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Objective: Exposure to high altitudes represents physiological stress that leads to

significant changes in cardiovascular properties. However, long-term cardiovascular

adaptions to high altitude migration of lowlanders have not been described. Accordingly,

we measured changes in cardiovascular properties following prolonged hypoxic

exposure in acclimatized Han migrants and Tibetans.

Methods: Echocardiographic features of recently adapted Han migrant (3–12 months,

n= 64) and highly adapted Han migrant (5–10 years, n= 71) residence in Tibet (4,300m)

using speckle tracking echocardiography were compared to those of age-matched

native Tibetans (n = 75) and Han lowlanders living at 1,400m (n = 60).

Results: Short-term acclimatized migrants showed increased estimated pulmonary

artery systolic pressure (PASP) (32.6 ± 5.1 mmHg vs. 21.1 ± 4.2 mmHg, p <

0.05), enlarged right ventricles (RVs), and decreased fractional area change (FAC) with

decreased RV longitudinal strain (−20 ± 2.8% vs. −25.5 ± 3.9%, p < 0.05). While left

ventricular ejection fraction (LVEF) was preserved, LV diameter (41.7 ± 3.1mm vs. 49.7

± 4.8mm, p < 0.05) and LV longitudinal strain (−18.8 ± 3.2% vs. −22.9 ± 3.3%, p <

0.05) decreased. Compared with recent migrants, longer-term migrants had recovered

RV structure and functions with slightly improved RV and LV longitudinal strain, though

still lower than lowlander controls; LV size remained small with increased mass index

(68.3± 12.7 vs. 59.3± 9.6, p< 0.05). In contrast, native Tibetans had slightly increased

PASP (26.1 ± 3.4 mmHg vs. 21.1 ± 4.2 mmHg, p < 0.05) with minimally altered cardiac

deformation compared to lowlanders.

Conclusion: Right ventricular systolic function is impaired in recent (<1 year) migrants

to high altitudes but improved during the long-term dwelling. LV remodeling persists in

long-term migrants (>5 years) but without impairment of LV systolic or diastolic function.

In contrast, cardiac size, structure, and function of native Tibetans are more similar to

those of lowland dwelling Hans.
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INTRODUCTION

High altitude exposure is associated with pulmonary
hypertension and pulmonary vasoconstriction resulting in
significant changes in cardiovascular properties (1). There are
many factors that affect cardiac adaptation to high altitude
dwelling, including altitude level, exposure time, and racial
differences. Cardiac responses to acute hypoxic exposure in
people normally living at low altitudes (lowlanders) have been
studied extensively (2, 3). Conventional echocardiographic
studies show that in healthy subjects exposed to acute hypoxic
conditions of high altitude, the systolic function of both
ventricles is preserved, but there is impaired diastolic function
(4). More recently, speckle tracking echocardiography (STE) has
been introduced, which has better reproducibility and sensitivity
than conventional echocardiography for quantifying cardiac
functions through analysis of deformation mechanics (5). The
use of STE is more sensitive for exploring subclinical changes
in cardiac function to high altitude dwellings. Maufrais et al.
(6) noted that after several days (<6 days) at high altitude,
there are no significant changes in left ventricular (LV) or right
ventricular (RV) longitudinal strain, but there is increased
LV twist. In contrast, Stembridge et al. (7) reported that RV
longitudinal strain is decreased, which is a consequence of high
pulmonary artery systolic pressure (PASP) following longer
duration trekking (>10 days).

However, there is limited information concerning how
healthy lowlanders (i.e., individuals who themselves and their
ancestors are born and living below 2,500m) adapt to longer-
term (months-to-years) exposure to high altitudes (greater than
2,500m); in particular, there are no data concerning changes
in cardiac mechanics under such conditions. An example is
when healthy Han individuals (the most common race in China)
born and living at low altitudes (<2,500m) migrate to the Tibet
plateau (>4,000m). It is not uncommon for young adults to live
and work at high altitudes over periods of months to years, which
provides the opportunity to study long-term cardiovascular
adaptations to chronic hypoxia in these extreme conditions.

Accordingly, the purpose of this study was to provide a
comprehensive characterization of changes in cardiac structure,
function, and longitudinal strain during prolonged (month-to-
years) exposure to high altitude (4,300m) in Han migrants
and compare them to characteristics of native Tibetans. We
hypothesized that (1) cardiac structure (indexed by LV and
RV size and wall thicknesses) and function [indexed by LV
ejection fraction (EF), RV fractional area change (FAC), and
global longitudinal strain (GLS)] of long-term (>5 years) Han
migrants are more highly adapted to high altitude than recent
acclimatized Hans (<1 year) and (2) despite long-term dwelling
(>5 years), these same indexes of cardiac structure and function
of Han migrants are not as highly adapted to high altitude as
native Tibetans.

METHODS

Study Population
Han lowlanders were recruited in Yecheng, Xinjiang
(1,400m); Han migrants and Tibetans were recruited in

the Ali district of Tibet (4,300m). A total of 328 volunteers
completed a questionnaire and were given free physical and
echocardiographic examinations. The questionnaire included
age, ethnicity, duration of residence, family medical history,
questions related to physical and psychological discomfort,
and medications. As the aim of the study was to investigate
the normal process of cardiac adaption to chronic hypoxia
of young and healthy migrants from lowland, the criteria for
being included in this study were as follows: age between
18 and 32 years, male, and a normal physical examination.
Exclusion criteria included any history of smoking, self-reported
history of any cardiorespiratory disease, obesity, or intake of
any medication within a month before participation in this
study. After excluding 36 subjects due to insufficient image
quality, 292 participants were included in this study, including
217 Hans and 75 Tibetans. Participants enrolled were grouped
according to ethnicity, altitude, and adaptation periods into
one of 4 groups: (1) Han lowlanders (n = 82); (2) short-term
acclimatized Hans (n = 64), who were defined as Han migrants
with residence time in Tibet of more than 3 months but less
than 1 year; (3) long-term acclimatized Hans (n = 71), who
were defined as Han migrants with residence time in Tibet
for more than 5 years; and (4) native Tibetans (n = 75). The
protocol was approved by the Chinese PLA General Hospital
Ethics Committee, and each participant provided written
informed consent.

Basic and Clinical Data Acquisition
Data were collected by two physicians and an experienced
sonographer who traveled between Yecheng and Ali.
Measurement included height, weight, blood pressure (BP),
heart rate (HR), arterial O2 saturation (SpO2), and blood
samples. BP and HR were measured (HEM-7211; OMRON,
Japan) in the supine position after 10min of rest. SpO2

was measured using finger-pulse oximetry (YX303, Yuwell,
Jiangsu, China) after finger warming and signal stabilization.
Hemoglobin concentration (HB) and hematocrit (HCT)
measurements (BC-3000Plus, Mindray, Shenzhen, China)
were performed by peripheral venous sampling. From these
data, body surface area (BSA) and body mass index (BMI)
were calculated.

Echocardiographic Assessments
Echocardiographic image acquisition included 2D and Doppler
echocardiography and was saved in the DICOM format. The
procedure was performed by a certified sonographer using
a portable ultrasound machine (M9, probe SP5-1; Mindray,
Shenzhen, China) in the left lateral decubitus position according
to society guideline recommendations (8, 9). Measurements
were performed offline by an experienced physician blinded to
the subjects’ conditions and ethnicity. LV end-diastolic volume
(EDV) and end-systolic volume (ESV) were measured from
planar tracings of the endocardial border in the apical 4- and
2-chamber (4C and 2C, respectively) views using the Simpson’s
biplane method. LV stroke volume (SV) and EF were calculated
as EDV-ESV and (EDV-ESV)/EDV, respectively. LV mass (in
g) was calculated according to the cube formula using end-
diastolic values of septal and posterior wall thickness (LVST

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 May 2022 | Volume 9 | Article 856749

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. Characterization of Chronic High-Altitude Adaptation

TABLE 1 | Clinic characteristics in Han lowlanders, Han migrants and native Tibetans.

Han lowlanders

(n = 82)

Han migrants < 1 year

(n = 64)

Han migrants > 5 years

(n = 71)

Tibetans

(n = 75)

p

Age (year) 25.3 ± 3.3 24.8 ± 3.3 26.3 ± 2.9 25.6 ± 4.2 0.086

Height (cm) 172.6 ± 5.2 173.4 ± 5.2 171.6 ± 6 171.9 ± 5.1 0.216

Weight (kg) 64.6 ± 4.9 66.4 ± 7.9 66.4 ± 7.9 62.4 ± 7‡ 0.002

BSA (m2) 1.8 ± 0.1 1.83 ± 0.1 1.81 ± 0.1 1.77 ± 0.1‡ 0.010

BMI (kg/m2 ) 21.7 ± 1.5 22.1 ± 2.2 22.5 ± 2.3 21.1 ± 2.1 0.001

HR (beats/min) 68.5 ± 6.1 80.2 ± 7.9* 78.8 ± 7† 73.5 ± 6.5‡ 0.000

Systolic BP (mmHg) 113.3 ± 7.5 120.5 ± 6.4* 128.1 ± 8.5† 115.9 ± 8.4‡ 0.000

Diastolic BP (mmHg) 70.3 ± 4.5 74.8 ± 4.6* 79.3 ± 5.2† 71.8 ± 5.8‡ 0.001

Mean BP (mmHg) 84.6 ± 4.8 90 ± 4.4* 95.6 ± 5.6† 86.5 ± 5.7‡ 0.000

Hb (g/l) 140.5 ± 10.6 175.5 ± 9.9* 180.5 ± 12.8† 173.7 ± 12.4‡ 0.000

HCT (%) 46.3 ± 5.2 54.1 ± 3.9* 59.8 ± 4.9† 53.5 ± 3.9‡ 0.000

SpO2 (%) 97.5 ± 1 90.5 ± 2.2* 90.9 ± 1.9† 89.2 ± 2‡ 0.000

Values are means ± SD. *P < 0.05 short-term acclimatized Hans vs. lowlanders;
†
P < 0.05 long-term acclimatized Hans vs. short-term acclimatized Hans;

‡
P < 0.05 Tibetans vs.

long-term acclimatized Hans.

BSA, body surface area; BMI, body mass index; HR, heart rate; BP, blood pressure; Hb, hemoglobin; HCT, hematocrit; SpO2, arterial pulse oxygen saturation.

and LVPWT) and the LV diastolic dimension (LVDD) from M
mode tracings:

LVmass = 0.8 · 1.04 · [(LVDD+ LVPWT+ IVST)3

− LVDD3]+ 0.6

Right ventricular end-diastolic and end-systolic areas (EDA and
ESA) were measured from planar tracings of the endocardial
border in the apical 4C view, and RV FAC was calculated by
(EDA-ESA)/EDA. Right and left atrial EDVs and ESVs were
determined from planar tracings of the endocardial border in the
apical 4C view by using the Simpson’s method; atrial emptying
fractions were calculated by (EDV-ESV)/EDV. Finally, volumes
and dimensions were indexed to BSA to balance differences
in body sizes. Early (E) and late (A) diastolic filling velocities
were assessed using pulsed-wave Doppler recordings, and free
wall velocities (s′, e′, and a′) were measured using tissue
Doppler imaging at both mitral and tricuspid annular levels.
Isovolumic relaxation time (IVRT) and deceleration time (DT)
were measured at the level of the mitral annulus. Tricuspid
annular plane systolic excursion (TAPSE) was measured fromM-
mode tracings. Systolic tricuspid regurgitation (TR) flow velocity
was used to estimate pressure gradient (PTR, in mmHg) from the
modified Bernoulli equation (10): PTR = 4·Vmax2. Right atrial
pressure (RAP) was estimated by the diameter of the inferior vena
cava and its variation during inspiration as detailed previously
(11). PASP was calculated as PASP = PTR + RAP. Mean PAP
(PAMP) was calculated from PASP as PAMP = 0.61 PASP +

2 mmHg (12). The TAPSE/PASP ratio, a surrogate of the gold
standard ratio of end-systolic to arterial elastance (Ees/ Ea), was
calculated to evaluate RV-arterial coupling (13).

The longitudinal strain of each chamber was analyzed offline
using two-dimensional STE software (Tomtec, REF-Version 4.6
software, Munich, Germany) by an experienced physician. LV
GLS was assessed from apical 2-, 3- and 4-chamber views

according to recommendations (14). RV GLS, RA, and LA
longitudinal strains were assessed from apical 4C views (15).

Statistical Analysis
Statistical analyses were performed using SPSS (version 17.0).
Data were expressed as mean ± SD, and a test for normality was
performed using the Kolmogorov–Smirnov test. The effects of
hypoxic exposure on conventional echocardiographic parameters
and cardiac mechanics were assessed by analysis of variance
among the Han population and Tibetans. When a significant
main effect was found, we used modified t-tests (i.e., t-tests
with the residual variance of the analysis of variance) as a post
hoc test to compare recent Han migrants with Han lowlanders
and with long-term acclimatized Han migrants and to compare
Native Tibetans with long-term Hans. p-values were adjusted for
multiple comparisons using Bonferroni corrections. Statistical
significance was declared when p < 0.05.

RESULTS

Clinical Characteristics of the Subjects
Characteristics of the study population are summarized in
Table 1. We found that Han migrants with 3–12 months of
exposure to hypoxia had a moderately increased HR and BP.
Elevations of HR and BP persisted in Hans during long-term
(5–10 years) exposure. Also, hemoglobin concentrations and
hematocrits continued to increase with persistently lower SpO2.
Native Tibetans exhibited unique characteristics compared with
to Han population, including relatively smaller BSAs and BMIs.
They also had relatively lower BP, Hb, and hematocrits compared
to highly acclimatized Hans.

Right Heart Characteristics Under Chronic
Hypoxia
Figure 1 summarizes the main findings for right heart
echocardiographic measurements; other echocardiographic
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FIGURE 1 | Between-group comparisons of right ventricular characteristics. (A) Right ventricular end-diastolic area. (B) Right ventricular end-systolic area. (C) Right

ventricular fractional area change. (D) Right ventricular global longitudinal strain. (E) Tricuspid annular plane systolic excursion/pulmonary artery systolic pressure.

(F) Right ventricular anterior wall sickness. *p < 0.05 Han migrants <1 year vs. lowlanders; †p < 0.05 Han migrants >5 years vs. Han migrants <1 year; ‡p < 0.05

Tibetans vs. Han migrants >5 years.

parameters are provided in Table 2. Short-term acclimatized
Hans exhibited enlarged RAs with preserved emptying fraction.
RV FAC decreased significantly as a result of enlarged RV areas,
especially the end-systolic area. Other parameters associated
with RV systolic function such as se′ and TAPSE also decreased.
Estimated PASP increased and the TAPSE/PASP ratio decreased
significantly, indicating impaired RV-arterial coupling. As for
cardiac mechanics, there were significant decreases in RV GLS
with slightly decreased RA GLS.

Compared with short-term Han migrants (3–12 months),
RV FAC and TAPSE improved during a longer period of
acclimatization (>5 years), and changes were also accompanied
by reductions of RV end-diastolic and end-systolic area, almost
back to the normal values as lowlanders. There was also evidence
of RV anterior wall thickening. Importantly, RV GLS of longer
migrants was also higher with improvements in RV-PA coupling
(i.e., improved values of TAPSE/PASP).

Tibetans had higher RV FACs without thickening of the
RV wall compared with long-term Han migrants. PASP
in Tibetans was lower than in Han migrants and showed
better RV-arterial coupling. Notably, Tibetans had nearly

unchanged RV GLS compared to lowlanders, demonstrating
more favorable adaptation to chronic hypoxia than highly
acclimatized Han migrants.

Left Heart Characteristics Under Chronic
Hypoxia
Left heart echocardiographic parameters are summarized in
Figure 2 and Table 3. Significant changes in left heart structure
under short-term exposure were characterized by reduced
volumes of both LA and LV. LVEF was preserved, and there was a
significant decrease in peak E and a mildly decreased E/e′. IVRT
increased slightly with enhanced DT. As for cardiac mechanics,
LV GLS was decreased, whereas LA GLS was preserved. Overall,
these findings suggest that short-term exposure to chronic
hypoxia resulted in decreased LV fillings but preserved systolic
and diastolic functions.

Compared with short-termHanmigrants, LA and LV volumes
of longer migrants (>5 years) remained small, and LVEF was
also preserved. Notably, LV mass index was higher due to
increased interventricular septum and posterior wall thicknesses.
Mitral E/A and E/e′ remained low. IVRT and DT increased with
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TABLE 2 | Echocardiographic parameters of right heart in Han lowlanders, Han migrants and native Tibetans.

Han lowlanders

(n = 82)

Han migrants < 1 year

(n = 64)

Han migrants > 5 years

(n = 71)

Tibetans

(n = 75)

p

RA EDVI (ml/m2 ) 15.6 ± 3.6 17.7 ± 5* 16.6 ± 4.4 18 ± 4.7 0.019

RA ESVI (ml/m2 ) 6.6 ± 1.9 7.7 ± 2* 7.5 ± 2.3 7.8 ± 1.9 0.010

RAEF (%) 57.7 ± 7.7 55.5 ± 9.6 55.2 ± 8.7 56.2 ± 7 0.415

RA GLS (%) 41.8 ± 8.8 38.5 ± 6.8* 40.4 ± 8.5† 41.1 ± 8.6 0.000

Tricuspid E (cm/s) 60.8 ± 8.2 56.6 ± 9.3* 50.9 ± 8.2† 63.9 ± 6.4 0.000

Tricuspid A (cm/s) 38.9 ± 6 33.5 ± 5.7* 40.1 ± 6.3† 39 ± 5 0.000

Tricuspid E/A ratio 1.6 ± 0.2 1.7 ± 0.3 1.3 ± 0.2† 1.6 ± 0.2‡ 0.000

s
′

(cm/s) 12.5 ± 1.7 11.7 ± 1.9* 11.9 ± 1.5 12.7 ± 1.8‡ 0.001

e
′

(cm/s) 14 ± 2 13.2 ± 2.9* 12.6 ± 2.5 14.1 ± 2.1‡ 0.000

a
′

(cm/s) 12.2 ± 1.9 9.2 ± 1.8* 11.4 ± 1.2† 11.6 ± 2 0.000

Tricuspid E/e’ ratio 4.4 ± 0.9 4.4 ± 1 4.2 ± 1 4.6 ± 0.8‡ 0.034

TAPSE (mm) 21.6 ± 1.6 17.8 ± 3* 20.8 ± 3† 21.3 ± 2.1 0.000

PTR (mmHg) 17.9 ± 3 27.5 ± 4.2* 23.6 ± 3.7† 22.9 ± 2.8 0.000

RAP (mmHg) 3.2 ± 1.1 4.4 ± 2.2* 3.6 ± 1.6† 3.4 ± 1.4 0.000

PASP (mmHg) 21.1 ± 4.2 32.6 ± 5.1* 27.8 ± 5.2† 26.1 ± 3.4 0.000

PAMP (mmHg) 15.4 ± 3.8 22.6 ± 4.6* 19.2 ± 4.7† 18.26 ± 3.8 0.000

Values are means ± SD. *P < 0.05 short-term acclimatized Hans vs. lowlanders;
†
P < 0.05 long-term acclimatized Hans vs. short-term acclimatized Hans;

‡
P < 0.05 Tibetans vs.

long-term acclimatized Hans.

EDVI, end-diastolic volume index; ESVI, end-systolic volume index; RAEF, right atrial emptying fraction; GLS, global longitudinal strain; TAPSE, tricuspid annular plane systolic excursion;

PTR, tricuspid regurgitation gradient pressure; PASP, pulmonary artery systolic pressure; RAP, right atrial pressure; PAMP, pulmonary artery mean pressure.

preserved LA and LV GLS. This suggested that longer exposure
to hypoxia caused significant LV thickening but no evidence of
diastolic dysfunction or depression of cardiac mechanics.

In contrast, Tibetans had relatively larger LAs and LVs
compared to highly acclimatized Hans, but no differences were
noted in LVEF. Also, the LV mass index was smaller in Tibetans
as they had no significant LV thickening. Additionally, LV
GLS was also maintained within a normal range. Thus, overall,
Tibetans demonstrated a more highly adapted pattern of cardiac
characteristics than long-term acclimatized Han migrants.

DISCUSSION

Although previous studies evaluated cardiovascular alterations
in response to acute hypoxia at high altitudes, this study is
the first to investigate the effects of different stages of chronic
exposure on biventricular structure, function, and mechanics.
By comparing clinic and echocardiographic measures among
recent (3–12 months) Han migrants, long-term (>5 years) Han
migrants, and native Tibetans, we observed that (1) recent
Han migrants showed a significant response to hypoxia that
was characterized by increased RV size, decreased RV FAC,
and decreased longitudinal strain of both ventricles; (2) all of
these factors improved during long-term (>5 years) dwelling,
and while there was improved right ventricular-pulmonary
arterial coupling, there was persistent ventricular thickening; (3)
even after long-term exposure, significant differences in cardiac
structure, function, and mechanics existed compared to the more
highly adapted native Tibetans. The major findings of this study,
along with proposed links between high altitude dwelling, cardiac

structure and function, are summarized in Figure 3 and are
discussed further below.

RV Systolic Function Is Impaired in Recent
(<1 Year) Migrants to High Altitudes but
Improved During Long-Term (>5 Years)
Dwelling
One of the important findings of our study was the adaptability of
the RV and pulmonary vasculature of Hanmigrants to prolonged
high altitude dwelling. Prior studies have shown that elevated
PASP is the most immediate and prominent hemodynamic
response to high altitude (16, 17). A recent survey showed
that high altitude pulmonary hypertension (HAPH) could be
detected in 6–35% of highlanders in the Asian population
(18). Specifically, we observed a PASP of 33 ± 5 mmHg in
recently adapted Han migrants, which is at the normal upper
limit of healthy lowlanders; furthermore, 10% of Han migrants
fulfilled the 2016 ERS/ESC guideline criteria for pulmonary
hypertension (PH) with a PAMP >25 mmHg (19). Despite
the increased afterload and noted changes of right ventricular
properties measured in Han migrants (i.e., decreased RV FAC,
TAPSE, and GLS), subjects were asymptomatic, and according
to a recent expert consensus document, such responses may not
have clinical significance. Specifically, it was noted that in high-
altitude dwellers, the criteria for defining HAPH were PAMP >

30 mmHg and PASP > 50 mmHg in asymptomatic high-altitude
dwellers (20); none of the subjects studied met these criteria. As
reported previously, normal RV contractile reserve was observed
in healthy high-altitude dwellers and even in patients with
chronic mountain sickness (CMS), despite lower resting values
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FIGURE 2 | Between-group comparisons of left ventricular characteristics. (A) Left ventricular end-diastolic volume. (B) Left ventricular end-systolic volume. (C) Left

ventricular ejection fraction. (D) Left ventricular global longitudinal strain. (E) Cardiac output. (F) Left ventricular mass. *p < 0.05 Han migrants <1 year vs. lowlanders;
†
p < 0.05 Han migrants >5 years vs. Han migrants <1 year; ‡p < 0.05 Tibetans vs. Han migrants >5 years.

of RV function (21). Also, a prior study showed that acute HA
exposure impairs RA function in normal individuals (22), which
has been shown to be a sensitive and valuable metric in assessing
RV reserve and predicting exercise capacity (23, 24). In contrast,
our study demonstrated that during prolonged adaption to high
altitude, there was no significant depression of RA emptying
fraction or RA GLS in Han migrants. This indicates that chronic
exposure to hypoxia may not prevent adequate adaption to
exercise of these healthy migrants despite decreased RV systolic
function at rest.

Interestingly, the RV demonstrated significant adaptability,
as we observed near normalization of RV size and functions
in migrants with more than 5 years of adaption. The reasons
for improvement may be partly explained by the concomitant
decreases in PASP, increase in pulmonary oxygenation,
and improved RV-PA coupling. Based on prior literature,
mechanisms contributing to these improvements may include
hypoxia-related activation of sympathetic tone, increased
ventilation, and hypocapnia-induced hypovolemia (25).
Evidence for increased sympathetic tone was provided by our
observation that Hans always maintained a faster heart rate and
smaller stroke volume during long-term high altitude dwelling.

Furthermore, several studies demonstrated that acute hypoxia
and HA exposure lead to a decline in heart rate variability (HRV),
which indicates a marked increase in sympathetic tone (26, 27).

LV Remodeling Persists in Long-Term (>5
Years) Migrants but Was Not Associated
With Impairment of LV Systolic or Diastolic
Function
Han migrants showed significant LV remodeling characterized
by decreased chamber size and increased wall thickness during
the high-altitude dwelling. RV–LV interactions may have played
an important role in the altered LV structure during 3–12 time
frames. As shown in Figures 4A,B, the LV size was visibly
reduced due to the leftward displacement of the ventricular
septum. Moreover, decreased LV GLS was also accompanied by
the decreased RV GLS we observed in recent Han migrants.
However, the LVEF (overall systolic function) was preserved.

Moreover, despite the RV structure of Han migrants
improving nearly back to normal during >5 years of adaption,
the LV remained small with the increasingly thickened wall
(Figure 4C). The small and thickened LV in long-term Han
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TABLE 3 | Echocardiographic parameters of left heart in Han lowlanders, Han migrants and native Tibetans.

Han lowlanders

(n = 82)

Han migrants < 1 year

(n = 64)

Han migrants > 5 years

(n = 71)

Tibetans

(n = 75)

p

Conventional and Doppler data

LA EDVI (ml/m2 ) 20.3 ± 4.4 16.9 ± 3.3* 17.1 ± 3 17.8 ± 3.8 0.000

LA ESVI (ml/m2 ) 7 ± 1.6 6.7 ± 1.8 6.6 ± 1.8 7.6 ± 1.9‡ 0.017

LAEF (%) 65.3 ± 5.3 60.3 ± 6.9* 61.7 ± 7.7 57.5 ± 6.2‡ 0.000

LA GLS (%) 42.6 ± 7.1 40.2 ± 4.7 40.5 ± 6.9 38.8 ± 6.6 0.000

IVST (mm) 8.5 ± 1.1 8.7 ± 1.4 9.5 ± 1.1† 7 ± 1.1‡ 0.000

LVDD (mm) 49.7 ± 4.8 41.7 ± 3.1* 42.5 ± 2.3 46.1 ± 3.6‡ 0.000

LVPWT (mm) 7.3 ± 0.8 8.1 ± 1.4* 8.8 ± 1† 6.7 ± 1.1‡ 0.000

Mitral E (cm/s) 85.2 ± 10.8 64.2 ± 11.2* 59.8 ± 9.2† 77.9 ± 10.3‡ 0.000

Mitral A (cm/s) 45.2 ± 6.5 50.1 ± 7.1* 46.9 ± 8.1† 48.4 ± 9.2 0.000

Mitral E/A ratio 1.8 ± 0.2 1.6 ± 0.3 1.3 ± 0.2† 1.7 ± 0.2‡ 0.000

e
′

(cm/s) 17.6 ± 2 16 ± 2.8* 14.3 ± 2† 18.5 ± 1.8‡ 0.000

a
′

(cm/s) 7.6 ± 1.4 8.1 ± 1.6 9 ± 1.8† 7 ± 1‡ 0.000

Mitral E/e
′

ratio 5.2 ± 1.3 4.1 ± 1* 4.2 ± 0.7 4.8 ± 1.3‡ 0.000

IVRT (ms) 62.9 ± 5 73.2 ± 6.8* 80.8 ± 7.4† 82 ± 8.8 0.000

DT (ms) 171.3 ± 26.5 177.6 ± 23.8* 189 ± 21.4† 157.7 ± 14.2‡ 0.000

Values are means ± SD. *P < 0.05 short-term acclimatized Hans vs. lowlanders;
†
P < 0.05 long-term acclimatized Hans vs. short-term acclimatized Hans;

‡
P < 0.05 Tibetans vs.

long-term acclimatized Hans.

EDVI, end-diastolic volume index; EDVI, end-systolic volume index; LAEF, left atrial emptying fraction; GLS, global longitudinal strain; IVST, interventricular septal thickness LVDD, left

ventricular end diastolic diameter; LVPWT, left ventricular posterior wall thickness; IVRT, isovolumic relaxation time; DT, deceleration time.

FIGURE 3 | Summary of cardiac adaptations to prolonged exposure to chronic hypoxia. Refer to text for details.

migrants may be due to persistent under-filling conditions and
increased afterload as indexed by the persistently decreased

mitral E/A and E/e
′

and increased blood pressure, respectively.
Several factors may contribute to such conditions. On the
one hand, an increase in PASP reduced blood return to the
left atrium. On the other hand, hypoxia and hypothermia
at high altitude activated the sympathetic nervous system,
which resulted in compensatory increases in ventilation, heat
production, and peripheral vasoconstriction (28). In turn, these
may lead to hypocapnia-related hypovolemia, an increase in LV

afterload, and persistently increased LV wall thickness during the
prolonged high-altitude dwelling.

Notably, such LV remodeling may not cause a significant
decrease in diastolic function in these young healthy migrants.
Previous studies reported that age was the most significant risk
factor for the occurrence of left ventricular diastolic dysfunction
among high-altitude dwellers (29). However, no evidence of
diastolic dysfunction was observed in our subjects according to
the definition of recent guidelines (30). We only observed slight
changes in early myocardium relaxation (i.e., increased IVRT
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FIGURE 4 | Typical changes of cardiac morphology during various durations of exposure to high altitude. End-systolic short-axis images. (A) Han lowlanders

(controls) with normal volume and thickness. (B) Short-term Hans migrants (<1 year) had enlarged RV with the leftward shifted interventricular septum. (C) Long-term

Hans migrants (>5 years) had significantly thickened LV wall with recovered RV size. (D) Native Tibetans had no or minimal differences in LV structure compared with

Han lowlanders. RV, right ventricular; LV, left ventricular.

and DT) but without increased LV filling pressure (i.e., normal

E/e
′

). In this regard, age should be taken into account as the
subjects we enrolled were almost youngmigrants whomay not be
prone to develop LV diastolic dysfunction. Furthermore, as noted
above, significant increases in sympathetic tone may contribute
to preserving LV diastolic functions.

Tibetans Show Different Patterns of
Adaptation to Chronic Hypoxia Compared
With Highly Acclimatized Hans
Another finding of our study was that cardiac properties of
highly acclimatized Hans do not fully return to normal. In
contrast, native Tibetans show minimal differences in cardiac
properties compared to lowlanders. In terms of cardiovascular
properties, Tibetans have minimally altered cardiac structure,
function, or mechanics. First, Tibetans showed a slight increase
in PASP and a more favorable RV-PA coupling which did not
cause a significant decrease in RV functions compared to Han
migrants. In addition, relatively lower HR and BP in Tibetans
suggest lower sympathetic tone and, therefore, would be less
prone to LV thickening during long-term hypoxia exposure
(Figure 4D). In terms of physiology, it was known that hypoxia
can stimulate the increase of erythropoietin (EPO) and increase

the number of red blood cells and hemoglobin concentration to
maintain the normal arterial oxygen content (31, 32). Notably,
lowlander migrants showed persistently increased hemoglobin
and hematocrit along with prolonged dwellings at high altitudes.
However, the excessive increase of hematocrit (> 50%), we
observed, in most long-term migrants (>5 years) may increase
blood viscosity, slow blood flow, and increase cardiac afterload,
which can accelerate cardiac remodeling and increase the risk
to develop premature cardiovascular disease (33). In contrast,
there was a moderate increase of Hb and hematocrit in Tibetans
that may not lead to the significant side effects of increased
blood viscosity. Such a more favorable pattern of adaptation may
reflect the long-term process of natural selection and generational
evolution (34). Genetic differences between the Han population
and Tibetans may provide important clues to mechanisms of
cardiac and physiological adaption to high altitude, which should
be given further consideration.

LIMITATIONS

This study has several limitations. First, this was a cross-
sectional study comparing changes in cardiovascular properties
in response to hypoxia in short vs. long-term migrants and
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long-term Hans vs. Tibetans; this cannot rule out the impact of
individual variability on the results compared with a longitudinal
study. Second, we did not analyze subjects of migrants with
1–5 years of adaptation due to the small number of subjects
falling within this timeframe. Third, we did not enroll patients
with high altitude pulmonary edema (HAPE) or CMS whose
cardiovascular features have been reported in previous studies.
In this regard, the results of this study provide important
information concerning cardiovascular adaptations of healthy
migrants to high altitudes.

CONCLUSION

Han migrants show improved RV structure and function during
the long-term dwelling. However, LV remodeling persists without
impairment of LV systolic or diastolic function. Despite after
>5 years of acclimatization, cardiac properties of Han migrants
do not fully return to normal. In contrast, native Tibetans
show minimal differences in cardiac properties compared
to lowlanders.
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