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Oxidative stress is a loss of balance between the production of reactive oxygen species during cellular metabolism and the
mechanisms that clear these species to maintain cellular redox homeostasis. Increased oxidative stress has been associated with
muscular dystrophy, and many studies have proposed mechanisms that bridge these two pathological conditions at the molecular
level. In this review, the evidence indicating a causal role of oxidative stress in the pathogenesis of various muscular dystrophies
is revisited. In particular, the mediation of cellular redox status in dystrophic muscle by NF-𝜅B pathway, autophagy, telomere
shortening, and epigenetic regulation are discussed. Lastly, the current stance of targeting these pathways using antioxidant
therapies in preclinical and clinical trials is examined.

1. Sources of Reactive Oxygen Species

Reactive oxygen species (ROS) are highly reactive oxygen-
containing molecules that are natural by-products of eukary-
otic cellular metabolism [1, 2]. Primary sources of ROS in
cells are themembrane-boundNADPH oxidase complex and
the electron transport chain (ETC) in the mitochondria [1–
4]. NADPH oxidase is a protein complex that is comprised of
a membrane-bound NOX protein, p22phox, p47phox, p67phox,
p40phox, and the small GTPases Rac1 or Rac2. There are five
homologues of theNOXprotein, each ofwhich shows distinct
tissue-specific expression patterns. For instance, NOX1 is
expressed in the colon, smooth muscle, and placenta, while
NOX2 is expressed in phagocytes, skeletal muscle, and neu-
rons [3]. Upon activation, NADPH oxidase utilizes NADPH
as an electron donor to produce the ROS superoxide (∙O

2

−)
[3]. In contrast, production of ROS at themitochondrial ETC
is an unintended consequence of inefficiencies in the transfer
of electrons between the complexes. The major sites of ROS
leakage are believed to be complexes I and III, although
other components of the ETC also have considerable con-
tribution to the overall amount of ROS produced at the
mitochondria [4]. Given that excessively high amounts of
intracellular ROS have dire repercussions, it is unsurprising

that each step of ROS generation is tightly detoxified by a
line of antioxidant enzymes. For example, ∙O

2

− is converted
to hydrogen peroxide (H

2

O
2

) by the antioxidant enzyme
superoxide dismutase (SOD). H

2

O
2

is then reduced to water
either by glutathione peroxidase or catalase. Glutathione
peroxidase is a cytoplasmic selenoprotein that reduces H

2

O
2

as well as other hydroperoxides to water by oxidizing reduced
glutathione (GSH) to oxidized form (GSSG) [5]. Catalase is
a ubiquitously expressed protein mainly localized in perox-
isomes and it is able to reduce H

2

O
2

efficiently [6]. Apart
from the ETC, monoamine oxidases (MAO) in mitochon-
dria also participate in substantial ROS production. MAO
catalyzes oxidative deamination of neurotransmitters, dietary
amines, and H

2

O
2

[7]. Reactive nitrogen species (RNS) also
contribute to cellular oxidative stress. Nitric oxide synthase
(NOS) converts L-arginine to L-citrulline and generates nitric
oxide (∙NO). ∙NO is required for various signaling pathways
such as stimulation of guanylate cyclase to increase cyclic
GMP (cGMP) production. Nevertheless, ∙NO is able to react
with ∙O

2

− to produce highly reactive peroxynitrite (ONOO−)
and induce oxidative stress injury [8].

Emerging evidence suggests that ROS mediate several
intracellular signaling pathways required for physiological
functions [9]. However, excess ROS production, either due to
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Figure 1: Multiple sites of ROS and RNS production are present in skeletal muscle cells. The network of different proteins that leads to
ROS/RNS production in the extracellular, cytosolic, and mitochondrial compartments of skeletal muscle cell is illustrated. XO: xanthine
oxidase; NOX: NADPH oxidase; DG: dystrophin-glycoprotein; nNOS: neuronal nitric oxide synthase; PLA2: phospholipase A2; I–V:
complexes of electron transport/oxidative phosphorylation; UCP: uncoupling protein; O

2

: oxygen; ∙O
2

−: superoxide; H
2

O
2

: hydrogen
peroxide; ∙NO: nitric oxide; ONOO−: peroxynitrite.

overproduction of ROS or failure to remove them by cellular
antioxidant defenses, is one of the detrimental attributes
in various human pathologies such as ischemic disorders,
cancer, degenerative diseases, and cellular aging [2, 7–12].

2. Topography of ROS Production in
Skeletal Muscle

ROS have long been associated with both physiology and
pathology of skeletal muscle. Production of ROS promotes
muscle adaptation to exercise [13]. ROS are generated at
multiple subcellular locations in skeletal muscle (Figure 1).
Like other nonmuscle tissues, mitochondrial ETC complexes
I and III are considered to be the major sites of ROS pro-
duction in skeletal muscle [4]. Upon contraction, a 100-fold
increase in total mitochondrial oxygen consumption only
leads to 2- to 4-fold increase in total ROS production [14].
This is partly attributed to attenuation of mitochondrial ROS
production by the uncoupling proteins (UCPs) [15], but it also
implicates the presence of other ROS production sites apart
from mitochondria. Potential nonmitochondrial sources of
ROS production in skeletal muscle contraction include NOX,

Xanthine oxidase (XO), Phospholipase A2 (PLA2), andNOS.
NOX2, themainNOX isoform expressed in skeletalmuscle, is
located within the sarcoplasmic reticulum, transverse tubule,
and the sarcolemma of skeletal muscle [16]. In particular,
inhibition of NOX activity in isolated skeletal myofibers
significantly reduces exercise-induced cytosolic ROS produc-
tion [17]. XO produces ROS as by-products of hypoxanthine
oxidation. However, its relevance to human skeletal muscle
is still debatable, as XO is not located in skeletal myofibers,
but in endothelial cells that make up the blood vessels
within skeletal muscle [18]. PLA2 contributes to elevation
of ROS in skeletal muscle by (i) catalyzing production of
arachidonic acid by ROS-producing lipoxygenases [19], (ii)
promoting the translocation of NOX to the sarcolemma [20],
and (iii) increasing ROS production in mitochondria [21].
Both calcium-dependent and calcium-independent isoforms
of PLA2 participate in ROS production in skeletal muscle,
but it is established that calcium-dependent PLA2 isoform
is the major determinant of ROS production during exercise
[21, 22]. Skeletal muscle also generates RNS, and, like ROS, its
levels are elevated during muscle contraction [23]. Neuronal
isoform of NOS (nNOS) is regarded as the primary source
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of RNS production in skeletal muscle and is located in
cytoplasm and at the sarcolemma of skeletal muscle by
forming part of the dystrophin-glycoprotein complex (DGC)
[24].

3. Evidence for Oxidative Stress in
Muscular Dystrophies

Muscular dystrophy (MD) is a collective term that refers
to a group of genetically predisposed diseases that result in
skeletal muscle weakness and degeneration [25]. Duchenne
Muscular Dystrophy (DMD) is the most prevalent MD that
affects an estimated 1 : 3500 males worldwide [26]. In the
USA, an estimated 1 : 6000 boys are affected according to
the Centers for Disease Control and Prevention (CDC) [27].
DMD is characterized by progressive skeletal muscle degen-
eration leading to early death due to respiratory or cardiac
failure.The primary genetic cause ofDMD ismutations in the
Dystrophin gene resulting in dystrophin deficiency [28]. This
in turn disrupts the DGC, resulting in structural destabiliza-
tion and deregulated signaling, which subsequently lead to
apoptotic and necrotic death of muscle cells [29]. Given the
progressive nature of the disease, much effort has been put
into identifying contributing factors, such as oxidative stress
and increased calcium influx that are elevated in dystrophic
muscles [11, 30–33]. The role of oxidative stress in pathology
was implicated early by the observation that muscles from
DMD patients contain a higher level of thiobarbituric acid-
reactive products, which is indicative of lipid peroxidation
brought about by oxidative stress. Dystrophic muscles also
exhibit enhanced catalase, SOD, and glutathione reductase
activity, which are reflective of oxidative stress [34]. In addi-
tion, 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker of
free radical damage to DNA, was found to be elevated [33].

The mdx mouse that harbors a point mutation in the
Dystrophin gene [35] has been widely studied as a mouse
model for DMD. The muscles of mdx mice are histologically
normal prior to the onset of necrosis at about 3 weeks of age,
after which necrosis, inflammation, and subsequent regener-
ation ensue. However, unlike DMD patients, muscle damage
subsides to a chronically low level by 8 weeks of age in mdx
mice, with little impairment to muscle function, and lifespan
is moderately reduced [30]. Interestingly, muscles from mdx
mice exhibit increased levels of antioxidant enzymes prior
to necrosis, indicative of a cellular response to oxidative
stress [36]. Moreover, mdx muscles are more susceptible to
oxidative stress-induced injury [37]. In agreement, ectopic
expression of catalase inmitochondria was shown to increase
lifespan and led to a partial restoration of mdx muscle
function [38].

On the other hand, the exact contribution of ∙NO in
DMD pathogenesis is unclear. The association of nNOS
with the DGC and the consequential loss of membrane
localization of nNOS in themdxmice [39] raise the question
of whether NOS-mediated oxidative stress is involved as
well. Nevertheless, while several studies implicate correlation
between NOS levels and the severity of DMD in different
strains of mdx mice [32], prenecrotic mdx muscle fibers

exhibit no change in ∙NO-induced nitrotyrosine formation.
Moreover, NOS-null mice do not develop any dystrophic
symptoms, and neither NOS-null normdxmice with ectopic
NOS expression show any alteration in oxidative stress
susceptibility [32]. Still, increased levels of oxidative stress
markers and antioxidant enzyme expression in themdxmice
support the idea that oxidative stress may be causative of
muscle degeneration in DMD. Furthermore, other types of
MDs also exhibit signs of oxidative stress, which are discussed
below.

Facioscapulohumeral muscular dystrophy (FSHD) is
associated with the deletion of the D4Z4 macrosatellite
repeats on chromosome 4q35, which increases expression
of double homeobox 4 (DUX4) [40]. Muscle cells from
FSHD patients show increased susceptibility to oxidative
stress, augmented lipofuscin inclusions, elevated expression
of antioxidant enzymes, and dysfunctional mitochondria
[41].

Mutations in Dysferlin give rise to limb-girdle muscular
dystrophy type 2B (LGMD2B) andMiyoshi myopathy (MM),
as well as distal myopathy with onset in the tibialis anterior
muscles. Dysferlin is enriched in the T-tubule ofmuscle fibers
and plays an important role in maintenance of sarcolemma
integrity and calcium influx [42]. Dysferlin-null mice exhibit
early elevation of reversible thiol oxidation and oxidative
stress markers, implicating potential thiol oxidation of myo-
genic proteins [31].

Mutations in collagen VI causes two distinct MDs [43]:
Bethlem myopathy (BM) which has a milder phenotype and
Ullrich congenital MD (UCMD), which exhibits a more
severe and rapid pathogenesis, thereby leading to an early
death. Recent studies on both collagen VI-deficient mice and
patients reported the evidence of defective autophagy, MAO-
dependent oxidative stress, and resultant mitochondrial dys-
function attributing to pathogenesis of BM and UCMD [44].

Laminopathy is a collective term for a spectrum of age-
related human diseases arising from mutations in the LMNA
gene that encodes the intermediate filament nuclear lamin.
It includes X-linked Emery-Dreifuss muscular dystrophy
(EDMD) and sclerosing bone dysplasia [45]. The C-terminal
cysteine tail of lamin A functions as a ROS sensor, the
loss of which results in oxidative stress-driven premature
cellular senescence [46]. Merosin (laminin-2) is located in
the basal membrane of muscle fiber, and mutation of laminin
𝛼2 chain causes merosin-deficient congenital muscular dys-
trophy (MDCMD). It is characterized by neonatal muscle
degeneration, colocalization of both necrotic and apoptotic
signals in the patient muscle fibers, and increased autophagy.

4. Signaling Mechanisms Exploited by ROS

Many mechanisms have been proposed to explain muscle
degeneration seen in MD. Among these, one of the most
championed mechanism entails the loss of calcium home-
ostasis as a result of calcium influx through ion channels in
the membrane [47]. The increase in cytoplasmic calcium is
known to then regulate ROS primarily through disrupting
mitochondrial function [21, 48], and the contribution of
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calcium to the muscular dystrophy pathology has been well-
reviewed recently by Burr andMolkentin [49]. Below, we dis-
cuss alternative pathways that modulate and are modulated
by ROS and how they are involved in muscular dystrophy.

4.1. NF-𝜅B Pathway. NF-𝜅B is a transcription factor that
drives inflammatory gene expression [50]. NF-𝜅B activation
occurs prior to the onset of muscular dystrophy in the
muscles of mdx mice. Treatment with the antioxidant N-
acetylcysteine (NAC) inhibits its activation, suggesting that
oxidative stress lies upstream of NF-𝜅B and drives upreg-
ulation of NF-𝜅B to contribute to the myopathy in DMD
[51, 52]. Consistent with this notion, treatment of mdx mice
with IRFI-042, a synthetic vitamin E analogue, reduced NF-
𝜅B DNA binding, TNF𝛼 expression, muscle necrosis, and
enhanced regeneration [53]. Stretch-induced muscle damage
in mdx muscles can be reduced by NAC treatment via
reducing ROS and nuclear NF-𝜅B translocation [54]. In
mdx;p65+/− mice, muscle regeneration is improved, and this
is correlated with hepatocyte growth factor (HGF) upreg-
ulation. Moreover, inhibition of HGF expression reversed
the phenotype of mdx;p65+/− mice, suggesting that the
NF-𝜅B-HGF axis contributes to DMD pathogenesis [55].
Elevated TNF𝛼, which activates NF-𝜅B, was also found in
double mutants lacking both dystrophin and Stra13 [56].
mdx/Stra13−/− muscles were found to undergo oxidative
stress-mediated degeneration. The degeneration of muscles
was rescued by treatment of mice with NAC, further indi-
cating a causal role for oxidative stress in muscle cell death.
Altogether, it appears that oxidative stress-induced muscle
degeneration is mediated, at least in part, by NF-𝜅B.

4.2. Autophagy in Muscle Degeneration. Autophagy is an
evolutionarily conserved process in which the intracellular
proteins and organelles are first engulfed into double mem-
brane vesicles, termed as autophagosomes, and then deliv-
ered to lysosome for degradation [57]. Autophagy has been
shown to be involved in various biological functions such
as starvation adaptation, turnover of unfolded proteins and
damaged organelles, cell metabolism, development, immu-
nity, and cell death. Expectedly, emerging studies showed
that autophagy also plays roles in the pathology of different
human diseases including degenerative diseases, aging, and
cancer [58]. Mechanistic or mammalian target of rapamycin
complex 1 (mTORC1) and AMP-activated protein kinase
(AMPK) are important autophagic regulators: mTORC1
inhibits autophagy via preventing the activation of ULK1,
which is essential for the initiation stage of autophagy, while
AMPK, a key sensor of cellular energy status to maintain
energy homeostasis, has been shown to promote autophagy
[59].

Autophagy plays a dual role in muscle homeostasis [60].
On one hand, excessive autophagy induced by overexpres-
sion of FOXO3 in myotubes causes atrophy via enhancing
lysosomal proteolysis [61]. On the other hand, autophagy
has been shown to be essential for the maintenance of
muscle mass, as autophagy deficiency in muscle leads to
abnormal mitochondria and muscle atrophy [62]. The role

of autophagy in muscular dystrophies is complex. Defective
autophagy is observed in DMD, BM, UCMD, and EDMD.
In contrast, increased autophagy is detected in MDCMD
[63]. Correspondingly, (i) in the mdx mouse, promotion of
autophagy either by AMPK activation or by low protein diet
ameliorates muscular dystrophy, which may be due to the
elimination of defective mitochondria bymitophagy [64, 65];
(ii) in collagen VI-null mice, forced activation of autophagy
by genetic, pharmacological, or dietary approaches is able
to rescue the dystrophic phenotype [66, 67]; (iii) while
in the laminin 𝛼2 chain-null dy3K/dy3K mouse model,
inhibition of autophagy improves muscle morphology [68].
This suggests that the contribution of autophagy to pathology
in different dystrophies is indeed distinct and that the forces
drivingmuscle degenerationmay be fundamentally different.
Regardless, in dystrophies whereby impaired autophagy and
accumulation of abnormal mitochondria have been found,
the underlying mechanisms of how autophagy impairment
occurs have not been well investigated. Studies by Pal et al.
showed that the downregulation of autophagy inmdx skeletal
muscle is caused by activated Src kinase, which is the
key regulator of Nox2-mediated oxidative stress [69]. Both
pharmacological and genetic inhibition of Nox2 or Src kinase
induce autophagy, reduce oxidative stress, and improve
pathophysiological abnormalities inmdxmousemuscles [69,
70]. However, one recent study showed that activation of
P2RX7, an ATP-gated ion channel, increases autophagic flux
in dystrophic myoblasts and myotubes, which contributes to
nonapoptotic cell death [71]. This study is consistent with an
earlier finding that inhibition of autophagy via activation of
PI3K/Akt/mTOR pathway ameliorates dystrophic pathology
inmdxmice [72].

Interestingly, epigenetic modifications including DNA
methylation, histone modifications, and microRNAs have
been shown to regulate autophagy [73]. For example, NAD+-
dependent class III histone deacetylase Sirtuin 1 (Sirt1)
positively regulates autophagy via interactionwith autophagy
genes (Atg5, Atg7, and Atg8) and direct deacetylation of these
components [74]. A recent study showed that muscle-specific
inactivation of the Sirt1 deacetylase domain leads to muscle
developmental and regenerative defects [75]. Therefore, Sirt1
may contribute to muscle development through regulating
autophagy. Despite these advances, much remains to be
understood about the exact function of autophagy in muscle
degeneration. In addition, a better understanding of its
epigenetic regulation in dystrophies may provide targets for
therapeutic intervention.

4.3. Telomere Shortening and Depletion of Satellite Cells. The
observation that culturing human fibroblast in low oxygen
conditions can extend the in vitro lifespan of the cells by
slowing the rate of telomere shortening led to the idea that
oxidative stress may contribute to telomere attrition. The
telomeric repeat sequence is especially sensitive to oxidative
damage, and single-stranded breaks induced by oxidative
stress have been associated with telomere erosion [76]. In
agreement, accelerated telomere loss is present in conditions
of mitochondrial dysfunction where mitochondrial ROS are
high [77].
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Unexpectedly, while it has been shown that telomeres in
muscle also shorten as a result of oxidative stress [78], there is
no age-dependent loss of telomeres in muscles [79], possibly
because the turnover of skeletal muscle is relatively low and
satellite cells may not be used for homeostasis in normal
uninjured muscle. In contrast, satellite cells in patients of
muscular dystrophy are constantly activated for proliferation
as a result of the distinctive degeneration-regeneration cycles.
Early studies showed that myoblasts isolated from older
DMD patients displayed lower proliferative capacity than
those isolated from younger patients [80]. This drop in
proliferative capability occurred due to replicative aging
as a consequence of telomere shortening [81]. In recent
times, landmark studies further support the role of telomere
attrition in exhaustion of the satellite cell pool in muscular
dystrophy.mdxmice lacking telomerase through the removal
of the telomerase RNA component mTR, known as the
mdx/mTR mice, recapitulate the severity of the dystrophic
phenotype seen in humans that is not normally seen in the
mdx mouse. The progressive worsening of pathology with
age correlates with loss of proliferative capacity caused by
telomere erosion in the myoblasts isolated from these mice
[82, 83]. Similarly, reduced telomerase activity is responsible
for the decline of the satellite cell pool that leads to the loss of
muscle regeneration in the mdx/utrophin−/− double knock-
out mouse [84].

4.4. BMI-1: The Epigenetic Link to Oxidative Stress. Bmi-
1 is a Polycomb group protein that prevents premature
senescence by repressing the INK4A/ARF locus [85]. Of
relevance, Bmi-1 controls the activity of metallothionein
MT1, an antioxidant protein, in muscle to regulate oxidative
stress, and increased Bmi-1 expression in muscle reduces
the oxidative modification S-nitrosylation of MEF2C, which
is known to inactivate MEF2C [86]. Consequently, loss of
MEF2C function is causative of muscle degeneration [87].

5. Therapeutic Avenues

5.1. Physiological Role of ROS inMuscle Adaptation to Exercise.
The observation that there was increased ROS production
in the muscle of exercised rats by Davies et al. in 1982
[88] had led to the prediction that ROS might have a
physiological role in exercise. Much research has gone into
understanding this phenomenon, and now we know that
ROS play multiple beneficial roles in exercise physiology.
ROS can activate AMPK by reducing ATP, resulting in an
increase in PGC-1𝛼 expression and activity after acute and
long-term exercise [89]. PGC-1𝛼 is a master regulator of
metabolic reprogramming that is key in muscle adaptation
to exercise [90]. Thus treatment with NAC results in reduced
AMPK and PGC-1𝛼 activation leading to lower uptake of
glucose in an in vitro contraction model for exercise [91,
92]. Moreover, the elevation of myokine production upon
exercise is blunted by treatment with antioxidants [93, 94].
A clinical trial performed by Ristow et al. [95] demonstrated
that the beneficial effects of physical exercise mediated by a
transient increase in ROS production leading to enhanced

insulin sensitivity were abrogated by supplementation of the
antioxidants vitamin C and vitamin E. These studies suggest
that in healthy individuals, acute ROS production is required
for adaption of skeletal muscle to exercise. However, chronic
overproduction of ROS promotes oxidative stress that in turn
contributes to a variety of muscular pathologies [96].

5.2. Antioxidant Therapies under Clinical Trials. Despite a
prominent amount of evidence indicating a causal role of
oxidative stress in the development of MDs, early clin-
ical trials using antioxidants such as nicotinamide (vita-
min B), tocopherols (vitamin E), and penicillamine did
not bring about statistically significant clinical benefits [11].
Pentoxifylline (PTX) is a phosphodiesterase inhibitor with
potent anti-inflammatory and antioxidant activity. Although
a preclinical study on mdx mice showed significant muscle
strength restoration [97], a recent clinical trial using PTX on
DMD patients failed to yield any significant improvement on
muscle strength and function [98].

One of the caveats for clinical trials using antioxidant
therapy in muscle degenerative disorders such as DMD is
that increased oxidative stress has to be targeted at very
early stage of disease. Evidence of oxidative stress is detected
in prenecrotic mdx mice [36]. As evidence accumulates to
support that oxidative stress may precede necrotic cell death
of muscle, clinical trials using antioxidant therapy should be
initiated early to combat oxidative stress. A further point to
note is that many antioxidants are nonspecific scavengers,
such that they do not target a specific subcellular organelle
source of ROS but are only able to remove existing ROS/RNS
end products at the cellular level [99]. This is complicated
by the physiological role of ROS as inducers of adaptive
responses, which suggest that nonspecific targeting of ROS
may unnecessarily suppress these cellular responses. This
heightens the importance of searching for alternative routes
of antioxidant therapy [100].

5.3. Targeting NF-𝜅B. Several pharmacological and natural
products with antioxidant properties have been tested to
combat the effects of elevated oxidative stress through inhi-
bition of NF-𝜅B activity. Treatment of mdx mice with IRFI-
042 diminished oxidative stress markers, reduced NF-𝜅B-
dependent TNF-𝛼 expression, and relieved muscle fatigue
[53]. Injection of mdx mice with curcumin, a pharmacologi-
cal inhibitor of NF-𝜅B, improved histology and biochemical
DMD features. Notably, inducible NOS (iNOS) levels were
reduced inmdxmice, implicating a possible decrease in ∙NO-
mediated oxidative stress [101]. Deferoxamine (DFX) is a
potent iron-chelating agent that blocks iron-catalyzed ROS
production and subsequent oxidative stress, with evidently
reduced NF-𝜅B levels and improved muscle function in
mdx mice [102]. Intense physical exercise aggravates muscle
necrosis and is correlated with ROS in mdx mice [103]. The
antioxidant NAC is effective for curbing NF-𝜅B expression
in mdx mice, as well as ameliorating increased ROS pro-
duction, protein thiol oxidation, loss of muscle contraction
force, and serum creatine kinase (CK) level in mdx mice
under prolonged exercise [31, 54]. A similar effect was
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observedwhen exercisedmdxmice showed improvedmuscle
function upon injection with nifedipine, a calcium channel
blocker, with a concomitant reduction in mRNA expression
of iNOS and NADPH oxidative subunits [104]. Angiotensin-
converting enzyme (ACE) inhibitors curb proinflammatory
and prooxidant activity of Angiotensin II. Treatment of
mdx mice with the ACE inhibitor enalapril conferred a
significant resistance to exercise-induced muscle weaken-
ing and a reduction in ROS production, improved limb
muscle function, and reduced NF-𝜅B activation [105]. (−)-
Epigallocatechingallate (EGCG), a polyphenol antioxidant
compound from green tea extract, is known to reduce NF-
𝜅B activity. Treatment of prenecrotic mdx mice with EGCG
diminished expression of the oxidative stress marker lipofus-
cin and showed delayed necrosis of the extensor digitorum
longus muscle [106, 107]. Melatonin is an endogenous anti-
oxidant that scavenges ROS and RNS to reduce cellular redox
status, and melatonin treatment on mdx mice was shown
to improve muscle function [108]. In accordance with the
preclinical data, 3-month administration of melatonin to
DMD patients significantly reduced serum CK level, lipid
peroxidation, nitrites, NF-𝜅B-driven inflammatory cascade
[109], and curbed hyperoxidative status of erythrocytes in the
treated patients [110]. Idebenone is a synthetic derivative of
Coenzyme Q

10

(CoQ), which is an electron carrier in the
mitochondrial ETC; thus it acts as a potent antioxidant and
inhibitor of lipid peroxidation by sequestering leaked elec-
trons from the ETC [111, 112]. Initial studies using idebenone
onmdxmice showed improved voluntarymotion and cardiac
function, thereby increasing survival [113]. A recent phase III
clinical trial with idebenone improved respiratory function
of 31 DMD patients [112], which counteracts the lethal failure
of diaphragm muscle. However, this drug is useful only in
patients who have not been previously treated with steroids
[114].

5.4. Autophagy as a Therapeutic Avenue. Induction of auto-
phagy via inhibition of mTORC1 by rapamycin has been
reported to ameliorate dystrophic phenotype in 6-week-old
mdx mice [115]. However, because of mTORC1 involvement
in muscle regeneration, the potential usage of rapamycin as
muscle therapeutics is limited [116]. Nevertheless, rapamycin
nanoparticles, which are able to accumulate in the site of
diseases, have been used to activate autophagy in mdx mice,
and the results showed an improvement in physical perfor-
mance of both skeletal and cardiac muscle [117]. AICAR
(5-aminoimidazole-4-carboxamide-1-D-ribofuranoside), an
established pharmacological activator of AMPK, has been
used for the treatment of mdx mice. AICAR induces
autophagy, enhances diaphragm mitochondria to resist
calcium-induced permeability transition pore opening, and
improves histopathology as well as muscle strength [64].

5.5. SIRT1 Stimulation. Resveratrol, a natural polyphenol
from grapes and red wine, is known to induce SIRT1
expression [118]. Resveratrol treatment in mdx mice reduces
nitrotyrosine, expression of NADPH oxidase subunits, and
infiltration of fibrotic tissue in a SIRT1-dependent manner

[119], although it may also act through inhibition of the acute
inflammatory response to reduce the degenerative process
[120].

5.6. Alternative Therapeutic Approaches. An alternative to
pharmacological treatment could be direct supplementation
of antioxidant proteins. As mentioned above, direct sup-
plementation of melatonin has yielded a significant clinical
outcome in DMD patients [109]. Creatine is a downstream
product of glycine and arginine and exerts an antioxidant
property by quenching aqueous ROS [121]. Creatine treat-
ment inhibited muscle necrosis and enhanced mitochondria
respiration capacity in mdx mice [122]. Four months of
creatine administration to 30 DMD patients significantly
improved their muscle function [123], although it was impli-
cated that the therapeutic effect of creatine may be less
effective for older patients [124]. Adenoviral overexpression
of catalase in neonatalmdxmice was shown to be effective in
reducing muscle impairment at an early phase of the disease
[38]. This proposes the feasibility of an alternative genetic
approach to combat elevated oxidative stress in DMD and
potentially other muscle degenerative disorders. Neverthe-
less, one of the most significant problems plaguing the use of
adenoviral-mediated therapy is the oxidation of the transgene
mRNAdue to elevated ROS production in dystrophicmuscle,
which hampers long-term efficacy of existing transgene
therapies [125]. This highlights the importance of specialized
protocols of transduction to achieve persistent expression in
DMD patients. Satellite cell transplantation could be another
strategy. Replacement of dystrophic myosatellite cells with
Bmi-1 overexpressing satellite cells could be a way to restrain
oxidative stress-induced muscle degeneration through MT1-
mediated cellular proliferation and function [86]. Neverthe-
less, these alternative approaches of using cell therapy have
their own pitfalls and still require technical refinement on
cell delivery,minimization of cell death upon transplantation,
and cytotoxicity of neighbouring cells in the niche [126].

6. Conclusion

Studies from different animal models and patients indicate
that elevated oxidative stress could be causative in inducing
various signaling pathways which lead to muscle degener-
ation [11, 30, 31]. Figure 2 illustrates cellular mechanisms
that cause excessive oxidative stress to trigger skeletal mus-
cle degeneration in a variety of disorders. In degenerating
muscle, increased oxidative stress is seen concurrently with
elevated antioxidant enzyme level, probably as a measure
to counteract excessive ROS. Important roles of epigenetic
regulators such as Bmi-1 and Sirtuins in inducing antioxidant
activity are also evident [86, 120]. Another cellular process
that plays a pivotal role in redox homeostasis is autophagy.
Aberrant autophagic activity disrupts muscle physiology
either due to excessive lysosomal proteolysis or inefficient
elimination of defective mitochondria, and correcting defec-
tive autophagy reduces oxidative stress [65]. Mitochondria
are the major site of cellular ROS production, and various
signaling pathways tightly regulate it. Hence deregulation of
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Figure 2: Mechanisms leading to oxidative stress in skeletal muscle.
This schematic illustrates cellular mechanisms that are known to
exert either prooxidant or antioxidant effects. Aberrant regulation
of these pro- and antioxidative processes is indicated to play a
role in muscle degenerative disorders. NF𝜅B: nuclear factor kappa-
light-chain-enhancer of activated B cells; Bmi1: B lymphoma Mo-
MLV insertion region 1 homolog; PGC-1𝛼: peroxisome proliferator-
activated receptor gamma coactivator 1-alpha; FoxO: forkhead
box O; mTOR: mechanistic or mammalian target of rapamycin;
AMPK: adenosine monophosphate-activated protein kinase; PI3K:
phosphoinositide 3-kinase; IGF: insulin-like growth factor.

mitochondria plays a critical role in elevation of oxidative
stress in degenerative muscle disorders [70]. One of the
important downstream events of oxidative stress is activation
of NF-𝜅B and its consequential inflammatory response,
which is a key cellular event that contributes to muscle
cell necrosis. These findings have been tested in preclinical
and clinical trials to demonstrate their beneficial effects on
delay of disease progression in dystrophic patients. Table 1
summarizes pharmacological treatments through antioxi-
dant therapies.

Nevertheless, whether oxidative stress is a causative factor
or whether it is simply a by-product of muscle degener-
ation remains to be established unequivocally. The exact
mechanisms through which distinct mutations in various
degenerative disorders induce oxidative stress need to be
elucidated. With an abundant list of drugs to target oxidative
stress, a better understanding of the pathogenesis of the
disorders will allow us to make informed decisions on the
feasibility of using these drugs to treat dystrophies.
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