
cancers

Review

Dendritic Cells and Cancer: From Biology to
Therapeutic Intervention

Ben Wylie 1,†, Christophe Macri 2,†, Justine D. Mintern 2,‡ and Jason Waithman 3,*,‡

1 Phylogica, Harry Perkins Institute, QEII Medical Centre, Nedlands, WA 6009, Australia;
b.c.wylie@gmail.com

2 Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21,
Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia;
cmacri@unimelb.edu.au (C.M.); jmintern@unimelb.edu.au (J.D.M.)

3 Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital,
Nedlands, WA 6009, Australia

* Correspondence: jason.waithman@telethonkids.org.au; Tel.: +61-08-6319-1744
† Joint first author.
‡ Co-senior author.

Received: 8 March 2019; Accepted: 7 April 2019; Published: 11 April 2019
����������
�������

Abstract: Inducing effective anti-tumor immunity has become a major therapeutic strategy against
cancer. Dendritic cells (DC) are a heterogenous population of antigen presenting cells that infiltrate
tumors. While DC play a critical role in the priming and maintenance of local immunity, their
functions are often diminished, or suppressed, by factors encountered in the tumor microenvironment.
Furthermore, DC populations with immunosuppressive activities are also recruited to tumors, limiting
T cell infiltration and promoting tumor growth. Anti-cancer therapies can impact the function of
tumor-associated DC and/or alter their phenotype. Therefore, the design of effective anti-cancer
therapies for clinical translation should consider how best to boost tumor-associated DC function
to drive anti-tumor immunity. In this review, we discuss the different subsets of tumor-infiltrating
DC and their role in anti-tumor immunity. Moreover, we describe strategies to enhance DC function
within tumors and harness these cells for effective tumor immunotherapy.

Keywords: tumor-associated dendritic cells; DC-based therapy; immunotherapy; checkpoint
blockade; immunosuppression; novel therapies; cancer

1. Introduction

Dendritic cells (DC) represent a heterogenous group of innate immune cells that infiltrate
tumors and process and present tumor-derived antigens to naïve T cells. DC play a critical role
in priming anti-tumor T cell immunity and thereby represent a major therapeutic target for cancer
immunotherapy. The anti-tumor function of DC can be impeded by suppressive signals present in the
tumor microenvironment. In addition, DC with immunosuppressive activity can be recruited to tumors,
eliciting T cell tolerance and progressive tumor growth. Developing novel DC-targeted therapies is
important to exploit the capacity of DC to initiate and enhance effective anti-tumor immunity. In this
review, we first discuss the biology of tumor-associated DC by detailing the DC subsets present in
tumors. We then address anti-cancer strategies and examine how these therapeutic interventions
impact tumor-associated DC function.

2. DC Subsets in Cancer

The DC family encompasses multiple DC subsets with specific immune functions that are highly
conserved between mouse and humans (summarized in Table 1). During cancer, the different DC
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subtypes are localized in and/or recruited to tumors. Here, we discuss their role during cancer and
particularly describe how, on the one hand, tumor DC can act to elicit enhanced anti-tumor immunity,
while, on the other hand, these cells can be subjected to suppressive mechanisms that ultimately
promote tumorigenesis (Figure 1).

Table 1. The phenotype and functions of mouse and human DC subsets.

Mouse DC Subsets Human DC Subsets
Phenotype Functions Phenotype Functions

pDC CD45R, CD45RA,
CD317

Anti-viral immunity
Tolerance induction

CD123, CD303,
CD304, CD45RA

Anti-viral immunity
Tolerance induction

cDC1
CD8α or CD103,
DEC205, Clec9A,

XCR1

MHC I
cross-presentation

CD141, DEC205,
Clec9A, XCR1

MHC I cross-presentation
MHC II presentation

cDC2 CD11b,
Sirpα MHC II presentation

CD1c,
CD1a (skin),

CD103 (mucosa)

MHC I cross-presentation
MHC II presentation

Inf-DC F4/80, Ly6C,
CD64, FcεR1

MHC I
cross-presentation

MHC II presentation

CD1c, CD1a,
FcεR1, CD14,

CD206

MHC I cross-presentation
Th17 induction
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Figure 1. The biology of DC in the tumor microenvironment: (a) pDC; (b) cDC; and (c) inf-DC subsets
infiltrate the tumor microenvironment and either support the anti-tumor immune response or promote
tumorigenesis. Tumors frequently develop strategies to alter DC development, tumor infiltration and
function. The mechanisms that promote anti-tumor immunity are shown in green, while those that act
to promote tumorigenesis are displayed in red.

2.1. Plasmacytoid DC

Plasmacytoid DC (pDC) are recognized as major producers of type I interferons (IFN-I) and act to
orchestrate immunity against viral infections. In settings of cancer, pDC derived IFN-I can promote
anti-tumoral immunity through its direct activity on both tumor and immune cells [1]. pDC also secrete
an array of other inflammatory cytokines and chemokines and can act as antigen presenting cells,
however with lower efficiency than conventional DC (cDC) [2]. Antigen presentation by pDC is largely
considered to evoke tolerance and the induction of T cell anergy and/or deletion. This is due to the
capacity of pDC to secrete tolerogenic factors such as interleukin (IL)-10, tumor-growth factor (TGF)-β
and indoleamine 2,3-dioxygenase (IDO). Furthermore, pDC can engage inhibitory receptors on T cells
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by expressing several of their ligands, including inducible T-cell costimulatory ligand (ICOS-L), OX40
ligand (OX40-L) and programmed cell death ligand 1 (PD-L1) [3].

Numerous studies have identified pDC infiltration in several different type of tumors, with their
presence often being predictive of a poor prognosis. In ovarian cancer, for example, pDC accumulate in
the tumor epithelium, but not in the ascites, and this is associated with early relapse [4,5]. High numbers
of pDC are present in skin lesions and draining lymph nodes of melanoma patients [6] and in breast
tumor biopsies [7], with a strong correlation between the presence of pDC and tumor aggressiveness,
poor clinical outcomes and shorter survival. It is well established that tumor-infiltrating pDC are poorly
immunogenic and have a significantly impaired capacity to produce IFN-I [4,7–10]. This dysfunction is
mostly limited to pDC that are localized to the tumor microenvironment. In contrast, the pDC isolated
from the tumor-draining lymph nodes in different type of cancers remain fully competent in IFN-I
production [8,11]. Factors produced locally by tumor cells have been implicated in altering the IFN-I
expression in pDC. In mice carrying B16 and TC1 tumors, TGF-β has been identified as the major
tolerogenic cytokine produced by tumor cells that is responsible for this suppression [12]. Head and
neck tumors reduce the IFN-I-producing capacity of pDC by releasing both TGF-β and prostaglandin
E2 (PGE2), a bioactive lipid with immunosuppressive properties [13]. In line with this study, mice
inoculated with PGE2-producing BRAFV600E melanoma cells show reduced expression of several
IFN-stimulated genes at the tumor site. This may indicate that melanoma-derived PGE2 exerts an
inhibitory effect on IFN-I production by tumor-associated pDC, thus altering the downstream gene
signature [14]. In breast cancer patients, tumor-derived TGF-β and tumor necrosis factor (TNF)-α act
synergistically on pDC to inhibit their IFN-I expression by downregulating the IFN regulatory factor
(IRF) 7 [15]. IL-10 produced by tumor-infiltrating myeloid cell and Foxp3+ CD4+ regulatory T cells
(Treg) is a major tolerogenic cytokine that downregulates IFN-I expression in pDC. Such inhibition has
been observed when pDC were incubated with conditioned medium from head and neck carcinoma
and this effect was partially reversed in the presence of anti-IL-10 blocking antibodies [9]. Conversely,
in multiple myeloma, downregulation of IFN-I production by pDC is caused by cell-to-cell contact
between pDC and tumor cells. This process activates E-cadherin on pDC, leading to the expression and
activation of the ubiquitin-editing enzyme A20 that regulates Toll-like receptor (TLR)-9 ubiquitination.
As a result, TLR-9 is targeted for degradation and can no longer elicit signals required for the induction
of IFN-I expression [16].

While the immunogenicity of tumor-associated pDC is impaired, their tolerogenic functions are
frequently harnessed by tumor cells to foster tumor growth. The cytokines that pDC produce may be
harnessed by the tumorigenic process. For example, pDC recruited by ovarian tumor ascites support
tumor vascularization through the secretion of angiogenic cytokines TNF-α and IL-8 [17]. Furthermore,
the capacity of pDC to induce T cell tolerance can promote tumor expansion. Wei et al. have shown
that the co-culture of pDC from ovarian tumors with allogenic CD8+ T cells results in the generation of
IL-10-producing-CD8+ regulatory T cells with strong immunosuppressive properties [18]. Consistent
with this, tumor-associated pDC expand Treg populations within the tumor. This process has been
linked to pDC impaired IFN-I secretory function [7] and to high surface levels of ICOS-L. Indeed, Treg in
humans encompass two populations based on the expression of the receptor ICOS [19]. Several authors
have proposed that tumor-associated pDC provide a co-stimulation signal and induce Treg expansion
through ICOS-L-ICOS interaction. This mechanism may explain the striking accumulation of ICOS+

Treg observed in ovarian, breast and gastric tumor tissues [20–22]. Similarly, pDC purified from liver
tumor tissues enhance IL-10 secretion by CD4+ Treg via an ICOS-dependent mechanism [23]. In human
melanoma, ICOS-L together with the immune checkpoint ligand OX40-L, are highly expressed by pDC
and drive the polarization of allogenic CD4+ T cells into T helper cell (Th) 2 and Treg-like cells [6].
Other pDC ligands involved in T cell tolerance induction may also play a role in cancer progression.
In patients with chronic myeloid leukemia, high pDC expression of CD86, which activates the T cell
inhibitory receptor CTLA4, is a strong predictive marker for relapse [24]. Another example is PD-L1,
which provides a negative signal to T cells by interacting with the receptor PD-1. The blocking of PD-L1
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on pDC purified from multiple myeloma patients results in enhanced T cell activation in allogenic
co-cultures. This suggests that pDC are able to suppress T cells during cancer progression through
PD-1 engagement [25].

2.2. Conventional DC

Conventional DC (cDC) can be subdivided into two populations in both mice and humans:
cDC1 and cDC2. Mouse cDC1 include most lymphoid-resident CD8+ DC and the tissue resident
and migratory CD103+ DC. Human cDC1 are defined as CD141+ DC [26]. Both mouse and human
cDC1 specifically express the surface markers Clec9A [27,28] and XCR1 [29,30] and require the
transcription factors Basic Leucine Zipper ATF-Like Transcription Factor 3 (BATF3), IRF8 and ID2 for
their development [31]. cDC2 are classified as CD11b+ DC in mice and CD1c+ DC in humans [26]
and are developmentally dependent on the transcription factors IRF4 and Zinc finger E box binding
homeobox 2 (ZEB2) [31,32]. Interestingly, a new human DC subset expressing Axl and Siglec6 has
recently been identified by single-cell RNA sequencing and cytometry by time-of-flight (CyTOF) [33–35].
Although Axl+ DC cluster near pDC [33,34], they differentiate into cDC-like cells when cultured with
stromal cells and DC hematopoietins, suggesting they may be cDC precursors [34]. Functional analyses
also highlight a close relationship between Axl+ DC and cDC [33,35].

cDC are the most potent antigen-presenting cells and, as such, are strong inducers of T cell-mediated
immune responses. Mouse cDC1 are highly efficient in antigen cross-presentation, i.e., the presentation
of extracellular antigens by MHC I molecules, and therefore are critical at priming CD8+ T cell responses
to exogenous tumor antigen [36]. Mouse cDC1 are strong producers of IL-12 that drive the polarization
of activated CD8+ T cells into cytotoxic T lymphocytes (CTL) [37]. In contrast, mouse cDC2 are
specialized in MHC II presentation and the induction of CD4+ T cell responses, including Th1, Th2 and
Th17 cells [26]. In humans, there is not a clear segregation of antigen presentation activities between the
major cDC subsets, as is the case in the mouse. While human cDC1 are superior at cross-presentation
of cell-associated antigens, both cDC1 and cDC2 have been shown to cross-present soluble antigens
at comparable levels. Human cDC1 and cDC2 are equally competent at MHC II presentation and
CD4+ T cell priming [26]. Human Axl+ DC are efficient stimulators of CD4+ and CD8+ T cells in
allogenic cultures [33,35], however the antigen presentation pathways utilized by these DC have not
been studied.

cDC subsets infiltrate tumors in mice and humans, although they constitute a very minor
population of all intratumoral immune cells. For example, CD103+ cDC1 and CD11b+ cDC2 subsets
are present at low frequencies in mouse models of melanoma [38–41], lung and colon carcinoma [39,42]
and mammary tumors [42,43]. Both cDC subsets are recruited to tumors as pre-cDC precursors, similar
to cDC that reside in lymphoid organs and other peripheral tissues. Tumor-associated pre-cDC exhibit
the same phenotypic and functional characteristics as bone-marrow and spleen pre-cDC and their
migration depends on tumor expression of chemokine CCL13. Once recruited, pre-cDC proliferate
and differentiate into competent cDC [44]. In cancer patients, cDC1 and cDC2 have been detected
in melanoma [42,45], breast cancer [42,46], non-small cell lung carcinoma and colorectal cancer [42].
Furthermore, a recent single cell analysis of early lung adenocarcinoma revealed the presence of two
clusters in the tumor tissues, corresponding to cDC1 and cDC2 subsets [47]. Despite their paucity,
the tumor content of cDC, and more specifically in cDC1, is a reliable predictor of a good prognosis for
cancer patients. Transcriptomic analysis of different human tumors, including melanoma and breast
cancers, reveals that the cDC1-specific signature correlates with overall patient survival [38,39,46].
Furthermore, Ruffel et al. showed that, during breast cancer, expression of cDC1-specific cytokine
IL-12 significantly correlates with an increased response to chemotherapy [43].

cDC1 are critical to initiate CTL immunity against tumors [48–50]. Using mice inoculated with
fluorescent tumors, several researchers have demonstrated that antigens are transported from the tumor
site to the tumor-draining lymph node by migratory CD103+ cDC1. This migration requires expression
of homing chemokine receptor CCR7. Once in the lymph node, CD103+ cDC1 activate naïve CD8+ T
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cells with evidence suggesting that tumor antigens are also simultaneously transferred to the lymphoid
resident CD8+ cDC1 and CD11b+ cDC2 [41,49,50]. Consistent with this finding, the induction of a CTL
immune response in the tumor draining lymph nodes is abolished in Zbtb46-DTR–transgenic mice that
do not develop cDC [40] and in Sec22b-/- mice that possess cDC1 deficient in cross-presentation [51].

cDC1 can shape the immune response within tumors. Spranger et al. showed that CTL are absent
from tumors of cDC1-deficient BATF3-/- mice. This occurs because tumor-associated cDC1 are the
major source of tumoral CXCL10 that acts as a chemoattractant for CTL that express the chemokine
receptor CXCR3 [52]. cDC1 also establish cross-talk with natural killer (NK) cells in tumors to regulate
local immunity. Tumor NK cells produce chemokines XCL1 and CCL5 that bind to receptors expressed
by cDC1 driving their accumulation in tumors [38]. Pre-cDC1 precursors do not express XCR1 and
CCR5 [53], implying that NK cells chemoattract a fully differentiated population of cDC1. NK cells
are also able to promote cDC1 development in situ by producing the DC hematopoietin Fms-like
tyrosine kinase-3 ligand (Flt3-L) [45]. On the other hand, tumor-associated cDC1 regulate NK cells by
supporting their production of IFN-γ in an IL-12-dependent manner. This plays an important role in
the NK cell control of tumor metastasis [54].

cDC are a target for tumor immunosuppressive mechanisms that impair their development,
tumor access and/or function. For example, tumor-derived granulocyte-colony stimulating factor
(G-CSF) during breast and pancreatic cancer inhibits the hematopoiesis of cDC1 in mouse and
human bone-marrow. This immunosuppression involves IRF8 downregulation in bone-marrow cDC
precursors by G-CSF, thereby altering cDC1 differentiation [55]. Migration of cDC1 is also reduced
when PGE2 is expressed by tumor cells. In this case, PGE2 disrupts the NK-cDC1 chemotactic axis
by downregulating expression of chemokines XCL1 and CCL5 in NK cells and their receptors XCR1,
CCR1 and CCR5 on cDC1 [38]. In patients with early lung adenocarcinoma, the presence of cDC1,
but not cDC2, is strongly reduced in tumors compared to the non-involved lung tissues from the
same patients, thus supporting a similar mechanism of cDC1 exclusion [47]. Tumor-derived inhibitory
molecules can also impact cDC function. For example, TGF-β and vascular endothelial growth factor
(VEGF) produced by B16 melanoma have an inhibitory effect on the activation, cytokine expression
and T cell stimulatory capacities of cDC [56]. Similarly, macrophages that infiltrate breast tumors are
strong producers of IL-10. This cytokine suppresses cDC1 expression of IL-12, and thereby inhibits the
downstream anti-tumor CD8+ T cell response [43]. Another cause of cDC dysfunction during cancer is
the alteration of their overall lipid content. Herber et al. reported that mouse and human cDC localized
in tumors have an unusually high triglyceride content. This is due to the upregulation of macrophage
scavenger receptor 1 that is involved in intracellular transport of lipids and therefore increases lipid
uptake by cDC. Alteration in lipid content interferes with MHC I and MHC II presentation by impairing
antigen degradation in endosomes, however the exact molecular mechanism responsible remains to be
elucidated [57]. Tumor-associated cDC contain lipid bodies with oxidatively truncated electrophilic
lipids. These modified lipids covalently interact with the chaperone Hsp70 leading to impaired MHC
I-peptide trafficking and reduced CD8+ T cell activation [58].

Although inhibitory immune checkpoint receptors are classically viewed as molecules associated
with T cell exhaustion [59]; some members of this family are also expressed by cDC and further
contribute to an impairment in DC function during cancer. In hepatocellular carcinoma, both mouse
and human tumor-infiltrating cDC express PD-1 on their surface and in this setting, PD-1 acts as a
brake on cDC by limiting their T cell stimulation capacities [60]. De Mingo Pulido et al. identified T-cell
immunoglobulin and mucin-domain containing-3 (TIM-3) as another inhibitory immune checkpoint
receptor that is highly expressed by cDC that infiltrate breast tumors. TIM-3 provides an inhibitory
signal that downregulates the chemokine CXCL9. Consequently, CTL expressing the CXCL9 receptor
CXCR3 are excluded from tumors [61].
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2.3. Inflammatory DC

Inflammatory DC (inf-DC), also referred to as monocyte-derived DC (moDC), are absent
from steady-state tissues and differentiate from monocytes during inflammation, infection and
cancer [42,62,63]. Their phenotype in mice is characterized by the expression of several macrophage
markers such as F4/80, Ly6C, CD64 and FcεR1 [64]. Their human homologous have been identified
in several tissues and lymphoid organs from patients with inflammatory diseases, but also in tissues
from healthy donors [65]. Based on their gene signature, human inf-DC are considered the in vivo
equivalents of in vitro-derived moDC that have been extensively used in DC research and in clinical
settings for vaccination [66]. Mouse inf-DC can cross-present antigens to CD8+ T cells [67,68] and are
able to induce Th1 and Th2 responses depending on the inflammatory conditions [69,70]. Humans
inf-DC undertake cross-presentation [71] and are potent inducers of Th17 in cocultures with allogenic
CD4+ T cells [66].

The presence of inf-DC in tumors has not been well characterized. Reports have shown that
circulating monocytes are chemoattracted to tumors via CCL2 [72–74], thereby suggesting that
infiltrating monocytes may develop in situ into inf-DC. Tumor-associated inf-DC have been detected
in several mouse cancer models and in patients with non-small cell lung carcinoma and colorectal
cancer [42]. A population of CD1c+ CD14+ DC that may be related to inf-DC have been detected
in skin lesions of melanoma patients [75]. The role of inf-DC during cancer is not well defined,
with limited studies reporting conflicting results. In mice with B16 melanoma, inf-DC from tumors
efficiently cross-present tumor antigens and are able to induce strong CTL proliferation, suggesting
that inf-DC may promote tumor-specific CD8+ T cell immune responses [40]. This is consistent with
the identification by Sharma et al., of a new population of cross-presenting DC with anti-tumor activity
in inflamed tumors. These DC express Ly6C and arise from the monocytic lineage, thus indicating a
strong resemblance with inf-DC. These cells, however, also display some hallmark cDC1 characteristics
including the surface expression of CD103 and BATF3 dependency for their development. Hence it is
unclear whether this DC population can be classified as bona-fide inf-DC [76]. In contrast, other studies
support a tumorigenic role of inf-DC. Tumor-associated inf-DC from mice developing lung carcinoma
actively inhibit CD4+ and CD8+ T cell responses by releasing nitric oxide [42], a reactive radical with
known T cell suppressive activities [77]. Furthermore, the CD1c+ CD14+ inf-DC-like populations
that accumulate in melanoma nodules are hypostimulatory for allogenic T cells and have high cell
surface expression of PD-L1. Blockade of PD-L1 partially reduces this inhibition, thus highlighting
a PD-1-dependent T cell suppression mechanism [75]. In line with this, inf-DC generated in vitro in
the presence of prostate carcinoma stromal factors also display high PD-L1 expression and low T cell
stimulation capacities [78].

3. Tumor-Associated DC and Cancer Therapy

An emerging concept in the field of cancer therapy is the recognition that many clinically effective
treatments have an immune-mediated anti-tumor component. Most new anti-cancer immunotherapies
are trialed in combination with conventional therapies including chemotherapy and radiotherapy.
How these therapies impact DC is not well understood. However, it is becoming increasingly clear
that many anti-cancer therapies alter tumor-associated DC function (Figure 2). Here, we discuss the
impact that anti-cancer therapies have on DC and how this knowledge can be exploited to boost DC
activity against tumors.
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interventions can alter the development, maturation, migration and/or function of tumor associated DC.

3.1. Current Cancer Therapies and DC

Chemotherapy enhances anti-tumor DC function through multiple mechanisms that include
induction of immunogenic cell death (ICD), increased antigen availability and/or depletion of
suppressive immune cell subsets [79]. For example, the effectiveness of anthracyclines is dependent on
the recruitment and maturation of DC within the tumor [80]. Anthracyclines induce ICD, resulting
in exposure of calreticulin on the surface of tumor cells [81], tumor secretion of high mobility group
box 1 [82] and activation of NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in
DC [83]. Other chemotherapeutic agents such as cyclophosphamide and platinum-based compounds
not only induce ICD, but also enhance DC activity by depleting suppressive Treg within tumors [84,85].
Similar mechanisms are observed following gemcitabine treatment, which results in a reduction of
myeloid-derived suppressor cells (MDSC) [86]. Chemotherapies also act directly to enhance the
activation and function of tumor-associated DC. McDonnell et al. showed that systemic gemcitabine
therapy restores the capacity of suppressed or immature-like tumor-infiltrating DC to cross-present
antigens [87]. DC exposed to 5-fluorouracil increase IL-12 production and present tumor-associated
antigens with increased efficiency [88]. This response is dependent on DC expression of the formyl
peptide receptor 1 [89]. The release of immune-stimulatory proteins from tumors during cisplatin
therapy increases DC recruitment to tumors and upregulates DC co-stimulatory molecules CD80/86
and CD70 [90].

Radiotherapy, similar to chemotherapy, also induces tumor cell destruction and ICD (reviewed
by [91]). Interestingly, localized radiotherapy can promote immune-mediated tumor clearance at sites
distant to the irradiated area, a phenomenon known as the “abscopal effect” [92,93]. Importantly,
the regime of radiotherapy appears to be critical for this response as fractionated, but not single high
dose, radiation is reported to promote systemic anti-tumor responses [94]. This may be due to the
induction of the DNA exonuclease Trex1 in cancer cells by high, but not low dose irradiation, which
facilitates the degradation of cytosolic DNA [95]. Activation of Trex1 leads to attenuated signaling
through the stimulator of IFN genes (STING) pathway and decreased IFN-β production, resulting in
a lack of cDC1 recruitment to the tumor [95]. This lack of cDC1 migration likely stems from limited
upregulation of chemoattractant CCL5 [38]. Results from recent preclinical trials investigating the use
of radiotherapy in combination with immunotherapy have revealed the mechanistic importance of
radiation dose, fractionation and timing [96,97]. Multiple reports exist demonstrating radiotherapy
synergizes with DC-based therapies, including the administration of Flt3-L to expand cDC1 in vivo [98]
and injection of ex vivo generated DC directly into the tumor [99,100]. This is further supported by a
recent phase I clinical trial where stereotactic ablative radiotherapy enhanced the anti-tumor effect
of a combined DC vaccine and immune-stimulatory adjuvant cocktail, with five out of six patients
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receiving targeted radiotherapy presenting with stable disease [101]. These data suggest that combining
DC-targeted therapeutics with radiotherapy is an effective strategy to prime anti-tumor immunity.

Tumor-associated DC function is important in the response to checkpoint blockade immunotherapy.
Successful outcomes following anti-PD-1 therapy require DC-T cell crosstalk [102] and the initiation of
anti-tumor CD8+ T cell responses by Sec22b-dependent cross-presentation in DCs [51]. Targeting novel
checkpoint ligands on DC that modulate T cell activity is an attractive strategy for immunotherapy.
Lymphocyte activation gene-3 (LAG-3) is expressed on activated T cells and regulatory pDC within
tumors and modulates pDC homeostasis and IFN-I production after TLR9 stimulation [103,104].
Treatment with an anti-LAG-3 antibody promotes human moDC maturation in ex vivo cultures
with significant up-regulation of co-stimulatory molecules and enhanced production of IL-12 and
TNF-α [105]. In a clinical trial for metastatic breast cancer, a soluble LAG-3-Ig fusion protein was used
in combination with paclitaxel chemotherapy. Increased activation of antigen-presenting cells and
concurrent expansion of effector-memory CD8+ T cells and NK cells was observed, correlating with
favorable response rates relative to controls [106]. This highlights LAG-3-targeted therapies as a viable
immunogenic platform that can be combined with chemotherapy.

TIM-3 is an inhibitory immune checkpoint that is highly expressed by tumor-associated DC.
Treatment with an anti-TIM3 monoclonal antibody enhances CXCL9 expression by CD103+ cDC1,
leading to increased CTL recruitment to the tumor [61]. In clinical settings, anti-TIM-3 antibody
treatment improves responses when delivered in combination with Paclitaxel [61] and the immune
checkpoint antibodies anti-CTLA4 and anti-PD-1 [107], resulting in the regression of established tumors.
TIM-3 therefore has potential as a novel immune checkpoint, which can be targeted to improve the
function of tumor-associated DC. V-domain Ig suppressor of T cell activation (VISTA) is another novel
checkpoint ligand that is highly expressed on DC and directly suppresses T cell proliferation [108].
A combination regimen of an anti-VISTA blocking antibody administered with a cancer vaccine and TLR
adjuvant demonstrated synergistic efficacy and impaired growth of established B16 melanoma [109].
Blocking VISTA on DC results in increased T cell recruitment to the tumor microenvironment and
enhances CD8+ T cell activation by converting resting and exhausted cells into functional effector
cells. VISTA blockade is particularly effective in combination with anti-CTLA4 antibody therapy [110],
which likely results from increased VISTA expression by myeloid cells after anti-CTLA4 antibody
therapy [111]. Similarly, the synergistic potential of anti-VISTA and anti-PD-1 antibody therapy has
been suggested, given they induce suppressive signaling via independent pathways [112]. Therefore,
evidence implicates VISTA as a novel modulator of DC function with blockade of VISTA a potential
treatment modality for stimulating anti-tumor immunity. Efficacy and safety profiles of VISTA-targeted
therapy as a fully human monoclonal antibody or oral inhibitor are currently being explored in Phase I
clinical trials of advanced solid tumors and lymphoma (reviewed in [113]).

Cancer therapeutics that inhibit critical kinases required for tumor cell growth are also reported
to have immunomodulatory effects on DC. The tyrosinase kinase inhibitor (TKI) sunitinib decreases
suppressive immune subsets in the tumor microenvironment and down-regulates PD-L1 expression on
tumor-associated myeloid cells and pDC. In combination with IL-12 and 4-1BB-L, sunitinib improves
long-term survival of mice bearing large MCA26 tumors [114]. In conflict with this, other studies have
shown that the TKIs sorafenib and imatinib inhibit DC function, and the differentiation of CD34+ DC
progenitors in vitro [115]. DC progenitors express lower levels of co-stimulatory molecules CD80 and
CD40 after culture with imatinib and have attenuated T cell stimulatory capacity [116]. In light of these
findings, the combination of TKIs with DC-based therapies should be carefully considered. BRAF
inhibitors, commonly used to treat melanoma, are also reported to exert pro-inflammatory effects on DC
including inflammasome activation, increased MHC expression and increased IL-1β production [117].
Combining BRAF inhibition therapy with Flt3-L and the TLR-3 agonist polyinosinic:polycytidylic acid
(poly-I:C), to expand and activate intra-tumoral cDC1, leads to more effective anti-tumor therapy [41].
The synergistic potential of BRAF inhibitors and immune-based therapies was well reviewed by
Reddy et al. [118].



Cancers 2019, 11, 521 9 of 21

3.2. Enhancing DC Activation during Cancer Therapy

One goal of DC-targeted therapies is to enhance tumor-associated DC function and drive effector
T cell recruitment into the tumor. As tumor-associated DC are often functionally impaired it is critical to
develop adjunct therapies that facilitate DC activation and maturation. TLR ligation is necessary during
antigen encounter for DC maturation and upregulation of co-stimulatory molecules [119], without
which DC can become regulatory or tolerogenic [120]. TLR signaling also influences how DC process and
present antigens [121]. Numerous TLR agonists have been investigated in clinical trials in combination
with DC vaccination and other immunotherapies [122,123]. Of these agents, the TLR3 agonist poly-I:C
and its more stable derivatives such as poly-ICLC [124] are particularly favorable candidates. TLR3
is highly expressed by cross-presenting DC subsets, which are critical to induce anti-tumor CD8+

T cell responses [125]. Treatment of ovarian cancer patients with poly-ICLC in combination with a
synthetic long peptide vaccine specific for the tumor-associated antigen NY-ESO-1 results in elevated
antigen-specific antibody titers and increased T cell responses [126]. Similar results have been obtained
after poly-ICLC administration and vaccination against a combination of tumor-associated antigens in
low grade glioma [127]. Poly-I:C activation of DC via TLR3 results in IFN-III (IFNλ) production by
cDC1 via IRF3 and IRF7 activation independent of MyD88 [128], while poly-I:C signaling via Melanoma
Differentiation-Associated protein 5 (MDA-5) strongly induces IFN-I production [129], which promotes
DC maturation and Th1 type CD4+ T cell immunity. Importantly, both receptors have distinct and
complementary functions that are critical for the activation of anti-tumor immunity by cDC1 [130,131].
Therefore, this should be considered in the design of novel poly-I:C based adjuvants. Other TLR
agonists may also be beneficial for DC-mediated anti-tumor immunity. The TLR7 agonist Imiquimod
has been shown to enhance immune-mediated tumor regression in melanoma, basal cell carcinoma
and breast cancer when applied as a topical cream (Aldara) [132–134]. Topical delivery to the site of
the tumor suggests the mode of action is primarily the maturation of tumor-associated DC, particularly
pDC, which express high levels of TLR7. Activation of DC via TLR7 leads to increased IFN-I signaling
as well as enhanced antigen presentation and T cell priming within the tumor [135]. Similarly, the TLR9
agonist CpG-oligodeoxynucleotide (CpG-ODN) elicits anti-tumor activity through the induction of
IFN-I in pDC [136]. TLR9 activation signals via recruitment of MyD88 to activate IRF7 [137], resulting
in the release of IFN-I, which is critical for immune-surveillance of tumors [138]. CpG-ODN-based
TLR agonists have demonstrated the potential to enhance tumor eradication and T cell responses
in combination with checkpoint blockade therapy and DC vaccination [139,140]. Therefore, pDC
represent good candidates for therapy targeting tumor-associated DC to boost anti-tumor immunity.
pDC dysfunction in the tumor microenvironment, however, remains a barrier to successful therapy and
it is reported in some solid tumor models that intra-tumoral administration of CpG fails to reprogram
the tolerogenic phenotype of tumor-associated pDC [141].

An approach to boost DC function in the context of anti-tumor vaccination is to elicit DC activation
via enhanced co-stimulatory molecule expression. One strategy involves ex vivo activation of DC
using the mRNA transfection-based delivery of a cocktail of co-stimulatory molecules (including
CD40L, CD70, and constitutively active TLR-4) called TriMix [142]. DC activated by TriMix potently
induce the expansion of functional MelanA-specific CD8+ T cells [143]. DC exposed to TriMix activate
CD4+ and CD8+ T cells, promote their secretion of IFNγ and reduce the suppressive potential of
Treg, partially alleviating Treg inhibition of CD8+ T cell immunity [144]. Delivery of TriMix DC
in melanoma patients triggers durable tumor responses in late stage disease [145], suggesting this
could be a novel DC-targeted strategy. To avoid culturing DC ex vivo Van Lint et al. delivered
tumor antigen and TriMix encoding-RNA via intranodal injection. In several mouse tumor models
this delivery method was similarly effective as the delivery of electroporated DC [146]. Successful
modulation of tumor-associated DC has also been achieved by direct intra-tumoral injection of TriMix.
Tumor-associated DC are reprogrammed into mature antigen-presenting cells that promote systemic
anti-tumor immunity after migration from the tumor to the draining lymph node [147].
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Another target to enhance DC activation is STING, which can be triggered by intra-tumoral
delivery of cyclic dinucleotides. Activation of the STING pathway controls tumor growth in mouse
models of melanoma and breast cancer, mediating systemic immunity by enhancing the efficacy of
anti-PD-1/CTLA 4 therapy [148] or in combination with OX40 receptor and PD-L 1 blockade [149].
Similar to TriMix, a vaccination strategy utilizing cyclic dinucleotides, to activate the STING pathway,
in addition to GM-CSF-secreting tumors mediates regression of established melanoma [150] and
enhances the efficacy of anti-PD-1 antibody therapy [151]. The mechanism of action was shown to
be STING-dependent, and synergy with TLR agonists was reported, suggesting STING is a novel
DC-targeted strategy with potential for combination with checkpoint blockade and DC vaccination [152].

The epigenetic landscape of tumors, including the immune cells present in the tumor
microenvironment is dysregulated [153]. While the epigenetic control of DC is not well understood,
particularly within the tumor, there is evidence that epigenetic modifications control DC function [154]
and development [155]. Furthermore, it has been reported that TGFβ, a key immunosuppressive
cytokine present in the tumor milieu, can induce chromatin modifications of H3K4me and H3K27
epigenetic marks that negatively impact DC differentiation and function [156]. Therefore, therapy that
targets epigenetic dysregulation in tumor-associated DC may help restore DC function. A recent study
of the effects of epigenetic modifiers on ex-vivo generated DC reported that two clinically relevant
agents, given in combination with IFN-α 2, strongly induced IRF7 and IRF8 activation as well as
expression of TLR3, TLR7 and IFN-β by DC [157]. These results suggest epigenetic modification is
capable of skewing DC towards a more functional phenotype; however, whether this therapy will
succeed in modulating tumor-associated DC in vivo remains to be determined. Epigenetic therapy
does induce IFN-I and IFN-responsive genes in tumors via the induction of endogenous retroviruses
silenced by DNA methylation [158], potentially augmenting DC maturation and function within the
tumor. Clinical data suggest that epigenetic therapy can boost T cell responses generated by DC
vaccination against the NY-ESO-1 antigen in myelodysplastic syndrome [159]. Therefore, the epigenetic
modulation of DC remains a promising approach with the potential for enhancing DC function and
anti-tumor immunity [160].

4. Modulating DC Generation and Migration During Cancer Therapy

Flt3-L treatment is a promising strategy to elicit anti-tumor CTL immunity. Flt3 is expressed
at high levels by cDC1, a DC subset of major importance to anti-tumor immunity. cDC1 expand
in number in response to in vivo administration of Flt3-L [161,162]. Combining Flt3-L and poly-I:C
treatment induces expansion and activation of CD103+ cDC1 from DC progenitors within the tumor
and enhances the efficacy of checkpoint therapy blockade in experimental models of melanoma [41]
and glioblastoma [163]. In the context of DC vaccination, the addition of Flt3-L enhances the efficacy
of RNA vaccination, with pDC rather than cDC1 essential for the adjuvant effect of Flt3-L in this
setting [164]. Experimental vaccination strategies, such as those using Flt3-L expressing B16 melanoma
cells, demonstrate higher levels of CD8+ T cell and DC infiltration compared to vaccination with
GM-CSF-expressing tumor cells [165]. Supporting these findings, Flt3-L stimulation was shown to
produce DC with lower inflammatory cytokine production and superior migration potential in vivo,
compared to GM-CSF/IL-4 stimulated DC [166]. In clinical trials, recent results from a phase II
study in human melanoma suggest that Flt3-L treatment efficiently mobilizes DC and enhances
responses to DC-targeted vaccines [167]. Therefore, pre-treatment with Flt3-L assists the generation of
cross-presenting cDC1 for CTL induction and enhances other DC-targeted therapies.

Chemokine-based therapy represents another strategy to drive immune cell infiltration into
the tumor microenvironment. DC migration to the lymph node for T cell priming is guided by
inflammatory chemokines CCL19, CCL20 and CCL21 mediated by CCR6 and CCR7 expression on
DC [168]. As discussed above, NK cells are involved in the chemoattraction of cDC1 by secreting
XCL1 and CCL5 [38,45]. Protective T-cell dependent anti-tumor immunity can be induced with the
genetic fusion of chemokines to a self-tumor antigen [169]. A vaccine strategy based on XCL1- and
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IL-2-secreting neuroblastoma cells enhanced T-cell infiltration and resulted in complete or partial tumor
remission in vaccinated patients [170]. Similarly, adenoviral delivery of XCL1 and tumor-associated
antigens to DC increases IL-2 and IFNγ production by NK and T cell populations [171]. Enforcing
local expression of XCR1 at the tumor site results in increased CD4+ T cell, CD8+ T cell and neutrophil
infiltration and eradication of established tumors [22,172]. Other cytokines mediate DC trafficking to
specific organs [173] suggesting that specific cytokine therapy may be applicable to direct DC migration
towards a desired tissue. A screen of chemokine-transduced tumors identified CCL19, CCL22 and
XCL1 as potent mediators of immune-based tumor rejection in vivo [174]. Notably, the context of
chemokine therapy and the tumor microenvironment are important determinants of this response.
For example, inflammatory chemokine CCL3, a potent DC attractant, drives DC and immune cell
infiltration when expressed by B16 melanoma, but this does not lead to tumor regression [175]. While
using chemokines is a potential strategy to enhance DC tumor infiltration, it may be important to
overlay additional therapeutics to promote effective immunity at the tumor site.

5. Conclusions

The success of anti-cancer immunotherapy has placed DC under the spotlight, given their
critical role in initiating anti-tumor T cell immunity. The complexity of DC subtypes, and their
interactions, means that multiple complementary strategies are likely necessary to drive the eradication
of cancer in patients undergoing DC-mediated anti-cancer therapy. In addition, current anti-cancer
treatment regimens need to be carefully evaluated for their impact on DC function. Looking forward,
the development of novel immunotherapeutic interventions for cancer should aim to enhance the
migration, activation, maturation and/or function of tumor-associated DC to improve patient outcomes
and exploit this critical immune cell type in future anti-cancer therapy.
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