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Treg activation defect in type 1 diabetes: correction
with TNFR2 agonism

Yoshiaki Okubo1, Heather Torrey1, John Butterworth1, Hui Zheng2 and Denise L Faustman1

Activated T-regulatory cells (aTregs) prevent or halt various forms of autoimmunity. We show that type 1 diabetics (T1D) have

a Treg activation defect through an increase in resting Tregs (rTregs, CD4+CD25+Foxp3+CD45RA) and decrease in aTregs

(CD4+CD25+Foxp3+CD45RO) (n= 55 T1D, n=45 controls, P=0.01). The activation defect persists life long in T1D subjects

(T1D=45, controls=45, P=0.01, P=0.04). Lower numbers of aTregs had clinical significance because they were associated

with a trend for less residual C-peptide secretion from the pancreas (P=0.08), and poorer HbA1C control (P=0.03). In

humans, the tumor necrosis factor receptor 2 (TNFR2) is obligatory for Treg induction, maintenance and expansion of aTregs.

TNFR2 agonism is a method for stimulating Treg conversion from resting to activated. Using two separate in vitro expansion

protocols, TNFR2 agonism corrected the T1D activation defect by triggering conversion of rTregs into aTregs (n=54 T1D,

Po0.001). TNFR2 agonism was superior to standard protocols and TNF in proliferating Tregs. In T1D, TNFR2 agonist-expanded

Tregs were homogeneous and functionally potent by virtue of suppressing autologous cytotoxic T cells in a dose-dependent

manner comparable to controls. Targeting the TNFR2 receptor for Treg expansion in vitro demonstrates a means to correct

the activation defect in T1D.
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Type 1 diabetes (T1D) is an autoimmune disease characterized by
destruction of the insulin-secreting islets of Langerhans, resulting in
hyperglycemia. Although the destruction of insulin-secreting islets is
carried out by antigen-specific cytotoxic CD8 T cells, CD4 T
regulatory cells (Tregs) are important for disease prevention.
Abundant evidence shows that higher numbers of Tregs prevent or
halt many diverse and spontaneous forms of autoimmunity, especially
in animal models.1,2 Tregs are commonly identified as CD4+CD25+

Foxp3+ cells, but within peripheral T cells there are two functionally
heterogeneous subgroups defined by expression of CD45RA or RO.3,4

One subgroup is resting Tregs (rTregs, CD4+CD25+Foxp3+CD45RO
−RA+) and the other is activated Tregs (aTregs, CD4+CD25+Foxp3
+CD45RA-RO+).5 When rTregs are converted to aTregs, they display
high expression of tumor necrosis factor (TNF) receptor 2.
aTregs expressing high TFNR2 constitute the most immunologically
suppressive Treg subgroup.6–11

The TNFR2 receptor is a signaling protein that triggers Treg
differentiation from resting to activated state and triggers Treg
proliferation in normal mice and humans.8,9 In vitro application of
TNF or TNFR2 agonistic antibodies produces potent and homoge-
neous aTregs with high TNFR2 expression.6,8 In functional assays,
aTregs with high expression of TNFR2 are highly immunosuppressive,
which makes them desirable for autoimmunity but not for cancer

treatment. An overabundance of aTregs expressing TNFR2 drives
cancer in mice and humans.11–14

Previous research shows alterations in Tregs numbers or function in
human autoimmunity. Tregs have a central role in the maintenance of
the immune balance to prevent autoimmunity. Direct mutations
in Foxp3 gene culminate in severe immune deregulation and poly-
glandular forms of autoimmunity called the human IPEX syndrome or
in the mouse, the Scurfy mouse.15,16 In lupus, there is an activation
defect yielding an overabundance of rTregs and an underabundance of
aTregs.5 In type 1 diabetes (T1D), early studies reported reductions in
Treg absolute numbers, but more recent, larger and methodologically
driven studies have not found such alterations. The more recent
studies used new Treg markers such as CD127− that more finely
distinguish Treg populations and examined Tregs in all age groups
with age-matched controls.17,18 Recent studies of T1D suggest that
Treg function might be altered. Despite normal numbers of Tregs in
T1D, the Tregs were found to be more susceptible to apoptosis by low
IL2 concentration. IL2 is obligatory for Treg survival.18 A recent study
found a functional disturbance in aTregs in T1D.19 This suggests that
more refined phenotyping and functional studies of human Tregs in
T1D are needed to understand their possible pathogenic role in
autoimmunity.
As early as 1989 it was reported that T1D T lymphocytes (T cells)

have developmental or differentiation defects related to the CD45
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protein and its splice variants, CD45RA and CD45R0.20 Follow-up
studies confirm this finding in diabetes.21

This defect in an over abundance of resting T cells defined with
CD45RA (formerly 2H4+) was not restricted to T1D but extends

broadly in autoimmune diseases such as autoimmune atopic
dermatitis and inflammatory bowel disease.22,23 CD45RA resting
T cells were originally called T4+2H4+ cells (naïve cells) and CD45RO
activated cells were originally called T4+4B4 cells (memory cells)
before the standardization with CD markers. When examining all
peripheral T cells, T1D subjects have an abundance of resting CD45RA
T cells with poor in vivo conversion to activated CD45RO expressing T
lymphocytes.20,24,25 Decreased numbers of activated CD45RO T cells
and increased numbers of resting CD45RA T cells are present in
established T1D and also in prediabetic subjects.24,26,27 This finding is
highly reproducible28,29 and has been extended to young children with
pre-diabetes defined as low C-peptide and at high risk for future
progression to hyperglycemia (but still normoglycemic).30

This study addresses three major questions. First, does T1D display
a primary defect preventing activation of rTregs to aTregs? Second,
if there is a defect, is it clinically significant? Third, can this defect be
corrected with TNFR2 agonism? TNFR2 is the primary receptor for
Treg differentiation in vivo from resting to activated state.8,9,31

RESULTS

T1D subjects have lower numbers of aTregs and higher numbers of
rTregs
We first examined the frequency of Treg cells in the peripheral blood
of T1D subjects compared with control subjects using standard flow
cytometric methods. As previously reported, using conventional
methods of measuring Tregs with CD4, CD25, Foxp3 and CD127
markers, we did not observe differences in the frequency of Tregs
(CD4+CD25+FOXP3+ or CD4+CD25+CD127− cells) between T1D
and control subjects (Figure 1a, n= 12 controls, n= 23 T1D, P= 0.13,
P= 0.54). However, when CD4+CD25+ cells were divided into two
subpopulations depending on expression of CD45RA, T1D subjects
had significantly fewer aTregs and significantly more rTregs
(Figures 1b and c). This was true whether the aTregs were quantified
as a subpopulation within the total CD4 population (Figure 1c, left,
P= 0.01) or whether the rTregs were studied as a subpopulation
within the total CD4 population (Figure 1c, right, P= 0.02). The data
represented as paired samples shows the reproducibility of the aTreg
defect in T1D compared with controls (Supplementary Figure 1).

Low numbers of aTregs in T1D persist over the life span
It is well-recognized that some protein markers on lymphocytes
change with age. The CD45RA cell activation marker on T lympho-
cytes decreases over the life span, while the CD45RO activation marker
increases over the life span.32,33 Consequently, aTregs and rTreg cells
were studied over the lifespan in control and T1D subjects. The
lifespan for these studies was defined from donor subjects from 16
years and upward for the control group and from 8 and upward for
the T1D group. Figure 2a shows that T1D patients exhibit a significant
decrease in the proportion of aTregs (CD4+CD25+CD127−CD45RO)/
CD4 cells over the life span, and their values over time are consistently
lower than those in controls (n= 55 T1D; n= 45 controls, P= 0.01).
Conversely, Figure 2b shows that TID patients exhibit a significant
increase in the proportion of rTregs/CD4 cells over the life span, and
their values over time are consistently higher than those in controls
(n= 55 T1D; n= 45 controls; P= 0.04). These P-values are the
comparisons of the intercepts in the two linear trends. This is based
on the assumption that the slopes of Tregs over aging in the control
and T1D are the same. This assumption is supported by the test of the
difference of slopes resulting in non-significant differences in either
Figure 2a (P= 0.69) or Figure 2b (P= 0.47). The data reveal that the
Treg activation defect in T1D persists regardless of age (Figures 2a
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Figure 1 The frequency of Treg cells in T1D compared with controls. (a) The
data shows the characterization of human Tregs in type 1 diabetic subjects
(n=14) compared with control subjects (n=23). The frequency of Tregs is
quantified by the percentage of CD4+CD25+Foxp3 (P=0.13) or quantified
by the percentage of CD4+CD25+CD127− (P=0.54) of controls compared
with T1D (n=45 controls: n=55 T1D). (b) Flow cytometric analysis gating
methods to quantify activated and resting Tregs by staining with CD45RA
antibodies. The gating method shows the existence of a subpopulation of
resting Tregs (rTregs) with high CD45RA+, or a subpopulation of activated
Tregs (aTregs) that are CD45RA−. The gating also shows that the CD25 cell
surface marker has high expression in aTreg and a lower expression in
rTregs. These gates were applied to CD4+CD25+CD127− Tregs and allowed
the quantification of aTregs versus rTregs. The rTregs also have slightly lower
levels of Foxp3. (c) The characterization of activated and resting Tregs from
T1D subjects (n=55) compared with control subjects (n=45). The statistics
shows the trends of type 1 diabetics lower numbers of aTregs (P=0.01) and
higher numbers of rTregs (P=0.02).
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and b). The data show that there is a significant difference in these
measures between the control and T1D groups regardless of age. Two
statistical tests using linear regression models support this conclusion.
(1) A test of interaction between age and group showed there is no
significant difference between the slopes of the trend lines in these
groups. (2) A comparison of the intercepts in the two trend lines,
assuming a common slope, gives the two P-values shown in Figure 2a,
P= 0.01, and in Figure 2b P= 0.04. P-values were calculated by
ANOVA and R-values were calculated by Spearman correlation.

Low numbers of aTregs in T1D are associated with lower levels of
residual insulin secretion and poorer glycemic control
We studied the clinical significance of low numbers of aTregs by
comparing T cell abundance with two different measures of islet
function, C-peptide secretion and HbA1c control. C-peptide, the
co-peptide secreted with insulin that is a marker for endogenous
insulin secretion, can be measured in ultrasensitive serum assays, with
detection levels as low as 5 pmol l− 1.34,35 We first examined C-peptide
by dividing 44 T1D subjects by presence or absence of C-peptide and
looked at the association with the presence or absence of aTregs
(absence of aTregs was defined as aTregs/CD4 cells o1.5%, while
presence of aTregs was defined as 41.5%.). Figure 3a shows a trend,
although not statistically significant, toward presence of aTregs with

presence of C-peptide (P= 0.08). In contrast, absence of aTregs was
associated with no residual C-peptide levels (Po0.05). These data
support, but do not prove, the hypothesis that aTregs are protective or
at least are associated with more residual pancreatic islet activity.
We next examined the frequency of aTregs in relation to glycemic

control. Glycemic control is most commonly tracked by measuring
HbA1c levels, with low HbA1c levels reflecting better control. Previous
research found that even low levels of C-peptide with new ultra-
sensitive C-peptide assays are protective of glucose excursions and
highly protective of improved HbA1c control.34 The data in Figure 3b
show that higher levels of aTregs were associated with lower HbA1c
values (P= 0.049, n= 45). Conversely, higher levels of rTregs were
associated with poorer HbA1c control (P= 0.003, n= 45). The R
values is 0.29 in Figure 3b or R2 of 0.087 for the upper plot. The
R value is 0.43 in Figure 3b or R2 of 0.188 for the lower plot.
The data support the concept that having more aTregs is desirable

in T1D and that the activation defect might have a clinical significance.

Agonism through TNFR2 expands T1D Tregs to potent aTregs
The presence of the TNFR2 receptor on Tregs identifies a subgroup of
the most potent Tregs with maximal immunosuppressive function.7–10

TNFR2 agonism, if combined with IL2, acts as a master switch to
expand Tregs in vitro in normal volunteers.8 We sought to extend this
observation to TID patients using a short-term culture assay. We
cultured short term T1D CD4 T cells for 48 h with IL2 alone, TNF
plus IL2, and TNFR2 agonistic antibody and IL2. Both IL2 and TNF
are known agonists for Treg expansion but the addition of TNFR2
agonistic antibodies in normal subjects results in selective expansion of
the most potent Tregs.8 In T1D the percentage of Tregs, defined as
CD4+Foxp3+CD127− cells, increased with 48 h of culture from a
baseline with IL2 alone of 11.6± 0.4% to a baseline of Tregs with TNF
and IL2 to 13.6± 0.37% and to a Treg-expanded population of
16.3± 0.61% with a TNFR2 agonist with IL2. The data was statistically
significant for successful TNFR2 Treg expansion in T1D compared
with IL2 alone (n= 45 samples, Po0.001, Po0.001; Figure 4a).
Also as a control, non-diabetic subjects were also studies in the Treg
short-term expansion assays in the same three culture conditions.
Similar to the T1D, control subject cells expanded with IL2 and the
additional of TNFR2 agonist allowed even greater Treg expansion
(Figure 4a; n= 15, P= 0.015).
We next examined in the same short-term 48 h assay which

subgroups of Tregs—aTregs or rTregs—were responsible for the
increase in overall Tregs numbers. Greater numbers of aTregs were
found with TNFR2 agonist plus IL2, versus IL2 alone or TNF plus IL2,
while fewer numbers of rTregs were found (n= 6, Po0.05; Figure 4b).
Therefore T1D Tregs were responsive to the TNFR2 agonism and
expansion of aTregs was preferentially observed (Figure 4b). In these
short-term culture experiments, both TNF plus IL2 or TNFR2
agonism with IL2 were equally effective at aTreg appearance although
overall Tregs numbers were greater with the TNFR2 agonist.

T1D Tregs expand with TNFR2 agonism and become aTregs
We examined in more detail the effect of TNFR2 agonism on
expansion of T1D Treg cells and differentiation into aTregs with
more long-term culture. As mentioned previously, all type 1 diabetics
used in these studies had disease duration greater than 2 years after the
diagnosis. We positively selected CD4+CD25+ cells using magnetic
beads, and expanded the cells with anti-CD3 and anti-CD28 mAb
bound magnetic beads in presence of IL-2, rapamycin (the standard
expansion), TNF plus IL-2 or TNFR2 agonistic mAbs plus IL-2 for
(Figure 5a). This was a longer expansion period of 17 days (Figure 5a).
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T1D Tregs had increased cell numbers of Treg with the greatest
expansion with long-term culture with the addition of TNFR2
agonistic antibodies (Figure 5b). Moreover, Tregs expanded with
TNFR2 agonist had greater cell numbers than expansion with standard
protocol or TNF (Figure 5b, n= 8, Po0.001, in each case using
ANOVA with repeated measurements). Control CD4+CD25+ T cells
from control subjects were also subjected to the same extended
standard and TNF and TNFR2 agonist supplemental expansion
protocol to determine whether there was any difference between
T1D and controls. The data shown in Figure 5c also show that T1D
Treg cells expanded as vigorously as control T cells (n= 10 control,
n= 8 T1D, P-value for comparison= 0.69 using ANOVA with
repeated measurements, P-value for interaction= 0.89).
Next we examined the phenotypes of expanded T1D Tregs during

the 17 days of culture. Nearly 100% of expanded Tregs in every group
exhibited Treg signature markers, such as CD25, FOXP3 and CTLA4
(data not shown). T1D cells expanded with TNFR2 agonism had
higher levels of CD45RO+ cells compared with the standard expansion
group, as measured by cell number counts or mean fluorescence
intensity (Figure 5d; Supplementary Figure 2; n= 6, Po0.001).

The TNFR2 agonism uniquely promotes differentiation of Treg cells
into the most activated state of CD45RO expressing cells, aTregs and
this can be observed at day 17 of the cell collection. Also TNFR2
agonism in T1D is unique in expansion to create homogenous
populations of these desired Treg cells unlike the standard protocols
of anti-CD3 plus anti-CD28, IL2 and rapamycin that expand but
as demonstrated in Figure 5d, expand heterogenous CD4 cells
populations, not only highly activated Tregs.

TNFR2-agonist treated Tregs from T1D are potent CD8 T-cell
suppressors
To functionally characterize the expansion of aTregs in T1D, we
investigated their suppressive capacity. We stimulated CFSE-stained
autologous T1D PBMC with anti-CD3 mAb and IL-2 in presence of
different concentrations of expanded Tregs. The cells were expanded
with anti-CD3 plus anti-CD28 plus IL2 (the standard expansion), the
standard expansion plus TNF or the standard expansion plus TNFR2
agonism. We measured their suppressive capability by comparing
CFSE dilution of CD8 cells within responder PBMC. Our results
demonstrated that expanded Tregs from T1D showed dose-dependent
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suppressive capacity (Figure 6a). We next compared the CD8
suppressive capacity of control and T1D Treg cells expanded with
the standard expansion or with TNFR2 agonism (Figure 6b). We
wanted to confirm that the expanded Tregs in T1D functioned as
potently as controls. The data show the T1D Tregs had suppressive
activity comparable to controls under both expansion conditions
(Figure 6b). The data also show for both T1D and controls, TNFR2
agonism treatment potentiated the suppressive effect with a change in
the slopes using a regression model (Figure 6b versus Figure 6c,
Po0.0001). Our data suggest T1D patients may have a defect in
development of aTregs, but with TNFR2 agonism in culture this Treg
maturation defect is corrected. TNFR2 receptor agonism might be a
key target molecule for treatment of T1D for in vitro or in vivo Treg
expansion.

DISCUSSION

Over 25 years ago, T cells from T1D were shown to have an activation
defect related to the CD45 protein and its splice variants, CD45RA and
CD45RO.20,24,25 Here we show in T1D a similar activation defect
specifically in Tregs, as manifest by a lifelong overabundance of rTregs
and an under abundance of aTregs. This Treg activation defect has
also been observed in another autoimmune disease, lupus.5 We show
here that the defect in T1D has clinical significance for T1D, given that
lower numbers of aTregs are associated with a trend toward lower
C-peptide secretion and poorer glycemic control measured by HbA1c.
We also show that this defect can be corrected in vitro by TNFR2
antibody agonism. TNFR2 agonism is better than other expansion
protocols in expanding Treg cell numbers and promoting the
conversion of rTregs into homogeneous aTregs. Finally, we show that
the correction of the defect with TNFR2 agonism has functional
consequences in vitro: it suppresses autologous CD8 T-cell
proliferation, which is highly desirable in thwarting autoimmunity.

Tregs have a critical role in regulating the immune response. An
under-abundance of Tregs is associated with autoimmunity and an
overabundance of Tregs found in cancer and infectious diseases.7–10

A particular type of Treg, the aTreg—which expresses high levels of
tumor necrosis factor receptor 2 (TNFR2)—is abundantly found in
and around human and murine malignant tumors and in chronic
infectious diseases such as tuberculosis where the host’s immune
response is hampered.7–11 These disease states illustrate the use of
TNFR2-expressing Tregs as a very effective strategy to prevent a host
immune response even when it is needed in cancer and infections. In
both the mouse and human literature, TNFR2-expressing Tregs have
been shown to be the most suppressive Tregs identified to date.6,9,13

Also TNFR2 is required for potent Treg function and disease
suppression in animal models of multiple sclerosis such as the EAE
mouse model.36 aTregs are normally maintained through transmem-
brane forms of TNF (tmTNF) yet T1D have normal levels of tmTNF
so the mechanism behind the paucity of aTregs in T1D is unknown
(data not shown).
Treg expansion either in vitro or in vivo might benefit T1D and

other autoimmune patients. TNFR2 is a member of the TNF super-
family that might serve in the future for in vivo Treg expansion. Unlike
its very similar TNFR1 receptor, which has ubiquitous expression,
TNFR2 expression is restricted to the subpopulation of potent Tregs,
endothelial cells and neurons making it an attractive target for possible
in vivo antibody agonistic reagents.37 Indeed past toxicology studies
have shown in rodent and baboons, no toxicity from in vivo agonism
of the tissue restricted TNFR2 receptor.38 In contrast, TNFR1 agonism
in vivo induces liver failure, hepatic failure and shock.39 To date
in vitro Treg expansion protocols for autoimmunity and graft versus
host disease have advanced to clinic in lieu of direct in vivo therapy, as
the means for expanding Tregs were too toxic for in vivo use. It is
possible that the use of the TNFR2 receptor agonism in vivo could
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possibly start to allow autoimmune therapies to achieve in vivo Treg
expansion methods.40 It is also important to note that rapamycin can
also promote in vitro expansion of functional Treg cells in type 1
patients when added to the standard expansion protocols as published
in the past, so all data sets suggest T1D Tregs are responsive to the
exogenous signals and can be corrected, at least in culture.41

In some forms of human cancer, the expression of TNFR2 on
infiltrating Tregs is estimated to be 100 times higher than on

circulating Tregs in control subjects,13 just the opposite of what is
found in autoimmunity. This human data supports the role of Treg
overabundance in cancer and under abundance in autoimmunity. In
other forms of human cancer, the overall abundance of TNFR2 Tregs
is higher than in peripheral blood.13 Both murine and human data
show that the unique TNFR2 target is preferentially expressed on
Tregs and is a functional receptor—indeed, the master switch—for
Treg survival.8 Tregs either die with TNFR2 blockade or expand with
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on T cells from established type 1 diabetic subjects. (a) Protocol for purifying Tregs from fresh blood and expansion for 17 days. (b) Cell counts of purified
Tregs from T1D patients, by treatment group, shows the effect of TNFR2 agonism induced Tregs (n=8, Po0.0001, standard expansion compared with
TNFR2 agonist expansion using ANOVA with repeated measurements). (c) Data from T1D Tregs (n=10) and control Tregs (n=8) expansion with the
standard protocol, with TNF and with TNFR2 agonism (n= 10 controls, n=8 type 1 diabetics, Po0.05). T1D Treg cells expanded as vigorously as control
T cells using ANOVA with repeated measurements, P-value for interaction=0.89. (d) T1D Treg expansion with TNFR2 agonism and impact on the numbers
of aTregs as defined with a large percentage of CD45RO+ cells and with a high mean fluorescence intensity of aTregs as CD45RO (n=6, Po0.001) using a
paired t-test. Data studied by the ANOVA with repeat measurements using random effects model with Dunnett-Hsu post hoc showed testing the aTregs (left)
had a P-value of 0.21; the rTregs had a P-value of 0.003. All diabetic samples are from long term type 1 diabetics.
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TNFR2 stimulation. TNFR2 stimulation with TNFR2 agonist
antibodies has the added advantage of preferentially expanding aTregs
and expanding those Tregs into potent TNFR2-expressing cells with
high densities of the CD45RO protein. Therefore the TNFR2 surface
protein is not merely an identifier of potent Tregs, but is the

central switch for Treg maturation, survival and development in
adulthood.
In total this work identifies a Treg activation defect in all stages of

T1D and correlates the Treg activation defect with a more severe
clinical course. The TNFR2 activation receptor for Tregs appears
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functional in T1D and with agonistic antibodies allows in vitro the
generation of functional and potent suppressive Tregs. Perhaps future
treatments to eliminate autoimmunity could be based on in vivo
treatment with an immunotherapy composed of TNFR2 agonism.

METHODS

Human subjects
Blood samples from donors were collected into BD Vacutainer EDTA tubes
(BD Diagnostics, Franklin Lakes, NJ, USA). All of the donors provided written
informed consent (Protocol #2001P001379) and had T1D of at least 2 years
duration. A total of 85 type 1-diabetic human subjects were studied and a total
of 60 control subjects were studied in various portions of this study. Baseline
characteristics of the subjects used in this study are presented in Supplementary
Table 1. Blood was processed within 2 h of phlebotomy. HbA1c measurements
were performed by the clinical laboratories at the Massachusetts General
Hospital.

Reagents and flow cytometry
Recombinant human TNF was purchased from Leinco Technologies (St Louis,
MO, USA), and recombinant human IL-2 was purchased from Sigma-Aldrich
(St Louis, MO, USA). Monoclonal antibodies against TNFR2 were produced in
house or purchased from commercial vendors as previously described.8

Fluorochrome-conjugated mAbs against human CD4 (RPA-T4), CD25
(M-A251), CD45RA (HI100, 2H2), CD45RO (UCHL1, 4HB), CD127
(hIL-7R-M21), HLA-DR (L243 (G46-6)) were purchased from BD Biosciences.
Fluorochrome-conjugated monoclonal antibodies against CD4 (S3.5,
Invitrogen, Carlsbad, CA, USA), CD120a (16803 R&D systems), CD120b
(22235, R&D systems, Minneapolis, MN, USA), FOXP3 (259D, Biolegend, San
Diego, CA, USA) were also used in this study.
Intracellular staining of FOXP3 and CD152 was performed using either

FOXP3 Fix/Perm Buffer set (Biolegend) or Human FoxP3 Buffer set
(BD Biosciences) according to the manufacturer’s instructions. Flow cytometric
data were obtained using FACSCalibur (BD Biosciences) flow cytometer. All the
data were analyzed with Cellquest Software (BD Biosciences, San Jose, CA,
USA).

CD4 cell isolation and induction of aTregs
CD4 T cells were isolated from fresh human blood within 2 h of venipuncture
using Dynal CD4 Positive Isolation Kit (Invitrogen). We modified the protocol
recommended by the manufacturer by using Hanks’ Balanced Salt Solution
supplemented with 2% fetal bovine serum (FBS) (Hyclone, Logan, UT, USA)
instead of PBS. The quality of isolated cells was assessed to be 498% in purity
and 96% in viability by CD4 and propidium iodide staining.
For induction of the aTreg experiment, 2 × 105 cells of freshly isolated CD4

cells were plated in 96 round-bottom well and treated with IL-2 (50 U ml− 1)
and TNF (20 ng ml− 1) or TNFR2 mAb (2.5 μg ml− 1). After 16-48 h, cells were
collected and were determined by flow cytometry.

Isolation and expansion of CD4+CD25+ cells
Extraction of CD25 positive cells was subsequently performed after CD4
isolation using Dynabeads CD25 and DETACHaBEAD CD4/CD8 (Invitrogen).
After isolation, 2× 104 cells were cultured in 96 round-bottom well plate in
culture medium (RPMI 1640 medium supplemented with 10% FBS, 2 mM

Glutamax, 100 U ml− 1 penicillin and 100 μg ml− 1 streptomycin (Invitrogen).
Dynabeads Human Treg Expander (Invitrogen) was added at a beads-to-cell
ratio of 2:1. This was called a standard method. The expander was a mixture of
anti-CD3 and anti-CD28 antibodies plus IL2. Also some expansion protocols
also had added rapamycin (1 μM, EMD Biosciences, San Diego, CA, USA)
plus TNF (20 ng ml− 1), or plus TNFR2 agonistic antibody (2.5 μg ml− 1,
Immunobiology Core, MGH, Boston, MA, USA). After two days, IL-2
(200 U ml− 1) was added to the culture. Half of the media was changed every
2–3 days containing rapamycin (until day 7) and 100 U ml− 1 of IL-2. On day
9, additional TNF or TNFR2 mAbs were supplied into the media. On day 16,
cells were collected, Dynabeads Human Treg Expander was removed, washed
and rested at 37 °C in a humidified 5% CO2 incubator in RPMI 1640 medium
supplemented with 1% FBS, 2 mM Glutamax, 100 U ml− 1 penicillin,

100 μg ml− 1 streptomycin and 10 U ml− 1 IL-2. On the following day, cells
were counted using hemacytometer, and their phenotype was analyzed by flow
cytometer.

Intracellular cytokine staining
Expanded CD4+CD25+ cells were stimulated with phorbol myristate acetate
(2 ng ml− 1) and ionomycin (500 ng ml− 1) (Sigma) for 24 h. Monensin
(GolgiStop, BD Biosciences) was added for the last 4 h of incubation. Cells
were fixed and permeabilized using Human FOXP3 Buffer Set, followed
by staining with fluorochrome-conjugated IL-10 (JES3-9D7) and IL-17A
(N49-653-19F1, BD Biosciences) mAbs.

Cell proliferation and suppression assays
For PBL proliferation experiments, PBLs were stained with 1 μM carboxyfluor-
escein diacetate succinimidyl ester (CFSE). Cells were plated at the density of
2× 105 cells per well in 96-well plate precoated with anti-CD3 mAbs
(5 μg ml− 1) (OKT3, eBiosciences, San Diego, CA, USA). Four days later, cells
were collected and analyzed by flow cytometry. The proliferation rate was
calculated by the percentage of cells undergoing division.
For Treg suppression assay, autologous PBMCs were used as responder cells.

PBMC was collected at the day of venipuncture by density gradient separation
using Ficoll-Paque Plus (GE Healthcare, Piscataway, NJ, USA) cryopreserved at
− 80 °C, and thawed at the day before mixed with Tregs and rested overnight in
RPMI 1640 medium supplemented with 1% FBS, and 10 U ml− 1 IL-2. On the
following day, responder cells were stained with CFSE (1 μM). Responder cells
(5 × 104 cells) and expanded Tregs were mixed at the ratio of 1:1, 2:1 and 4:1 in
culture media, and stimulated with anti-CD3 mAb (HIT3a, BD Biosciences)
and IL-2 (50 U ml− 1). After 4 days, cells were collected and analyzed by flow
cytometry. Suppression index was calculated by the percentage of CD8 cells in
responder cells that underwent division. Suppression index was calculated using
following equation: (TResp proliferation without TReg−TResp proliferation with
TReg)/TResp proliferation without TReg.

C-peptide assay methods
Serum samples were assayed for C-peptide with the Mercodia AB (Uppsala,
Sweden) regular (Cat. No 10-1136-01) or ultrasensitive C-peptide ELISA kits
(Cat. No 10-1141-01). Both assays were calibrated against the International
Reference Reagent for C-peptide, IRR C-peptide 84/510 (a WHO standard) and
listed with FDA as Class I IVD devices. The lower limit of sensitivity of the
Mercodia ultrasensitive assay for these studies was calibrated to 5.0 pmol l− 1.
Additional details have been previously reported.34

Statistical analysis
Data analyses were performed by the paired Student's t-test, Pearson’s
correlation coefficient and ANCOVA using GraphPad Prism 5 software
(GraphPad Software, La Jolla, CA, USA). We considered two-sided P-value
0.05 as significant without controlling for multiple comparisons. For the slopes
of correlations R values were calculated by Spearman correlation and P-values
calculation by ANCOVA.
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