common

ancestor.

A second TRP core module class, characterized by PELPK-

containing repeats (Figures 1 and S2), is distributed throughout

grass and non-grass angiosperms (Figures 3C and S8). Multiple

sequence alignment analysis of PELPKs revealed conserved non-

TR N-terminal and C-terminal sequence features consistent with

the hypothesis that the PELPKs are an orthologous TRP class that

arose sometime before or during the emergence of basal

angiosperms. Although evidence for PELPK proteins was detected

in sixty-four flowering plant species and 45 genera (Figures 3C and

S8), only two PELPKs have been previously reported (At5g09520

and At5g09530 in Arabidopsis, called putative PRPs by [14], PRP9

and PRP10 by [15], and PELPK2 and PELPK1 by [35]).

Recently, At5g09530 was shown to localize to seed aleurone cells

and xylem cell walls, and found to be expressed in response to

pathogen attack and stress [35]. Using publicly available Arabidopsis

microarray analysis tools [36,37] we also found that both

Arabidopsis PELPK genes are up-regulated during seed develop-

ment and expressed in radicle, hypocotyl, and adult root tissues,

and both are up-regulated in procambial tissue in response to

osmotic stresses or ABA treatments. Together, these data are

consistent with the hypothesis that PELPKs are a large, widely

distributed class of plant cell wall proteins with potentially diverse

physiological functions.

Also broadly distributed in higher plants, we found two large

groups of TRP classes each defined by the fusion of a distinct Pro-

rich TR domain to highly conserved Cys-rich domains, either the

Lipid Transfer (LT) protein domain or the Pollen Ole e I (PO)

domain [38,39]. PO domains are considered a ‘‘domain/protein

of unknown function’’ (termed DUF1210 in the Pfam database),

while LT domains have been found in small, secreted proteins

known to play roles in plant growth, defense and reproduction

[40,41]. Among six subtypes of hybrid LT TRPs and three

subtypes of hybrid PO TRPs identified in our analysis (Table S7),

two classes represent core modules in higher plant secretomes,

HLT type alpha (HLTA) and HPO type alpha (HPOA). HLTAs

have a Pro-rich TR domain containing variations on the motif,

PPVTLPPVVK (Table S5), and are found in 46 genera of non-

grass seed-bearing plants (Figure S9), while HPOAs have a TR

domain containing variations on the motif, PPPVPVYKKPL

(Table S5), and are found in 37 genera from primitive to advanced

non-grass angiosperms (Figure S10).

Most Pro-rich TRP classes have narrow phylogenetic
distributions

Remarkably, 81% of secreted Pro-rich structural TRP classes

that we identified have very limited phylogenetic distributions

(Figure 2B, Table 1), with nearly half of the 31 TRP classes

restricted to individual plant families (Table 1). For example, the

‘‘classical’’ PRPs, defined by the conserved TR pentapeptide

P2V(Y/E/H)K, are common throughout the Fabaceae but are

limited to only three additional eudicot families in our database

(see PRPA in Figure 2B and Text S2). A similar but distinct TRP

class (PRPB) is found in conifers (Table S7, Text S2). Two

additional TRP classes are specific to legumes, and two other

classes are only found in Brassicaceae or Populus species (Table 1).

Remarkably, the PEHK class, exclusive to the grape family, has 18

known and predicted genes arranged in a sequence continuum

across chromosome five in V. vinifera. Such a physical arrangement

indicates that this gene family is likely a product of recent tandem

gene duplication (Figure S3). (Several other Pro-rich TRP genes

identified in this work also occur in closely linked gene clusters,

including four different extensin gene clusters in Arabidopsis, and

the PELPK genes in Arabidopsis, rice and Sorghum bicolor (see Text

S2.) Finally, the grass family, known to have a unique Type II cell

wall architecture [3], has a strikingly large group of unique Pro-

rich TRP classes (Table 1). Importantly, all plant families with a

unique TRP class have at least one fully sequenced genome. The

apparent absence of taxonomically restricted TRP classes in other

analyzed plant families, however, may result from the unavoidable

phylogenetic sampling bias of currently available sequence data

(e.g., Figure 2C). Likewise, it is possible that some of the Pro-rich

TR classes identified in this work span broader phylogenetic

ranges than described.

In some cases, family-specific TRP classes correlate with distinct

known secretome functions indicating that phylogenetically

restricted TRPs, in general, may represent important evolutionary

innovations. For example, the PHEK class, only found in

Fabaceae, includes an ‘‘early nodulin’’ thought to be involved in

legume-specific symbioses with rhizobia bacteria [42], while two

unique TRP classes targeted to seed storage vacuoles in the

Triticeae tribe of grasses (glutenins and gliadins) are known to

impart the elastomeric properties that typify cereal grain flours

[43]. Though most TRP classes identified in our analysis have not

yet been functionally characterized, like many TRPs throughout

nature (e.g., mammalian mucins, spider silks, insect resilins,

mollusc biomineralization proteins, mussel adhesive proteins),

these plant structural molecules are likely to have evolutionarily

Table 1. Plant family-specific Pro-rich TRP classes.

TRP Class Plant Family General Division(s)

HLTD Brassicaceae (e.g. Arabidopsis) Super-Rosids (Eudicots)

PEHK Vitaceae (grape family) Super-Rosids (Eudicots)

PHEK Fabaceae (legumes) Super-Rosids (Eudicots)

KPIP Fabaceae Super-Rosids (Eudicots)

HLTF Salicaceae (Populus species) Super-Rosids (Eudicots)

AGPC Poaceae (grasses) Monocots

MPAV Poaceae Monocots

PEPKB Poaceae Monocots

EXTC Poaceae Monocots

HPOB Poaceae Monocots

PEPKA Poaceae Monocots

HLTE Poaceae (Non-Triticeae) Monocots

QRA (LMW glutenins) Poaceae (Triticeae tribe) Monocots

QRB (HMW glutenins) Poaceae (Triticeae tribe) Monocots

Each TRP class is described in the supporting information (Text S1 and S2; also
see Tables S6, S7, S8).
doi:10.1371/journal.pone.0023167.t001

Figure 3. Phylogenetic distributions of three core module plant Pro-rich TRP classes. (A–C) Circular trees show genera distributions, with
major plant divisions (same as Figure 2A) labeled around each tree. Versions of trees showing all genera are illustrated in the Figures S4 (EXTA), S7
(AGPA), and S8 (PELPK). The 143 leaves in these trees represent the genera that are either captured by our TR taxonomy (Tables S3, S4, S5) or
represented by at least one secreted Pro-rich TRP in our analysis (Table S2). Taxonomic data were downloaded from NCBI, and trees were rendered
using PhyloWidget [53].
doi:10.1371/journal.pone.0023167.g003
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important biomechanical properties that may underlie previously

unexplored cell wall diversity.

Proteins with highly biased amino acid composition, like the

TRP classes identified in this work (Figure S2), represent one

important component of the poorly explored ‘‘dark matter’’ of the

protein sequence universe [44]. In this study, we developed

algorithms for TR identification, architecture modeling, and

clustering that do not depend upon prior knowledge of TR

motifs. Applying these methods to a global computational analysis

of Pro-rich structural TRPs in plant secretomes, 31 TRP classes

with distinct TR architectures were identified, including all

previously characterized extensin and PRP TRPs. In addition to

showing that one TRP class, Extensin type alpha, is the most

broadly conserved Pro-rich TRP class in plant secretomes, we

identified an extensin superfamily that includes several additional

TRP classes with well-defined, characteristic EXT sequence

features. Beyond extensins, four TRP ‘‘core modules’’ in land

plants were identified, along with more than twenty additional

classes of Pro-rich TRPs, all of which have characteristic TR

architectures and limited phylogenetic distributions (e.g. the

‘‘canonical’’ PRPs composed of P2V(Y/E/H)K TRs). Taken

together, our results document large-scale diversity in cell wall

extensins, identify conserved core modules and distinct phyloge-

netic signatures in higher plant secretomes, and provide a rational

taxonomy and nomenclature for the diversity in secreted Pro-rich

structural proteins. In addition, this work should have applications

for developing comprehensive system-level cell wall models, which

have heretofore focused almost exclusively on wall polysaccharide

synthesis and architecture.

Materials and Methods

Master Database
To study the global diversity of Pro-rich TRPs targeted to plant

secretomes, we built a large database containing both expressed

sequence tag (EST) data and known/hypothetical protein

sequences representing diverse plant species (Table S1). All

available plant EST assemblies and singletons were downloaded

from two online repositories, the Gene Index Project (called

‘‘TCs’’) hosted at the Dana-Farber Cancer Institute (downloaded

10/06/09 from http://compbio.dfci.harvard.edu/tgi/plant.html)

[45] and the TIGR Plant Transcript Assemblies database (called

‘‘TAs’’) (release 07/10/07, downloaded from ftp://ftp.tigr.org/

pub/data/plantta/) [46]. We also downloaded and extracted all

known and predicted plant protein sequences from the NCBI

Non-Redundant (NR) protein sequence database (release 10/04/

09 from (http://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/). ESTs

were translated into forward reading frames (Table S1), and

complete taxonomies (i.e. phylum, class, family, etc.) were

downloaded for all sequence data from NCBI (http://www.ncbi.

nlm.nih.gov/taxonomy). Of all plant species represented in the

master database, 95% are severely under-sampled (at most 1–10

proteins and/or ESTs), and 0.6% of all species are represented by

at least 1000 individual sequence samples (236/36,815 species).

Notably, due to a lack of genome sequence data, most sequences

analyzed in this work necessarily originate from specialist EST

databases, not NCBI NR (see Table S1). For details of additional

sequence data analyzed in this work, see Text S4.

PlantPro20 Database Construction
We used XSTREAM, a TR identification and architecture

modeling tool [47], to process the master database for TR content.

The following algorithm parameters were used: Minimum Copy

Number (minC): 2, Minimum Character Identity (i): 0.7, Minimum

Consensus Matching (I): 0.8, Maximum Consecutive Gaps (g): 3,

Minimum Domain Length (minD): 12 amino acids, and default

parameters (refer to [47] for details of these parameters). All

identified TR motifs (Table S1) were subsequently filtered for Pro-

rich TRs, defined as TRs having at least 20% proline in their

consensus sequences. The consensus sequence is a representative

copy of the entire TR domain identified and modeled by

XSTREAM.

A new database, PlantPro20, was created to house all Pro-rich

TRs along with additional sequence and phylogenetic data (Table

S2). Due to the high quality of TC ESTs, PlantPro20 was initially

populated with Pro-rich TRs derived from translated TC

sequences and singletons. Next, we added Pro-rich TRs identified

from TA sequences representing plant species not already present

in PlantPro20, and finally, all NR sequences with Pro-rich TRs

were added (see Table S2). The longest sequence stretch

containing an N-terminal methionine and downstream stop codon

was identified for each EST. ORFs (full-length or partial ORFs,

including NR sequences) were then individually scanned for a

secretion signal and GPI anchor using SignalP 3.0 [23] and

PredGPI [48] web servers, respectively. For secretory peptide

identification, we required a minimum HMM signal peptide

probability of 0.7 or a ‘Yes’ prediction for all Neural Network

score components (i.e. max. C, max. Y, max. S, mean S, D). A

minimum specificity of 99.5 (1-false positive rate) was used for the

identification of GPI-anchored proteins. To focus on TR domains

long enough to compose structural domains in TRPs, all TRs were

additionally filtered for TR Modules, defined as TR domains that

span at least 100 amino acids, or cover at least 33% of their parent

protein sequence and span at least 50 amino acids (see Table S2).

AutoSOME-TR
We implemented an unsupervised clustering method, called

AutoSOME [49], within a software framework tailored to the

unique properties of TR sequences. This new method, called

AutoSOME-TR effectively clusters TR sequences with either

high or low complexity amino acid compositions, captures

sequence context dependency among adjacent residues, and

recognizes TR phase variation using cyclical permutations (e.g.,

by defining a single equivalence class of TR consensus sequences:

PVYK = VYKP = YKPV = KPVY).

Prior to clustering, each TR domain is converted into a

dipeptide compositional vector (of length 400 to accommodate all

possible dipeptides). We found empirically that such dipeptide

vectors provide for better discrimination of low-complexity

sequences than single amino acid vectors (length 20). As an

example, given a TR domain ‘PVPVKPVPVK’ with consensus

sequence ‘PVPVK’, the dipeptide vector would contain four

copies of ‘PV’, two copies of ‘VP’, two copies of ‘VK’ and one

copy of ‘KP’. These compositional vectors are subsequently

normalized by TR domain length (10 in the previous example) and

used as input for the AutoSOME-TR algorithm. Importantly, the

use of dipeptide compositional vectors allows AutoSOME-TR to

both capture context dependence among adjacent residues and

mitigate issues due to TR phase variation.

Clustering of TRs is accomplished in two major phases. First,

the entire input data set of dipeptide compositional vectors is

clustered using the AutoSOME algorithm, and the resulting

compositional clusters are output to memory and disk. Immedi-

ately thereafter, each TR compositional cluster is evaluated by a

series of quality control procedures designed to enforce a user-

specified threshold of internal homology. In brief, for each TR

cluster, an alignment procedure performs an all-against-all

comparison of each TR consensus sequence to all cyclical
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permutations of every other TR consensus sequence in the cluster,

and an aggregate score records the total number of character

matches. The TR consensus sequence alignment with maximal

score is then used to build a master consensus sequence, which is

compared to its constituents to determine a consensus error. The

same consensus generation and error procedures as described for

TRs in [47] are used here. Next, a procedure is invoked to flag and

remove consensus sequences that are unlikely to belong to the

cluster, and a consensus error is recomputed. If the lowest of the

two consensus errors satisfies the user-defined homology threshold

E ( = 0.4, by default), the corresponding TR cluster is output to file.

Otherwise, AutoSOME-TR is rerun on the original compositional

cluster, including any discarded consensus sequences from the

cleansing step, to identify finer-grained partitions. This second

stage is recursively repeated until each TR cluster either meets a

stricter E ( = 0.3, by default) or the size of the cluster is below a

minimum size threshold also modifiable by the user (10 by default).

Software and pseudocode for our AutoSOME-TR implementa-

tion are available upon request.

TR Cluster Analysis
Of the 1240 unique TR Module consensus sequences found in

protein sequences with a predicted signal peptide (Table S2), 997

TR Module motifs were clustered by AutoSOME-TR. Each of

these 997 TRs has periodicity.3, and lacks an ‘X’ character or

stop codon. The following clustering parameters were used: 100

ensemble iterations for individual AutoSOME runs, P,0.01, self-

organizing map (SOM) grid dimensions of 20620 nodes for stage-

one clustering and 10610 nodes for stage-two clustering (see

AutoSOME-TR for description of clustering stages), SOM topolo-

gy = circle, and cartogram resolution of 64664 (parameters are

defined and discussed in Newman and Cooper, 2010). Auto-

SOME-TR identified 104 TR clusters containing 816 distinct TR

Module consensus sequences and 181 singleton TR consensus

sequences. See Table S9 for a comprehensive list of all clustered

TR motifs, along with their corresponding proteins and plant taxa,

and see Table S10 for TR cluster summary statistics.

Construction of TR Module Cluster Network
Clusters with at least three members (73 of 104 clusters) were

further analyzed for inter-cluster similarity using the AutoSOME

fuzzy cluster network approach described in [49]. Both singleton

TRs and TR clusters with two members (Table S10) were

analyzed separately. To prevent the abundance of proline residues

from skewing fuzzy clustering results, proline residues were

removed from TR consensus sequences prior to fuzzy clustering.

As input to the AutoSOME algorithm, all TR consensus sequences

(missing proline) from each cluster were individually converted

into dipeptide compositional vectors, and then averaged together

to form a compositional vector representing each TR cluster. The

input data set of TR compositional vectors was then unit-variance

normalized over each column, converted into an all-against-all

distance matrix using Pearson’s correlation, and clustered by

AutoSOME using a p-value threshold of 0.01, 500 ensemble

iterations, SOM grid size of 12612 nodes, SOM topology = circle,

and cartogram resolution of 32632 (parameters are described in

Newman and Cooper, 2010).

The resulting fuzzy cluster network was rendered using

Cytoscape 2.6.0 [50]. TR Module clusters (containing proline)

were superimposed onto the network using a custom Cytoscape

plug-in, and the Organic layout algorithm was used for spatial

organization of clusters. Initially, the network display was highly

interconnected, proving too dense for visual cluster analysis.

Network density was significantly decreased by removing insignificant

edges, defined as edges having cluster confidence less than 0.04,

where confidence = 1 denotes a co-clustering of 100% over all

ensemble iterations (see [49]). This step resulted in the removal of

93% of all edges (2582 of 2775) and two nodes (clusters 42 and 60).

The resulting cluster similarity network, showing 73 TR Module

clusters and representing 747 unique TR Module consensus

sequences, is depicted in high-resolution detail in Figure S1 (also

see Table S10 for cluster network statistics). Original cluster

identifiers (Tables S9, S10) are provided in Figure S1 next to the TR

Module clusters.

Development of TR Taxonomy and Nomenclature
To focus on TR Module clusters representing a broad range of

species and/or large number of protein sequences, a simple filter

was applied to all cluster results, including the cluster network

(Figure S1). Clusters that passed the filter contain TR Modules

that are together present in $20 secreted proteins or are present

in secreted proteins that together span $10 species. These clusters

are shown as numbered nodes in Figure 1 (also see Table S10).

Small, unlabeled nodes in Figure 1 are also shown as they have

similar TR content to clusters that passed the filter.

In contrast to previous work that relied upon prior knowledge

of TR sequences and composition (e.g. [15,22]), we used

unsupervised methods to identify clusters of abundant TR

elements within the Pro-rich TR Module landscape (Figures 1

and S1), and subsequently devised a series of regular expression

definitions to formally capture these prominent TR motifs.

Regular expressions were used since, when rigorously defined,

they allow for robust character matching with minimal noise.

Every TR cluster satisfying the species and sequence filtration

criteria or corresponding to a visible node in Figure 1 was

manually analyzed for motif homogeneity, both internally and

compared to neighboring clusters in the network of Figure S1 (see

Table S10 for all analyzed TR clusters). While our goal was to

map one unique regular expression definition per TR cluster,

some clusters were split to better capture motif diversity (e.g.

cluster 3 in Figure S1), and other clusters, if highly related in TR

content, were combined (e.g. PELPK clusters in Figure S2). Every

regular expression was fine-tuned for maximum specificity and

sensitivity across the entire PlantPro20 database (Table S2),

resulting in a final set of 38 distinct and highly specific regular

expression definitions (Table S11).

Due to the unique structural and biochemical properties of

proline residues, such as the ability to disrupt alpha helices, form

polyproline helices [30], and serve as a substrate for post-

translational modification [9], we further classified each of the

TR classes by proline sequence architecture. Based on prominent

proline backbones observed in the cluster network of Figure S1, we

selected the following proline backbone categories: SPn, TPn,

interspersed P1, regular P2 blocks, interspersed P2/P1, regular P2

and P3 blocks, and interspersed P2/P3/P1.

Finally, rather than name each TR class using arbitrary

alphanumeric nomenclature (e.g. class I, II, or A, B, etc.), or a

generic name like ‘PRP motif’, each TR class was named using the

single letter amino acid code of a prevalent motif or sub-motif. By

capturing an inherent property of the TR class within its name,

this approach to nomenclature should eliminate ambiguity.

TRP Taxonomy and Nomenclature
Using our TR taxonomy, the relevant published literature,

multiple sequence alignments, and the presence or absence of

conserved non-TR domains (identified using BLAST [18] and

SMART [51]), all Pro-rich TRPs captured by the TR taxonomy

were also classified and named. The TRP nomenclature that we
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developed includes both concise (3–5 letters) and descriptive

names. When applicable, names were chosen to indicate

hierarchical membership to larger classes, or ‘‘superfamilies’’

(e.g. all extensins are called ‘EXTs’). Greek characters were used

for superfamily sub-types, such as ‘‘extensin type alpha,’’ or ‘‘TRP-

AGP type gamma,’’ and as a general rule, increasing Greek

characters (i.e. alpha, beta, gamma, etc.) indicate decreasing

phylogenetic coverage in the PlantPro20 database (e.g. 10 plant

families, 3 families and 10 species, 3 families and 5 species, etc.) for

a given TRP superfamily.

Sequence Redundancy and Revisions
A significant amount of sequence redundancy was observed for

full-length and partial protein sequences in the PlantPro20

database. To provide the research community with an uncluttered

protein sequence resource, we attempted to eliminate overlapping

sequences representing the same TRP gene sequence. Since single-

read EST sequencing is prone to errors, particularly within TR

regions (e.g. frameshifts), further computational assembly of

identified complete/partial ORFs was bypassed, and instead, all

sequences with hits to the TR taxonomy (i.e. ESTs, NR sequences,

genomic sequences) were manually curated using basic alignment

tools and online sequence databases. The well-annotated Arabi-

dopsis genome was used as a benchmark to calibrate and fine-tune

the accuracy of manual sequence assembly and clustering.

Multiple Sequence Alignments (MSAs) of NR and genome

sequences, translated ESTs, and 59/39 UTRs of ESTs were all

analyzed, when possible. If significant sequence homology was

observed among all aligned proteins and/or transcript regions as

judged by manual inspection, a master sequence was chosen to

represent the group. When selecting a master sequence,

precedence was given to genomic sequences, followed by NR

sequences, and then translated ESTs. If more than one candidate

master sequence of the same sequence type was identified (e.g. all

ESTs), the longest sequence was designated as the master. In the

absence of genomic or NR sequences, the ‘‘best’’ EST was chosen,

where ‘‘best’’ is arbitrarily defined as the longest sequence stretch

without observed errors or ambiguities (e.g. ‘X’ characters). To

further increase the quality of the curated protein list, in some

cases, the master sequence was revised on the basis of additional

sequence information (Table S12). Revisions included extending

master sequences using significantly overlapping ESTs from the

same species found by NCBI BLAST analysis and correction of

suspected EST frameshifts by pairwise alignments of reading

frames. All curated master sequences are provided in Text S3. For

all master, partial, and redundant sequences, refer to the

PlantPro20Fam online database.

PlantPro20Fam Web Database
The TRP sequence data classified and named in this work,

along with all unclassified secreted Pro-rich TRPs within the

PlantPro20 database, are freely available via an online repository

(http://jimcooperlab.mcdb.ucsb.edu/plantpro20fam). This web

resource, called PlantPro20Fam, provides a facile interface for

exploring the diverse Pro-rich TR architectures and phylogenetic

diversity of Pro-rich TRPs spanning .250 species ranging from

green algae to flowering plants.

Supporting Information

Figure S1 Cluster landscape of Pro-rich TRs from plant
secretomes. High-resolution network representation of TR

cluster results. Only unique consensus sequences corresponding

to each TR domain are shown. Consensus motifs within each

cluster were aligned as described in the Materials and Methods. To

display amino acid physical chemical properties as RGB colors,

we developed a three-dimensional representation of the following

seven parameters: hydrophobicity [54], alpha helix, beta sheet,

beta turn, and coil conformational parameters [55], Van der

Waals volume, and isolectric point [56]; Principal Components

Analysis (PCA) was used to reduce these seven property scales

into three dimensions (components 1, 2, and 3), and these

components were normalized into R, G, and B color elements,

respectively.

(TIF)

Figure S2 Super-classes of Pro-rich TRs, related to
Figure 1. Super-classes of TRP clusters shown in Figure 1 are

indicated using the network of Figure S1.

(TIF)

Figure S3 Evolutionary relationships among 18 PEHK
loci from the V. vinifera genome. Major protein domains are

indicated below the alignment, including part of the TR domain

(for the TR taxonomy, see Table S5), and evolutionary

relationships among corresponding PEHK loci are shown on the

left (bootstrap values shown above branch points). Ten PEHK

genes inferred by homology searching are indicated by an asterisk

on the right side of the alignment while eight previously discovered

PEHK loci are given as NCBI gene identifiers. For readability,

only part of the original multiple sequence alignment of PEHK

protein sequences is shown (aligned residues between positions 70

and 210 were removed; rendered with JalView [57] and aligned

using MUSCLE [58]). Methods: tBLASTn [18] was used to search

the V. vinifera genome (126database compiled 02/17/10, http://

www.genoscope.cns.fr/cgi-bin/blast_server/projet_ML/blast.pl)

for genes encoding proteins similar to the eight previously reported

PEHKs [59,60], resulting in the identification of 10 putative

PEHK genes. To analyze evolutionary relationships among all 18

PEHK genes, a multiple sequence alignment was built for all 18

known and predicted coding regions using CLUSTALW [61], and

an evolutionary tree was constructed using the Neighbor-Joining

method, with 10000 bootstrap iterations. Branches with ,50%

bootstrap confidence are collapsed. The Jukes-Cantor method was

used to estimate evolutionary distance, and positions with

alignment gaps and missing data were not considered during

pairwise sequence comparisons. MEGA4 was used for the entire

phylogenetic analysis [62].

(TIF)

Figure S4 Phylogenetic tree of the EXTA class, related
to Figure 3A. Full-length and/or partial EXTAs from 112 species

and 72 genera are shown (orange-colored branches). The 143 leaves

in these trees represent the genera that are either captured by our TR

taxonomy (Tables S3, S4, S5) or represented by at least one secreted

Pro-rich TRP in our analysis (Table S2). The evolutionary rela-

tionships among genera were downloaded from the NCBI taxonomy

browser, and the tree was rendered using PhyloWidget [53].

(TIF)

Figure S5 EXTA TRs have two major periodicities. The

periodicity distribution of 690 out of 698 EXTA TR domains is

shown below (not shown are periods 44 (16), 51 (16), 53 (56), and

76(16)). Red, green, and blue-colored bars represent periods of

length n, n21, and n+1, respectively, where n is defined as all

periodicities that are a multiple of 3. To ensure accurate

characterization of TR periodicities, XSTREAM [47] was used

to model the architectures of all 698 EXTA TR domains in the

PlantPro20 database (Table S2) without the inclusion of gap
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characters (otherwise, XSTREAM was run the same as described

in Materials and Methods).

(TIF)

Figure S6 EXTB TRs have two major periodicities. This

histogram shows the periodicity distribution of 172 out of 173

EXTB TR domains (one instance of period = 40 is not shown).

The histogram is colored identically to Figure S5. XSTREAM

[47] was used to model all EXTB TR architectures the same as

described in Figure S5.

(TIF)

Figure S7 Phylogenetic tree of the AGPA class, related
to Figure 3B. AGPAs were found as partial or complete

sequences in 38 plant genera (orange-colored branches and

leaves). The tree was built identically to the tree in Figure S4.

(TIF)

Figure S8 Phylogenetic tree of the PELPK class, related
to Figure 3C. PELPKs (partial or complete sequences) were

found in 45 plant genera (orange-colored branches and leaves).

The tree was built identically to the tree in Figure S4.

(TIF)

Figure S9 Phylogenetic tree of the HLTA class. HLTAs

were found as partial or complete sequences in 46 plant genera

(orange-colored branches and leaves). The tree was built identically

to the tree in Figure S4.

(TIF)

Figure S10 Phylogenetic tree of the HPOA class. HPOAs

(partial or complete sequences) were found in 37 plant genera

(orange-colored branches and leaves). The tree was built identically

to the tree in Figure S4.

(TIF)

Table S1 Summary statistics of plant master database.
Primary sequence data used to develop the TR and TRP

taxonomies in this work. For further details, see Materials and

Methods in the primary text.

(DOC)

Table S2 Summary statistics of PlantPro20 database.
Details of Pro-rich TRs with at least 20% proline content (see

Materials and Methods in the primary text).

(DOC)

Table S3 Ser/Thr-(Pro)n TR classes and corresponding
TRP classes.
(DOC)

Table S4 Interspersed (Pro)1 and (Pro)1/(Pro)2 TR
classes and corresponding TRP classes.
(DOC)

Table S5 TR classes with regular (Pro)2 blocks or (Pro)2

interspersed with (Pro)1 and/or (Pro)3, and correspond-
ing TRP classes.
(DOC)

Table S6 Ser/Thr-(Pro)n–containing TRP classes.
(DOC)

Table S7 PRP and Hybrid PRP TRP classes.
(DOC)

Table S8 Additional Pro-rich TRP classes.
(DOC)

Table S9 Full details of all Pro-rich TR clusters found in
the PlantPro20 database.
(XLS)

Table S10 Summary statistics of all identified Pro-rich
TR clusters with respect to fuzzy cluster diagrams and
the TR taxonomy.

(XLS)

Table S11 38 TR regular expression queries corre-
sponding to TR taxonomy. Each regular expression was used

to scan TR consensus sequences in PlantPro20 (Table S2) to

identify protein sequences with similar TR content. Amino acids

enclosed in square brackets represent more than one possible

match (e.g. [ST] means either serine or threonine is a match), ‘.’

denotes a wildcard character, ‘‘’ preceding an amino acid in closed

square brackets denotes ‘NOT’ (e.g. [‘P], meaning that proline is

excluded), and numbers in closed curly brackets indicate how

many times a particular residue must be repeated for a match (e.g.

P{2,4} means proline must be found 2–4 times in tandem for a

match). Finally, when more than one motif is a match, each motif

is separated by ‘|’ and the entire expression is bound by square

brackets (e.g. [AP|ST] means either AP or ST is a match). For

example, the following regular expression for TR class tp3a,

‘[TS]P{3,4}[VA]{1,2}[TS].P and not [HY]’, should be read as: T

or S, followed by 3–4 repeats of P, followed by 1–2 repeats of V or

A, followed by T or S, any character followed by P, and never a

match of H or Y.

(DOC)

Table S12 Documentation for revised master sequenc-
es. Several master sequences in the curated sequence list (Text S3)

were derived from ESTs representing partial ORFs or ESTs with

evidence of a frameshift. We attempted to revise these master

sequences based on additional database searching, multiple

sequence alignment, or combining reading frames with evidence

of a frameshift. Actions taken to ‘‘fix’’ these sequences are given

below. The number immediately following some sequence

identifiers in Revision(s) denotes the forward reading frame used

to revise the master sequence.

(DOC)

Table S13 EST tissue/organ source data for all 31 TRP
classes.

(XLS)

Text S1 TR and TRP taxonomies.

(DOC)

Text S2 Additional details of plant Pro-rich TRP
classes.

(DOC)

Text S3 Manually curated list of Pro-rich TRPs. A list of

912 non-redundant TRPs (‘‘master sequences’’) catalogued in the

TRP taxonomy (Tables S6, S7, S8), 907 of which have a predicted

signal peptide [23].

(DOC)

Text S4 Additional genome sequence data.

(DOC)

Dataset S1 TR architectures of representative proteins
from 31 Pro-rich TRP classes. TR architectures of represen-

tative protein examples for each of 31 TRP classes (Tables S6, S7,

S8) are illustrated. All TRs were identified and aligned using

XSTREAM [47] using the same parameters described in Materials

and Methods. Each protein is shown N-terminus to C-terminus,

from left to right and top to bottom. Major sequence features, in

addition to TR domains, are indicated. For TR domains classified

by the TR taxonomy (see Tables S3, S4, S5), the corresponding

TR class is given in parentheses, e.g. TR_Domain1(mtp2). The
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scale-bar on top shows the number of amino acids from left to

right in a given row. All 31 representative proteins are listed in

alphabetical order and all images were rendered with JalView

[57].

(PDF)

Dataset S2 Representative multiple sequence align-
ments. Multiple sequence alignments of the 50 N-terminal and

50 C-terminal amino acids of full-length ORFs from 26 of 31 TRP

classes (see Tables S6, S7, S8) are shown. Sequences were

preprocessed to remove most of the TR domain to increase

alignment quality. (PHEK and PRPB classes are not shown due to

low quantities of complete ORFs; both EXTM and SPAP are

heterogeneous protein classes, and are therefore not shown;

PEHKs are shown in Figure S3). Each aligned TRP sequence

(obtained from Text S3) has a predicted secretion signal, and is

either derived from a genome sequence project, the NR database,

or an EST, in which case a predicted stop codon was required. All

sequence alignments were created with MUSCLE [58] and

rendered using JalView [57].

(PDF)
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