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Abstract

Background: There is a considerable literature on the source of the thermostability of proteins from thermophilic
organisms. Understanding the mechanisms for this thermostability would provide insights into proteins generally
and permit the design of synthetic hyperstable biocatalysts.

Results: We have systematically tested a large number of sequence and structure derived quantities for their ability
to discriminate thermostable proteins from their non-thermostable orthologs using sets of mesophile-thermophile
ortholog pairs. Most of the quantities tested correspond to properties previously reported to be associated with
thermostability. Many of the structure related properties were derived from the Delaunay tessellation of protein
structures.

Conclusions: Carefully selected sequence based indices discriminate better than purely structure based indices.
Combined sequence and structure based indices improve performance somewhat further. Based on our analysis,
the strongest contributors to thermostability are an increase in ion pairs on the protein surface and a more
strongly hydrophobic interior.

Background
Mesophiles, thermophiles, and hyperthermophiles
Organisms that thrive at very high temperatures have
been actively studied since the discovery of Thermus
aquaticus in the hot springs of Yellowstone in the 1960’s
[1]. Heat tolerant organisms are often separated into two
classes: thermophiles, which have optimum growth tem-
peratures (OGT) in the range 45-80 °C, and hyperthermo-
philes with OGTs above 80 °C. Mesophilic organisms are
defined as those with OGT’s between 15 °C and 45 °C,
while psychrophiles, which we do not address here, have
OGT’s no greater than 15 °C. Sometimes the break points
between these classes are assigned slightly differently.
Hyperthermophiles come mostly from the kingdom
Archea, but there are two genera of hyperthermophilic
Eubacteria, namely Thermotogales and Aquifex. Thermo-
philes are more phylogenetically diverse and include
Eubacteria, Archea, and some fungi.

In addition to providing insights into the principles of
protein folding and stability, understanding what makes
some proteins more thermostable than others is of prac-
tical interest. Thermophilic proteins are more resistant
to proteolysis and chemical denaturation, hence there is
interest in engineering hyperstable biocatalysts relying
on the same mechanisms that nature uses [2-4]. Ther-
mophilic polymerases, proteases, and xylanases already
have industrial applications [4,5].

The physical basis of thermophilic protein stability
The search for the physical basis of thermostability in
proteins goes back 30 years to the work of Perutz [6].
Since then, a great many papers have been written on
the subject. Some of the proposed mechanisms/indica-
tors of increased thermostability include: a more highly
hydrophobic core [7,8], tighter packing or compactness
[9], deleted or shortened loops [10,11], greater rigidity
[3,12,13] (for example through increased Proline content
in loops), higher secondary structure content [14],
greater polar surface area [15], fewer and/or smaller
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voids [14,16], smaller surface area to volume ratio [17],
fewer thermolabile residues [16,18], increased hydrogen
bonding [15], higher isoelectric point [19], and more salt
bridges/ion pairs and networks of salt bridges [6,20-25].
Statistically significant changes in sequence composi-

tion between mesophilic and thermophilic proteins have
been reported. The amino acids Asn, Gln, Met, and Cys
are thermolabile—they are not stable at high tempera-
tures and tend to undergo deamidation (Asn and Gln)
or oxidation (Met and Cys) [22]. These amino acids are
less common in thermophilic proteins and the thermo-
labile residues that do occur are usually buried [16]. Ile
is preferred to Leu in hydrophobic regions of the struc-
ture because the side chain carbons can exist in all
three c rotameric states compared to only two for Leu
which can result in tighter side chain packing [16]. Far-
ias and Bonato [26] have reported that Gly, Lys, Tyr,
and Ile are preferred in thermophilic organisms while
Gln, His, Ala, and Cys are preferred in mesophiles.
Camillau and Claverie [27] have reported that thermo-
philic proteins have less Gln, Ala, and His on their sur-
faces than mesophilic proteins do and more charged
residues on their surfaces, particularly Lys and Glu.
Haney et al. [28] have compared 115 proteins from
Methanococcus jannaschii to mesophilic proteins from
other Methanococcus species and found that the fre-
quencies of Ile, Glu, Arg, Lys, Pro, and Tyr are signifi-
cantly greater in the thermophile and the frequencies of
Gly, Met, Gln, Thr, Asn, and Ser are smaller.
More ion pairs have been strongly and consistently

linked with thermostability in the literature. Water has a
dielectric constant of about 80 at 0°C, which drops to
55 at 100°C and is lower still at the extreme pressures
near hydrothermal vents in the deep sea where some
hyperthermophilic organisms live. A lower dielectric
constant makes electrostatic interactions stronger and
therefore ion pairs should have a greater stabilizing
effect at high temperatures and pressures [21,29].
Evidence for some of these proposed mechanisms/

indicators is equivocal. For instance, Karshikoff and
Ladenstein found no significant difference in packing
between thermophilic and mesophilic proteins [30] and
salt bridges in a protein core have been reported to be
destabilizing [31,32]. Das and Gerstein [33] have
reported that the lengths of proteins from the eubacter-
ium Aquifex aeolicus are greater than those of archeal
hyperthermophilic orthologs and therefore hyperther-
mophilic proteins may be shorter than their mesophilic
counterparts simply because most hyperthermophiles
are archeal, not necessarily because shorter loops pro-
mote enhanced thermostability. Querol et al. [34] sur-
veyed 122 references for 195 single point mutants which
have been unambiguously linked to greater thermo-
stability and found that greater rigidity, as measured by

crystallographic B-factors, is not a good indicator of
thermostability.
The overall view one comes away with from this body

of work is that increased thermostability is due to rela-
tively subtle differences in sequence and structure so
that thermophilic and mesophilic orthologs are quite
similar proteins (Fig. 1). They share the same catalytic
mechanisms [35], although activity is typically lower at
low temperatures for thermophilic enzymes [3]. The
structures are similar, and sequence identity is usually,
but not always, reasonably high.

Discrimination of thermophiles and mesophiles
Liang et al. have studied the proteomes of 15 thermo-
philes and 74 mesophiles using the tendencies of residue
pairs separated by no more than 20 in primary sequence
to occur together to discriminate mesophilic from ther-
mophilic proteomes [36]. Farias and Bonato [26] have
devised a sequence composition based index capable of
correctly classifying organisms. The index ri is charac-
teristic of a single protein and is defined as ri=(E+K)/
(Q+H) where E, K, Q, and H are the percent composi-
tions of these amino acid types in protein i. Those
authors took the average of ri over all the proteins in an
organism to give an average r that, without exception,
fell in different ranges for the mesophiles (r < 2.5), ther-
mophiles (3.2 < r < 4.6), and hyperthermophiles (r >
4.5) in their test set. Further, they showed that r is high
in chaperonins (heat shock proteins) in both mesophiles

Figure 1 The CE structural alignment of 1aisA, a TATA-box-binding
protein from the extreme thermophile Pyrococcus woesi , in red
and 1ytbA, a TATA-box-binding protein from the mesophile
Saccharomyces cerevisiae, in blue. The rmsd is 2Å and sequence
identity is 40%. Clearly these are very similar structures.
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and thermophiles [26] thereby concluding that the
sequence signal is indicative of thermostability and not a
phylogenetic artifact. Similarly, Claverie and colleagues
[27,37] have devised the CvP bias (charged versus
polar), defined as (D+E+K+R)-(N+Q+S+T), the sum of
amino acid compositions, that they have also used to
classify an organism as mesophilic, thermophilic, or
hyperthermophilic by computing the average CvP for all
the proteins from that organism. Zeldovich et al. [38]
have reported a sequence composition based index
defined as I+V+Y+W+R+E+L (abbreviated IVYWREL)
that was an extremely good predictor of thermostability
when averaged over whole proteomes, and even for just
the membrane proteins from these proteomes. IVY-
WREL, again when averaged over proteomes, also corre-
lates very well with OGT. None of these authors claim
that their indices work well at discriminating individual
pairs of thermophilic and mesophilic orthologs, however
it is natural to ask if they can, and we will test this ques-
tion here. Glyakina et al. have done one of the few large
scale structure based discrimination studies [39].

Delaunay tessellation of protein structures and quantities
derived from it
We will refer to some Delaunay tessellation based
descriptors of protein structure, so a brief introduction
is in order. Delaunay tessellation, a technique for
decomposing a point set into non-overlapping tetrahe-
dral subsets, has proven very versatile in the analysis of
protein structures [40-57]. With this technique, the pro-
tein is abstracted to a set of points, here the a-carbons.
These points are joined by edges in a unique way to
form a set of non-overlapping, irregular, space-filling
tetrahedra also known as Delaunay simplices (Fig 2)
[58]. Residues joined by a Delaunay simplex edge are
natural nearest neighbors in a well defined sense [58].

The analysis of statistical characteristics of the tessella-
tion of proteins has been used in fold recognition
[42-44], for structure alignment and comparison
[45,46,56,59], as a way to identify cavities in the surface
of a protein that could be potential binding pockets
[48], to predict the stability and activity effects of point
mutations [49,50], to define structural motifs [51-54],
and to assign secondary structure [55].
A Delaunay tessellation derived four body statistical

contact pseudo-potential has been reported previously
[42,43] which has been shown to contain more informa-
tion than pairwise contact potentials [60]. Under this
pseudo-potential, the score of some particular amino
acid quadruplet (i, j, k, l), which corresponds to the resi-
dues at the vertices of a Delaunay simplex, is defined as:

q
f

ca a a aijkl
ijkl

i j k l
 log (1)

where: fijkl is the observed frequency of simplices with
amino acid types i, j, k, and l at their vertices in a large
non-redundant training set S; ai, aj, ak, and al are the
observed frequencies of the individual amino acid types
in S; and c is a combinatorial factor. Variations of this
potential have been successfully applied to fold recogni-
tion [43,50] and the analysis of protein stability [44] and
activity [49]. We will denote by Q the sum of the log-
likelihoods qijkl from the residue quadruplets corre-
sponding to all Delaunay simplices in the tessellation of
a protein structure.
The radius of the sphere circumscribing a Delaunay

tetrahedron gives a measure of its eccentricity. The
small, nearly equilateral tetrahedra in the interior of the
tessellation have small circumsphere radii, on the order
of the size of the simplices. Radically skewed, nearly
coplanar tetrahedra on the surface of the tessellated

Figure 2 The all atom Van Der Waals spacefill representation (left) of phosphoglycerate kinase (PDB code 16pk), the Delaunay tessellation of
16pk with no simplex edge length cutoff (middle), and a view of the tessellation with a 10 Å cutoff (right). Notice that the surface of the
tessellation with a cutoff corresponds more closely to that of the real molecule.
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protein, on the other hand, can have circumsphere radii
orders of magnitude larger than the diameter of the
molecule. The tetrahedrality T is another measure of
simplex eccentricity. Denote the length of the six edges
of a simplex as L1 - L6 . The tetrahedrality is then
defined by:

T L L Li j
i j

 

 ( ) /

_6
2

2

15 (2)

Protein contact graphs
A few protein structure descriptors we will use are
based on molecule contact graphs, so a brief introduc-
tion to this is also in order. The residues in contact with
one another in a protein can be thought of as a graph or
network (Fig. 2) and analyzed using techniques from
elementary graph theory and the theory of complex net-
works. In the literature, residues are typically defined to
be in contact by a simple proximity cutoff, but in this
work, graph nodes correspond to residues and graph
edges join nodes when the corresponding residues are
joined by a Delaunay simplex, shorter than some fixed
cutoff, in the tessellation of the protein structure.
Several contact network derived quantities have been

used before to analyze protein structures [61,62]. The
degree k of a node in an undirected graph is the number
of edges impinging on it. The average degree over all
nodes in the contact graph will be referred to as the
coordination number. A minimum path between nodes i
and j is one for which the sum of weights of the edges
along the path is smallest from among all possible
paths. The minimum path length Lij between nodes i
and j is the sum of the weights along a minimum path.
In our case here, edges have weight one, and a mini-
mum path is one for which the fewest edges are tra-
versed. The characteristic path length L of a network is
the average of the minimum paths between all node
pairs i, j where i ≠ j. In general, there will be many
paths between distinct nodes i and j that have the mini-
mum path length. Some classes of networks have the
clustering property, which means that two nodes which
are both joined by edges to a third, are more likely to
also be joined to each other than are two nodes picked
at random [63]. In such networks, there are well defined
neighborhoods with subsets of nodes tending to be con-
nected to each other and tending not to be connected
to nodes in other neighborhoods. The clustering prop-
erty is measured by the clustering coefficient of a node
Cn is the number of actual edges En between neighbors
of node n divided by the number of possible connec-
tions between those neighbors: Cn = 2En/(k(k-1)), where

k is the degree of node n. The clustering coefficient C
for the entire network is the average of all the Cn.

Results
Sequences differences
Linear least square best fit lines of number of residues
in hyperthermophilic (Nh) or thermophilic proteins (Nt)
to the number of residues in their mesophilic counter-
parts (Nm) are: Nh=0.94 Nm + 5.00 and Nt=0.97 Nm +
5.15 where there are 122 pairs in the hyperthermophile
pairs and 127 in thermophile pairs (see Additional files
1 and 2 for lists). Our data show that thermophilic pro-
teins are usually somewhat shorter than their mesophilic
counterparts, and hyperthermophilic proteins are
shorter still. This observation is in line with the results
of Eisenberg [11].
Tables 1 and 2 show the amino acid composition for a

large nonredundant set of thermophilic, hyperthermophi-
lic, and mesophilic proteins. T-tests were conducted to
see if the average composition was different for the
hyperthermophiles, thermophiles, and a control set of
mesophiles. Table 1 is in broad agreement with pre-
viously published results: there are more charged residues
in thermophilic proteins and fewer polar and thermola-
bile residues. Arg is preferred in thermophilic proteins
but Lys is preferred in hyperthermophilic proteins [14].

Results of discrimination experiment
From Table 3 it can be seen that simplex geometry
based indices are generally poor discriminators as are
contact network based indices. Some compactness-based
indices are good discriminators, for example Delaunay
area/volume, a measure of general compactness, and
van der Waals volume/Delaunay volume, a measure of
void space. Secondary structure content, rigidity as mea-
sured by the mean B-factor, and sequence length are
not very good discriminators. Sequence composition
based indices, particularly IVYWREL and CvP are very
good discriminators. Delaunay derived combined
sequence-structure indices are very good discriminators
as well, for example the 4-body potentials and the
counts of over-represented residue quadruplets. Interest-
ingly, even though the 4-body Delaunay threading
potential works well as a discriminator, this is appar-
ently not true for threading potentials in general. We
have tested the ProsaII potential of Sippl et al [64], and
found it to be a poor discriminator (Table 3).
The best discriminatory indices we tested were: one

version of the 4-body Delaunay threading potential; the
count of over-represented quadruplets; the ratio of
Delaunay surface area to volume (for hyperthermo-
philes); the standard deviation of Kyte-Doolittle hydro-
phobicity (for hyperthermophiles); Delaunay area/
volume=and van der Waals volume/Delaunay volume,
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particularly for hyperthermophiles; the CvP bias, and
IVYWREL. Few of the tested indices (when computed
for individual proteins not averaged over proteomes)
correlate even moderately well with OGT. Those for
which the correlation is strongest are the 4-body poten-
tials, overrep400, CvP, IVYWREL, and E+K/Q+H which
all have r~0.4-0.7.
The Delaunay simplex-based descriptors (overrep400

and the 4-body potentials) that work best for discrimi-
nation use large simplex edge length cutoffs ( >20 Å).
This implies that there are important residue contacts
on the surface of the proteins because that is invariably
where simplices with very long edge lengths reside. This
combined with threading potential data presented later
leads us to believe that the presence of more charged
residues on the protein surface is at least one of the
things these descriptors pick up.

Table 1 t-tests of sequence percent compositions of mesophilc, thermophilic, and hyperthermophilic proteins.

A C D E F G H I K L

mean_comp_meso: 8.26 1.92 5.80 6.53 3.85 7.29 2.29 5.48 6.22 8.86

sd_comp_meso: 4.31 3.05 2.22 3.02 1.89 3.08 1.53 2.52 3.38 3.52

mean_comp_therm: 10.05 0.78 5.13 8.32 3.62 8.30 2.15 4.80 4.77 10.26

sd_comp_therm: 3.48 1.23 2.29 2.87 1.45 2.12 1.18 3.04 2.29 3.87

t_therm_wrt_meso: 6.03 -9.08 -3.57 7.49 -1.83 5.42 -1.35 -2.72 -7.21 4.40

mean_comp_hyper: 7.26 0.78 5.20 10.05 4.07 7.17 1.64 7.73 8.50 9.10

sd_comp_hyper: 2.95 1.05 1.76 2.51 1.64 2.23 1.05 2.44 2.60 2.39

t_hyper_wrt_meso: -4.09 -10.19 -4.17 17.47 1.72 -0.65 -7.37 11.72 10.74 1.21

t_therm_wrt_hyp: 7.99 0.00 -0.32 -5.93 -2.71 4.83 4.22 -9.80 -14.19 3.30

M N P Q R S T V W Y

mean_comp_meso: 2.17 4.51 4.52 4.04 4.79 6.07 5.62 6.90 1.43 3.44

sd_comp_meso: 1.58 2.30 2.91 2.07 2.62 2.61 2.51 2.62 1.25 1.95

mean_comp_therm: 1.87 3.19 5.43 2.69 6.82 4.07 4.74 8.42 1.31 3.30

sd_comp_therm: 1.11 2.29 2.05 1.59 2.81 2.13 2.34 2.36 1.16 1.71

t_therm_wrt_meso: -3.14 -6.94 5.10 -9.87 8.77 -11.07 -4.52 7.65 -1.20 -1.00

mean_comp_hyper: 2.11 3.49 4.02 1.80 5.56 4.51 4.00 8.44 1.02 3.56

sd_comp_hyper: 1.14 1.62 1.57 1.16 2.27 1.72 1.48 2.28 1.07 1.71

t_hyper_wrt_meso: -0.59 -7.65 -3.60 -22.12 4.23 -10.82 -12.71 8.45 -4.78 0.87

t_therm_wrt_hyp: -1.98 -1.39 7.11 5.88 4.55 -2.10 3.46 -0.08 2.41 -1.41

t-tests of sequence percent compositions of mesophilc, thermophilic, and hyperthermophilic proteins Amino acids significantly over-represented in
hyperthermophiles with respect to mesophiles are: Glu, Ile, Lys, Arg, and Val. Amino acids significantly under-represented in hyperthermophiles with respect to
mesophiles are: Ala, Cys, Asp, His, Asn, Pro, Gln, Ser, Thr, and Trp. Amino acids significantly over-represented in thermophiles with respect to mesophiles are: Ala,
Glu, Gly, Leu, Pro, Arg, and Val. Amino acids significantly under-represented in thermophiles with respect to mesophiles are: Cys, Asp, Lys, Met, Asn, Gln, Ser, and
Thr. Amino acids significantly over-represented in hyperthermophiles with respect to thermophiles are: Glu, Ile, and Lys. Amino acids significantly under-
represented in hyperthermophiles with respect to thermophiles are: Ala, Gly, His, Leu, Pro, Gln, Arg, and Thr. These statistics were tabulated from nonredundant
sets of 184 hyperthermophilic structures (45419 residues), 162 thermophilic structures (41470 residues), and 1262 mesophilic structures (269799 residues).

Table 2 Statistical significance of fractions in Table 1.

Z Fraction thermophile Fraction hyperthermophile P<

0.5 0.638 0.663 0.617

1.0 0.666 0.691 0.317

1.5 0.694 0.719 0.133

2.0 0.722 0.747 0.045

2.5 0.750 0.775 0.012

3.0 0.778 0.803 0.003

3.5 0.806 0.831 0.0005

4.0 0.834 0.859 0.0001

Statistical significance of the fractions in Table 1. The null is a simple binomial
where the index is uncorrelated with thermostability which gives an expected
value for f of 0.5 and standard deviation of √N/2, where N is the total number
of pairs in the set (122 in the case of pairs hyperthermphiles or 127 in the case
of pairs thermophiles). For N>50 the binomial can be very well approximated
by a normal distribution and a statistical significance can be attributed to the
fraction. A 5% significance level corresponds to f greater than about 0.72 and
an index with f less than this in Table 1 should not be regarded as an
effective thermophile/mesophile discriminator.
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Table 3 Discriminatory power of structure and sequence derived quantities

Numerical index Thermophile (127 pairs) Hyperthermophile (122 pairs)

Contact Network Derived Quantities

coordination number (no cutoff) 0.559 0.689

clustering coefficient (no cutoff) 0.551 0.672

characteristic path (no cutoff) 0.520 0.631

Combined Sequence and Structure Including Threading Potentials

total count 400 over-rep quads/residue 0.850 0.943

4-body potential/residue (20Å cutoff) 0.858 0.844

4-body potential/residue (no cutoff) 0.843 0.852

4-body potential/res (hyper only, no cutoff) ——— 0.820

4-body potential/res (meso only, no cutoff) 0.732 0.803

4-body potential/res (thermo only,no cutoff) 0.866 ———

ProsaII combined score 0.554 0.693

Delaunay Simplex Geometry

median circumsphere radius(no cutoff) 0.701 0.639

mean tetrahedrality (no cutoff) 0.598 0.574

number simplices/residue (10Å cutoff) 0.528 0.557

number simplices/residue (no cutoff) 0.567 0.697

Volume/Surface Area/Compactness

Naccess solvent accessible area 0.567 0.598

Delaunay surface area (no cutoff) 0.606 0.669

van der Waals area 0.559 0.549

Delaunay volume (no cutoff) 0.598 0.701

Van der Waals volume 0.528 0.598

Delaunay area/volume (10Å cutoff) 0.583 0.549

Delaunay area/volume (no cutoff) 0.669 0.803

van der Waals area/volume 0.512 0.557

packing density 0.543 0.549

van der Waals volume/Delaunay volume 0.685 0.779

Rigidity

mean B-factor 0.661 0.533

Secondary Structure

secondary structure content (H+E 3 state DSSP) 0.614 0.689

Sequence Length

number of residues 0.528 0.672

Sequence Composition

total Kyte-Doolittle hydrophobicity 0.575 0.549

sd Kyte-Doolittle hydrophobicity 0.677 0.836

CvP bias 0.803 0.918

(E+K)/(Q+H) 0.591 0.861

IVYWREL 0.827 0.926

A table showing the discriminatory power of sequence and structure based indices-the fraction of thermophile/mesophile pairs for which the quantity was
systematically higher or lower by any amount. The contact network quantities are described in the introduction. The four body threading contact potentials are
described in [1]. The cutoff indicates that simplices with at least one edge longer than the cutoff were omitted when frequencies are tallied during the
calculation of the potential. “Hyper only” indicates that the potential was trained only on chains from hyperthermophilic organisms. The Delaunay simplex
geometry indices are discussed in the introduction. The volume and surface area criteria are fairly self-explanatory except, perhaps, for packing density that is
defined here as the ratio of the van der Waals volume of the protein divided by the all atom Voronoi volume. The sequence composition based indices CvP,
(E+K)/(Q+H), and IVYWREL are described in the introduction.
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Since increased hydrophobicity of the protein core has
been proposed as a mechanism for thermostability, one
might expect the sum SKD of the Kyte-Doolittle hydro-
phobicities of all residues would be a good discrimina-
tor. SKD is not, but the variance of the Kyte-Doolittle
hydrophobicities is (Table 3). Apparently, then, the
increase in core hydrophobicity is accompanied by an
increase in hydrophilic residues.

Why the Delaunay threading potential a good
discriminator
We have studied the mean contribution to the 4-body
potential score Q under a 7-letter reduced alphabet to
each structure in the mesophilic, thermophilic, and
hyperthermophilic subsets of 521nonredundant. The
reduced alphabet was used to simplify the analysis by
bringing down the possible number of residue quadru-
plets that can reside at the vertices of a Delaunay tetra-
hedron from 8855 for a 20 amino acid alphabet to 210.
The reduced alphabet is D, E, K, R, I=(I,V), A=(A,F,G,L,
P), N=(C,H,M,N,Q,S,T,W,Y. The four-body Delaunay
threading score Q for a hyperthermophile with the aver-
age quadruplet composition is 36.3, for a thermophile Q
is 28.2, and for a mesophile Q is 17.6. For hyperthermo-
philes, the ΔQ (with respect to mesophiles) attributable
to quadruplets with at least two hydrophobic residues is
+11.07, for quadruplets with at least two charged resi-
dues it is +12.78, and for quadruplets with at least two
polar residues it is –2.53. For thermophilic quadruplets
the ΔQ figures are: at least two hydrophobic residues
+5.99, at least two charged residues +4.55, and at least
two polar residues –0.34. We see ,therefore, that the 4-
body potential goes up for (hyper)thermophiles both
due to associations between charged residues but also
due to quadruplets of more highly hydrophobic residues.
The increase in charged residues produces a larger
change than the stronger hydrophobics with hyperther-
mophiles, but the situation is reversed in thermophiles.

Conclusions
It is possible to accurately discriminate (hyper) thermo-
philic proteins from their mesophilic counterparts based
on sequence and structural properties. Sequence based
indices used to discriminate entire proteomes also work
well on individual thermophile/mesophile ortholog pairs.
Purely structure-based indices are, generally speaking,
poor discriminators. Combined sequence structure
indices like the threading potential are somewhat better
than sequence alone.
The primary factors differentiating thermophilic from

mesophilic proteins according to our analysis are surface
ion pairs and more strongly hydrophobic core residues.
The conclusion of previous authors that the basis for
the thermostability of thermophiles and hyper-

thermophiles is somewhat different is also borne out
here (e.g. the preference of thermophiles for Arg and of
hyperthermophiles for Lys).
Extensions of this work currently underway include

compiling larger test sets and breaking them down by
kingdom of origin as well as OGT. Heat shock proteins
should be compared to regular proteins from the same
organism and non-thermophilic archeal proteins should
be compared to orthologs from thermophiles. Proteins
from psychrophiles should be analyzed too. It would be
a small step to use more sophisticated pattern recogni-
tion methods to discriminate or classify based on multi-
ple indices.
Finally, it may be possible to design a thermostable

protein from a non-thermostable one by an adaptive
walk in sequence space, threading the altered sequences
onto the structure of the non-thermostable protein,
such that one or more of the good discriminators
described here always increases.

Methods
Assembly of the test sets
In this paper, we have addressed the discrimination pro-
blem where given sequences or structures from a meso-
philic protein and a thermophilic or hyperthermophilic
counterpart, the objective is to determine which is
which. This was done by assembling a large set of ther-
mophilic protein chains from the PDB and their corre-
sponding mesophilic analogs and another large non-
redundant set of hyperthermophilic PDB protein chains
along with their mesophilic analogs. They will be
referred to as the pairs sets: pairs-thermophile and
pairs-hyperthermophile. We have computed several
structure and sequence based numerical indices, based
on the quantities that other authors have reported are
associated with thermostability, and tested their ability,
individually, to successfully discriminate between the
thermophile/mesophile pairs. One could apply more
sophisticated classification or regression techniques to a
combination of these quantities, but for now we have
opted for a very simple test of each quantity in isolation
in order to verify if it is indeed consistently associated
with increased thermostability.
The pairs sets were constructed to contain pairs of

high quality x-ray structures with high structural and
functional similarity that differ only in that one is meso-
philic and the other thermophilic or hyperthermophilic.
They were assembled by compiling all PDB x-ray struc-
tures from a large list of organisms categorized as meso-
phile, thermophile or hyperthermophile using OGT’s
obtained from the ATCC website (http://www.atcc.org/
common/catalog/bacteria/bacteriaIndex.cfm). All struc-
tures with missing Ca coordinates, insertion codes, or
alternate atoms were then eliminated. The resulting two
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lists of thermophilic and hyperthermophilic proteins
were submitted separately to PISCES[65] to generate
two much smaller non-redundant sets in which all
members had crystallographic resolution no greater than
2.2 Å, an R-factor no greater than 0.23, and where no
pair of structures had a sequence identity greater than
30%. The members of these non-redundant sets of
chains from thermophilic organisms were each then
submitted to structure comparison and alignment ser-
vers (CE[66] , SSM [67], DALI [68], VAST [69]) to
obtain mesophilic structure neighbors with rmsd no
greater than about 4 Å with respect to the thermophile
where the structural alignment included ~80% or more
of each structure, and where the thermophile and meso-
phile had identical or close EC numbers or functional
annotation. In some cases, more than one mesophile per
thermophilic protein was kept. When multiple mesophi-
lic analogs to a single thermophilic protein were
included in the pairs sets, no restriction was placed on
their similarity with respect to each other except that
the sequences not be identical and that they come from
different organisms. Lists of the resulting structure pairs
and structure alignment data can be found among the
supplementary material. The structural alignment data
in these tables were computed using CE [66].
To train threading potentials and compute sequence

composition biases, we compiled a second set of PDB

x-ray structures (521nonredundant), larger and more
representative than the pairs sets. The set contained 175
mesophilic, 162 thermophilic, and 184 hyperthermophilic
protein structures, none of which was in either pairs set.
As with the pairs sets, 521nonredundant was assembled
with the help of PISCES [65] All members had crystallo-
graphic resolution no greater than 2.2 Å, an r-factor no
greater than 0.23, and no pair of structures had a sequence
identity greater than 66%. The pairwise similarity thresh-
old was set higher for this set than pairs in order to allow
the possibility that it could contain mesophilic and ther-
mophilic orthologs, however a lower similarity threshold
would have made little difference—a 30% similarity cutoff
would have eliminated only 41 structures.

Numerical discriminators tested
We have computed several structure and sequence
based numerical indices to see if they can successfully
discriminate between the related mesophilic and (hyper)
thermophilic proteins in the pairs sets (Table 3). Among
the quantities tested for discriminatory power were: the
three contact-network derived quantities described in
the introduction (coordination number, characteristic
path length, and clustering coefficien), the ratio (E+K)/
(Q+R) of Farias and Bonato [26], the CvP bias defined
earlier [37], the sum and standard deviation of the Kyte-
Doolittle hydrophobicities of all residues in the protein,

Table 4 Highly over-represented and highly under-represented residue quadruplets at the vertices of tessellated
thermostable proteins and the factors by which they differ with respect to mesophiles.

hyperthermophiles thermophiles

over-represented under-represented over-represented under-represented

quad factor quad factor quad factor quad factor

EEEE 7.473 PQRT 0.303 EEER 6.008 AIQS 0.380

EEEK 7.332 GGNQ 0.302 ELWW 5.520 DLQS 0.378

EEER 7.048 FLLQ 0.301 RRRV 5.222 KLST 0.377

MRRR 6.490 AQVY 0.301 AEER 5.106 ILNQ 0.373

EEKR 5.654 AAAN 0.299 EEPR 5.087 ENQS 0.370

IRRR 5.605 AAEQ 0.298 EERR 4.801 KKLS 0.370

EEEF 5.597 DSTT 0.296 AERR 4.538 KNQR 0.368

EEKK 5.282 ADDT 0.296 RRRY 4.508 FKQS 0.368

EEEV 4.936 AENQ 0.296 EEEE 4.508 LNQS 0.367

EEIK 4.889 NSTT 0.295 ERRR 4.458 EFNS 0.366

EIKK 4.881 ALPQ 0.292 IRRR 4.186 DILQ 0.365

EEIV 4.346 ADQR 0.292 EEGP 4.177 LMSY 0.364

EIKR 4.332 ANRT 0.292 EEGR 4.113 KLNS 0.362

EKRR 4.256 DNQV 0.292 ERRV 4.104 DDQS 0.361

IKRR 4.228 FGLQ 0.291 EGPR 4.092 LNSS 0.361

EEKV 4.225 AQST 0.291 EERW 4.015 EHIK 0.360

EEIR 4.169 ANTY 0.290 GPRR 3.963 KKST 0.358

EEEN 4.107 INSY 0.290 EEPP 3.951 GKSS 0.356

EEEY 4.092 DNQT 0.289 EERV 3.904 CGLL 0.354

KRRR 4.085 ANQV 0.289 AELR 3.792 LNQT 0.353
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several four-body Delaunay tessellation based threading
Q-scores [42], the ProsaII two-body distance dependent
threading score [64], the median circumsphere radius,
the mean tetrahedrality, the surface area to volume ratio
(both Delaunay and van der Waals), and the number of
Delaunay simplices per residue. We have also tested the
packing density defined as the van der Waals volume of
the protein divided by the all-atom Voronoi volume.
The algorithm of Gavezotti [70] was used to calculate
van der Waals volumes and the Geometry Code Library
2.0 of Tsai et al. [71] to calculate Voronoi volumes.
We have defined discriminatory power of a given

numerical index as simply the fraction f of (hyper)ther-
mophile-mesophile pairs from a pairs set where that
index is systematically larger or smaller for the (hyper)
thermophilic protein, by any amount. For example,
86.1% of the time for structure pairs in the pairs
hyperthermophile set, the ratio (E+K)/(Q+H) is greater
for the hyperthermophilic than for the mesophilic pro-
tein, and so the discriminatory power is 0.861.
Analysis of the residue quadruplets occupying the ver-

tices of the tetrahedra of tessellated hyperthermophilic
and thermophilic protein structures shows that some
are heavily over-represented (e.g. EEEK, AEER) or
under-represented (e.g. ANQV, AELR) in (hyper)ther-
mophilic proteins with respect to mesophilic (Table 4).
Another discriminator index we have tested on the pairs
sets, therefore, is the total count in a query protein of
the top 400 most over-represented simplices in
hyperthermophilic or thermophilic structures divided by
the number of residues. These two indices are the most
powerful discriminators of all those we tested. We will
abbreviate them as overrep400-thermophile and over-
rep400-hyperthermophile.

Additional file 1: List of pairs of hyperthermophilic proteins and
their mesophilic analogs.

Additional file 2: List of pairs of thermophilic proteins and their
mesophilic analogs.
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