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As human phosphodiesterase (PDE) proteins are attractive drug targets, a large number of selective PDE inhibi-
tors have beendeveloped. However, since the catalytic sites of PDE isoforms are conserved in sequence and struc-
ture, it remains unclear how these inhibitors discriminate PDE isoforms in a selective manner. Here we perform
long-time scale molecular dynamics (MD) simulations to investigate the spontaneous association processes of a
highly selective PDE2A inhibitor (BAY60–7550)with the catalytic pockets of six PDE isoforms.We found that the
free-energy landscapes of PDE:BAY60–7550 interactions on the PDE surfaces are very different between various
PDE isoforms; and the free-energy landscape of PDE2A forms a favorable low-energy pathway that not only
drives BAY60–7550 toward the target binding site, but also guides BAY60–7750 to adopt its native binding con-
formation known from crystal structure. Thus, this study reveals that the inhibitor interactions with the PDE sur-
face residues play an important role in its high selectivity for PDE2A, and thereby provides new fundamental
insights into the PDE isoform-specific inhibitor selectivity.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Human phosphodiesterase (PDE) family consists of 11 subfamilies
and expressed in a tissue-specific manner [1]. These PDE protein iso-
forms could hydrolyze the cyclic phosphate bonds of the secondary
messengers cAMP and cGMP, and thereby terminate many signaling
pathways in distinct human tissues [1]. Consequently, dysfunctions of
the PDE isoforms are closely linked to different diseases [1], such as
heart failure [2], schizophrenia [3], and cancer [4]. So the PDE proteins
are important therapeutic targets. In the past two decades, many PDE
inhibitors have been developed, including sildenafil (PDE5 inhibitor)
[5], roflumilast (PDE4 inhibitor) [6], and milrinone (PDE3 inhibitor)
[7], which were approved for the treatments of erectile dysfunction
[8], chronic obstructive pulmonary disease (COPD) [6], and congestive
heart failure [9], respectively .

However, those PDE inhibitors could cause side effects during their
clinical treatments. For example, the COPD drug roflumilast has the
side effects of headache and nausea [6]. Such side effects may be attrib-
uted to that all the PDE isoforms share a very conserved structural fold
and possess very similar residues at their active sites [10] (Fig. 1A), al-
though their overall sequences are different (Fig. S1 in Supporting Infor-
mation [SI] and Table 1). So the inhibitors cannot precisely distinguish
their PDE targets from other isoforms. Because the binding selectivity
.

. on behalf of Research Network of C
of the PDE inhibitors is crucial for the development of safe drugs, it is
necessary to fully understand the structural origins of the PDE inhibitor
selectivity.

Recently, we showed that a sub-pocket in the PDE active sites may
play an important role in the binding selectivity of a PDE2A inhibitor,
BAY60–7550 (Fig. 1B) [11]. By solving its co-crystal structure with
PDE2A, we revealed that BAY60–7550 binds to the PDE2A active site
using a binding-induced, hydrophobic sub-pocket (i.e., H-pocket). Mo-
lecular docking showed that the H-pocket contributes significantly to
the binding affinity, and thereby improve the BAY60–7550 selectivity
for PDE2A. However, the docking also indicated that BAY60–7550
adopts similar poses and might induce H-pocket in other PDE isoforms.
Since the H-pocket residues of these PDE isoforms are different from
those of PDE2A [11], this might lead to slightly lower binding affinities
in these PDE isoforms (see ROSETTA docking scores in Table 1). In fact,
BAY60–7550 shows N100-fold selectivity for PDE2 compared to PDE5
and the other 4 PDEs tested (see IC50 in Table 1) [12]. So it is difficult
to use the docking affinities alone to explain the experimental data in
which BAY60–7550 displays higher selectivity for PDE2A than other
PDE isoforms [12] (see also Table 1). Besides the H-pocket, it seems
that other unknown factors also contribute to the high selectivity.

Meanwhile, some studies have demonstrated that the binding ki-
netic processes do also impact the drug efficacy [13,14]. This implies
that all the protein residues involving in the binding and unbinding pro-
cesses may play roles in the selectivity. Because the residues in the PDE
catalytic pockets are highly conserved [10], it is natural to hypothesize
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Fig. 1. (A) Protein residue similarities of six PDE isoforms according to the multiple
sequence alignment (MSA) in Fig. S1. Residues are classified into 4 groups: identical
(blue), strongly similar (cyan), weakly similar (yellow), and different (red). Catalytic
pockets of the six isoforms (white circles) mainly consist of the identical (blue) and
strongly similar (cyan) residues. (B) BAY60–7550 molecule.
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that the high selectivity of BAY60–7550 for PDE2A might derive from
those different residues those nonconserved residues outside of the
PDE catalytic sites.

Inspired by the study of a cancer inhibitor (Dasatinib) [15], here we
use long, unbiased molecular dynamics (MD) simulations to test our
above hypothesis. To understand how the association processes affect
the binding selectivity for various PDE isoforms, we investigate not
only the binding process of BAY60–7550 to PDE2A, but also those to
other 5 PDE isoforms in Table 1. In the simulations, no biased forces
were applied to BAY60–7550 so that its movements from random sur-
face positions toward the target binding pockets were completely
driven by the interplay of the inhibitor, the PDE residues, and the sol-
vent. The simulations successfully captured the association processes
in which the inhibitor diffuses freely, and then spontaneously enters
the catalytic pockets. Interestingly, we found that the binding energy
landscapes that govern the association processes are very different for
various PDE isoforms. These energy landscapes could guide BAY60–
7550 to the target pockets by forming low-energy binding pathways.
Table 1
PDE isoforms investigated in this study.

PDE
isoforms

PDB ID Sequence length
(a.a.)

Identical
residue

Strongly similar
residuea

Weakl
residue

PDE2A 4HTX [11] 342 – – –
PDE3B 1SOJ [16] 420 93 72 42
PDE4B 4KP6 [17] 340 84 89 39
PDE5 2H42 [18] 326 111 87 33
PDE9A 2HD1 [19] 326 89 88 44
PDE10A 2OUP [20] 331 114 76 28

a Residues are regarded as strongly or weakly similar if their scores in Gonnet PAM 250 mat
b RMSDs of alpha-C atoms of the superimposed PDEs with respect to PDE2A.
So this study reveals that the protein surface residues play an important
role in the binding selectivity of BAY60–7550, and thus provides useful
guidance on the rational design of the PDE selective inhibitors.

2. Materials and Methods

2.1. Set-Up of MD Simulation Systems

For the 6 isoforms in Table 1, we investigated the spontaneous asso-
ciation processes of BAY60–7550 with the PDE catalytic pockets from
random surface positions.

The all-atom models of the 6 PDE catalytic domains were con-
structed from their crystal structures, respectively (PDB IDs:
4HTX, 1SOJ, 4KP6, 2H42, 2HD1, 2OUP) [11,16–20]. In these struc-
tures, the co-crystal ligands were removed, and the missing resi-
dues of the proteins were built by MODELLER (Ver. 9.11) [21] or I-
TASSER (Ver. 5.1) [22]. Hydrogen atoms were added using PSFGEN
(Ver. 1.6.3) [23]. In each of the six PDE:BAY60–7550 systems, four
BAY60–7550 molecules (designated as inhibitor A, B, C, and D, re-
spectively) were randomly placed outside the PDE protein accord-
ing to the method described in SI Subsection S2 and Fig. S2. Then,
this PDE-inhibitor system was immersed in a cubic water box with
an edge length of ~100 Å and a salt concentration of 150 mM NaCl.
The CHARMM36 force field [24] was used to describe the topology
and interaction parameters of the PDE protein and the metal
atoms (Mg2+ and Zn2+). The water molecules were described by
the TIP3P model [25]. The topology and force-field parameters of
BAY60–7550 were generated using SwissParam [26].

2.2. Unbiased MD Simulations

All simulations were performed with NAMD (Ver. 2.11) using
the Langevin integrator [27,28]. Short-range van der Waals and
electrostatic interactions were cut off at 10 Å. Periodic boundary
conditions were employed; and the Particle Mesh Ewald (PME)
method was used for long-range electrostatic interactions [29,30].
All bonds were constrained by the SHAKE algorithm [31]; so an in-
tegration time step of 2 fs was used. All simulated systems were
first minimized for 1000 steps with the conjugate gradient descent
algorithm. Then, the systems were equilibrated in the NVT ensem-
ble for 20 ps at 320 K controlled by the Langevin thermostat [32].
The Langevin piston Nose-Hoover method was used to couple the
system pressure to 1 atm [33,34]. Finally, unbiased production sim-
ulations were performed in the NPT ensemble for N80 ns. More de-
tails can be seen in SI Subsection S3.

2.3. Time-Dependent RMSD Calculation

Weuse root-mean-square deviation (RMSD) to evaluate the similar-
ity between the PDE-bound conformations of BAY60–7550 in the simu-
lations and the native pose in the catalytic pocket of PDE2A [11]. The
time-dependent RMSD values were calculated for each of the four
y similar
a

Sequence
identity (%)

RMSDs to PDE2A
(Å)b

IC50 [12]
(nM)

ROSETTA
docking score [11]

– – 4.7 ± 1.0 −24.5
49.3 2.13 N 4000 −21.3
62.4 1.98 1830 ± 840 −18.6
70.9 1.97 704 ± 148 −20.1
67.8 1.92 N 4000 −19.5
65.9 1.87 940 ± 400 −21.5

rix are greater or smaller than 0.5, respectively.



Fig. 2. Coordinate systems for constructing the binding free energy landscapes. (A) The spherical coordinate system of PDE2A. (B) The transformation of the spatial coordinates into the
geographic coordinates. (C) The unrolled 2D map.
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BAY60–7550molecules in every simulation of a given PDE:BAY60–7550
system. For a given inhibitor (A, B, C, or D) in a specific simulation (1, 2,
…, or 8), we designated theMD trajectory of the given inhibitor as ‘PDE
isoform:Traj. simulation number - inhibitor ID’. For example, the trajec-
tory of inhibitor A in simulation 1 of the PDE2A:BAY60–7550 system
was named ‘PDE2A:Traj. 1-A'. For accurate comparison, before calculat-
ing RMSDs, all the MD snapshots of the PDE-inhibitor complex were
superimposed on the crystal structure of PDE2A (PDB ID: 4HTX) using
TM-align [35].

2.4. Binding Free Energy Calculation

In the MD simulations, a BAY60–7550 molecule was considered to
be in the PDE-bound state if the distance from its center of mass
(COM) to any surface residue is b5 Å, which is roughly equal to the in-
hibitor radius. To construct the binding free energy landscapes for all
six PDE:BAY60–7550 systems, it is necessary to calculate the binding
energies for vast numbers of MD snapshots, in which BAY60–7550
may be bound to any sits on the PDE surfaces. To reduce the computa-
tional costs, we employed a computationally inexpensive energy func-
tion, the AutoDock semiempirical free energy force field [36], to
calculate the binding free energy for a given MD snapshot with the
PDE-bound inhibitor. This function consists of molecular mechanics
terms and empirical desolvation terms determined by linear regression
analysis of complexes with known 3D-structures and known binding
free energies; and, many studies have confirmed its ability to correctly
predict the binding affinities of small molecules to proteins. So, we
used this function to calculate the absolute free binding energy formov-
ing BAY60–7550 from the common unbound state in bulk water
(i.e., the initial reference state) to the final bound state specifically de-
fined by the given MD snapshot (see more details in SI Subsection S5).
Parameters of the protein, inhibitor and metal ions for the energy com-
putations were calculated according to the standard procedures, with
corresponding Python programs in AutoDockTools [37]. Meanwhile,
we also used more rigorous, computational intensive method, free en-
ergy perturbation (FEP), to verify the free-energy values by the
AutoDock function (see SI Subsection S11).

2.5. Construction of Binding Energy Landscapes

To display the binding free energies for a given PDE:BAY60–7550
system, we treated the PDE2A catalytic domain as a sphere, and then
used a geographical coordinate system to define the MD positions
of the PDE-bound inhibitors. As shown in Fig. 2A, The Zn2+ ion in
the PDE2A catalytic pocket was set as the origin; the X and Y axes
are the lines connecting the origin to alpha-C atoms of S706 and
C801 (PDE2A numbering), respectively; and the Z axis is deter-
mined by forming a right-hand system. To determine the positions
of BAY60–7550 on the PDE surface, all the MD snapshots of the
given PDE:BAY60–7550 complex were superimposed (see Fig. S3
in SI) onto the crystal structure of PDE2A in Fig. 2A, and then char-
acterized using the coordinate system.

For the inhibitor at the given time of the simulations, we projected
its COM at point P onto pointW on the PDE surface (Fig. 2B). So the lat-
itude of the inhibitor is the angle θ between the equatorial plane and the
straight line joining the origin to W; the longitude is the angle φ be-
tween the prime meridian and the meridian passing through W. The
signs of θ and φ indicate locations related to the equatorial plane and
the prime meridian, respectively. For example, inhibitor with θ = 30
and φ = −60 is located at 30° N and 60° W in the geographic coordi-
nates. Then, just like the World Map, the spherical surface is unrolled
into a 2D flat map by converting the meridians and parallels to the ver-
tical and horizontal lines, respectively (Fig. 2C). The 2D flat map was di-
vided into 7200 unit grids of 3 × 3 square degrees. For each unit grid,
exponential average binding energy was estimated. Finally, the discrete
binding free energies on all unit grids were smoothed by thin-plate
splines [38] and projected onto the 2D flat map in Fig. 2C FIELDS and
PLOT3D packages in R (Ver. 3.3.3) [39–41] (see more details in SI Sub-
section S6).
2.6. Inhibitor Binding Probabilities to PDE Surfaces

To quantitatively characterize the binding probabilities of the inhib-
itor on different regions of the protein surface, we divided the 2D map
(Fig. 2C) into 7200 unit grids of 3 × 3 square degrees, and counted the
MD binding number of the inhibitor for each unit grid. These 7200 dis-
crete binding numbers were directly used as the measure of the inhibi-
tor binding probabilities to construct the binding probability surface on
the 2Dmap,with the thin-plate spline method [38] (see more details in
SI Subsection S7). All the binding probability surfaces were built using
programs implemented in R (Ver. 3.3.3) [39–41].
2.7. Binding Pathway Mapping

For a successful MD trajectory of BAY60–7550 to the target binding
pocket, we defined its binding pathway to the catalytic pocket as the
time-dependent positions of the inhibitor in the PDE-bound state. To
simplify the pathway display, only key positions in the binding process
were connected by lines to represent the whole binding pathway in the
given energy landscape.
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3. Results and Discussion

3.1. Spontaneous Associations of BAY60–7550 with Target Binding Pockets

Totally, 48 MD simulations were performed for the 6 PDE isoforms
(8 simulations per isoform). As mentioned, we used the RMSDs to eval-
uate the similarity between the PDE-bound conformations of BAY60–
7550 in the MD simulations and the native pose [11]. Since the sizes
of the PDE catalytic pockets are about 15.0 Å in diameter [42], we con-
sidered a simulation as a successful one that captures a binding event
of the inhibitor from outside to the inside of the pocket, if anyone of
the four inhibitors in the system associates with the pocket stably, and
thenfluctuates in thepocketwithRMSDsb15.0Å. Furthermore,we con-
sidered this PDE-bound inhibitor to be in an effective PDE-bound state
to the catalytic pocket.

With the above criterion, for the 6 PDE:BAY60–7550 systems there
are 4, 1, 2, 2, 3, and 3 successful simulations, respectively (Table 2);
and the time-dependent RMSDs of the inhibitor in the corresponding
trajectories are shown in Fig. S4 of SI. As shown, for each trajectory,
when the inhibitor moves from outside random, distant positions to
the inside of pockets with the simulation time, the RMSDs decrease rap-
idly from large values to smaller ones below 15.0 Å within ~60 ns. This
clearly indicates that BAY60–7550 does possess a spontaneous ten-
dency to associate with the catalytic pockets of the investigated PDEs.

Interestingly, we found that BAY60–7550 in the systems of PDE2A
and PDE5 usually binds to the catalytic pockets within relatively short
periods of ~25 ns, as compared to other 4 PDEs (Fig. S4 in SI). Also, in
the simulations BAY60–7550 adopts binding poses that well match
the native pose, with the minimal RMSDs of 0.66 and 0.79 Å, respec-
tively (Fig. 3B); in contrast, the inhibitor in other 4 PDE systems
achieves different binding poses with the minimal RMSDs of 6–8 Å
(Table 2). So, in the simulation timescale, only the association processes
in the PDE2A and PDE5 systems could lead BAY60–7550 to the native
binding pose [11]. As we will further discuss in the subsections, this
might suggest that BAY60–7550 is a good inhibitor for PDE2A and
PDE5. Indeed, the IC50 data [12] (Table 1) have shown that the binding
selectivity for PDE2A and PDE5 are better than those for other PDEs.

As expected, the best conformation of BAY60–7550 thatmatches the
native pose was found in the simulations of PDE2A (i.e., PDE2A: Traj. 1-
D in Fig. 3A); thefinal stable conformation of BAY60–7550 in this trajec-
tory agrees verywell with the native pose [11],with anRMSD of ~0.66 Å
(Fig. 3B). Similar to the crystal structure, themajor interactions stabiliz-
ing the bound conformation are: the π-π stack between phenylalanine
of F862 and pyrazolo-pyrimidine group of BAY60–7550, and the H-
pocket induced by the phenyl group of the inhibitor (Fig. 3B). As seen
in Fig. 3, BAY60–7550 initially moves from a random position far away
from the catalytic pocket to theM-loop near the pocket, then spontane-
ously enters the pocket along the M-loop, and eventually stays in the
Table 2
Summary of successful MD simulations, free energy landscapes, and binding probability (B.P.)

PDE
isoforms

Successful
Simulations
(num.)

Minimal
RMSDs
(Å)

Binding energy of
minimal- RMSD
poses (kcal·mol−1)a

Landscape SDs
(kcal·mol−1)b

Total DW
grids (n

PDE2A 4 0.66 −12.47 ± 0.89 1.49 99
PDE3B 1 12.81 −8.55 ± 1.03 1.41 63
PDE4B 2 7.91 −6.71 ± 0.96 1.42 20
PDE5 2 0.79 −11.46 ± 0.84 1.28 83
PDE9A 3 7.45 −7.32 ± 0.81 1.32 54
PDE10A 3 6.37 −5.74 ± 0.73 1.22 5

a Exponential average binding energy of the snapshot inhibitors whose RMSDs are within 2
b Maximum standard deviations of the average binding energy for each unit grid on the ene
c Number and percentage of the deep-well grids inside PDE pockets in total unit grids occup
d High binding probability (B.P.) grids are defined as those N360 num./grid, about 60% of th
e Number and percentage of the high binding probability (B.P.) grids inside PDE pockets in
f Percentage of the effective PDE-bound state inhibitors in all the snapshot inhibitors in the
pocket in the native pose. As showed in Fig. S5, the time-dependent
binding energy and RMSDs of this trajectory decrease in a similar man-
ner and both converge finally. Moreover, the descents of RMSDs are al-
most be accompanied by the energy barriers. Three major energy
barriers are labeled in Fig. S5. So, our MD simulations have captured
the association dynamics of BAY60–7550 with its target binding site,
and provide a solid basis for the following analyses.

Another interesting trajectory is PDE5:Traj. 8-D, in which BAY60–
7550 also matches the native pose well, with an RMSD of 0.79 Å
(Fig. S6 in SI). In the simulation, the H-pocket is also induced by
BAY60–7550, and the π-π stack is formed by F820 and the inhibitor,
too (Fig. S6B in SI). Moreover, this MD trajectory is similar to that in
PDE2A (Fig. 3A). Both time-dependent binding energy and RMSDs of
this trajectory converge in a similar manner; and, several energy bar-
riers accompany the descents of RMSDs (Fig. S7).We found that the res-
idues involving in the association processes are quite conserved. As
shown in Fig. 4A, about 80% of the PDE5 residues in the binding process
are similar to those in PDE2A. It appears that the high similarity in the
pathway residues is an important factor to lead the inhibitor to the cat-
alytic pockets with the same conformation, namely, the native pose
[11].

However, compared to PDE2A, the H-loop of PDE5 outside the
pocket may reduce the probability of the inhibitor to correctly bind to
the catalytic pocket. Unlike that in PDE2A, this loop is rather flexible
to flip toward the entrance of the catalytic pocket during the simula-
tions (Fig. 4B). Such an H-loop flipping occurred in 6 of the 8 PDE5 sim-
ulations, except for two successful trajectories in Fig. S4 of SI. So, if
BAY60–7550 reaches the entrance after the H-loop flipping, it would
be kept outside of the catalytic pocket during the rest time of the simu-
lations. Consistent with the IC50 data [12], this also implies that BAY60–
7550 is more selective for PDE2A than for PDE5. Indeed, the total num-
ber of successful trajectories in the PDE5 simulations is less than that of
the PDE2A simulations (4 in Fig. S4 of SI).

In the simulations of other PDEs, the final binding poses of BAY60–
7550 in the catalytic pockets are different from the native pose, with
large RMSDs (N 6 Å) (Table 2 and Fig. S4 in SI). Also, these simulated
poses fail to induce the H-pocket and to form π-π stacks with corre-
sponding phenylalanines. In the absence of such two interactions, the
minimal-RMSD poses in these 4 PDE isoforms are less stable than
those in PDE2A and PDE5 (see the binding energy of minimal-RMSD
poses in Table 2). This suggests that the binding selectivity values of
BAY60–7550 for these PDEs are lower than those for PDE2A and PDE5,
in agreement with the IC50 data in Table 1. Meanwhile, the differences
between the simulated poses and the ROSETTA docking results indicate
that thewhole binding processes involve in the PDE2A-specific selectiv-
ity of BAY60–7550. The binding processes consist of complex protein-
inhibitor interactions which can be monitored by the binding energy
landscapes.
of the PDE surfaces.

s
um.)

DWs grids inside
pocket (num., %)c

Total high B.P.
grids (num.)d

High B.P. grids
inside pocket
(num., %)e

Snapshot inhibitors in
effective binding (%)f

78, 78.79 11 7, 63.64 8.01
0, 0.00 29 0, 0.00 0.00
0, 0.00 19 0, 0.00 3.88
49, 59.04 11 1, 9.09 7.79
6, 11.11 18 6, 33.33 7.22
0, 0.00 10 0, 0.00 3.53

Å of the minimal RMSD (see also in SI Subsection S9).
rgy landscapes (see also SI Subsection S6).
ied by all deep wells.
e binding probability in the PDE2A catalytic pocket (~600 num./grid).
all high binding probability (B.P.) unit grids.
MD simulations.



Fig. 3. Spontaneous association of BAY60–7550with the catalytic pocket in theMD trajectory PDE2A:Traj. 1-D. (A) The time-dependent RMSDs of BAY60–7550with respect to the native
pose from PDB 4HTX [11], and corresponding positions of the center of mass of BAY60–7550 (spheres in rainbow colors) on the protein (cartoon in gray). (B) The best-matched
conformation of BAY60–7550 with the smallest RMSD of 0.66 Å at ~146 ns, where the H-pocket residues and F862 are represented as stick models. Corresponding movie showing the
spontaneous association process is presented in Supporting Information (Supplementary Movie S1).
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3.2. Distributions of Binding Energy Wells on PDE Surfaces

Energy landscape theory considers that the movement of an inhibi-
tor on a protein are governed by the free energy profile of the inhibitor-
protein interactions [43]. So the spontaneous association process of
BAY60–7550 with its target binding pocket is ultimately determined
by the so-called binding energy landscape of the inhibitor on the protein
surface. Consistent with the RMSD results, the binding energy land-
scapes of the 6 PDE:BAY60–7550 systems are different (Fig. 5A).
Again, this is attributed to their difference in the surface residues. As il-
lustrated in Fig. 5A, all 6 energy landscapes are very rugged: almost half
of the surface regions are energy ridges and hills (i.e., ΔG ≥
0.0 kcal·mol−1), and other regions are energy basins and valleys
(i.e.,ΔG b 0.0 kcal·mol−1). For such regions, we defined the local energy
minima b −4.1 kcal·mol−1 as energy wells, which corresponds to a Kd
Fig. 4. (A) Time-dependent similarity in inhibitor-bound residues of PDE2A and PDE5 in
the MD trajectory PDE5:Traj. 8-B. The residue classification is the same as that in Fig. 1A.
(B) The H-loop flip of PDE5 that blocks the catalytic pocket.
value b1000 μM. Similarly, the remaining regions from −4.1 to
0.0 kcal·mol−1 are regarded as energy barriers between the energy
wells.

Because of the lower binding energies, the energywells are hot spots
that capture the inhibitor when it moves along the protein surface [44].
To better characterize the energy wells, we further divided them into
two categories: deep well (DW) with a binding energy b

−8.2 kcal·mol−1, which corresponds to a Kd value b1000 nM, and shal-
low well (SW) with a binding energy in the range from −8.2 to
−4.1 kcal·mol−1. Generally, the depth of an energy well correlates
strongly with the probability of the inhibitor trapped in this well. To
characterize such inhibitor binding probability on the surface, we de-
scribed it as theMD binding number to surface grids of 3 × 3 square de-
grees, in the unit of num./grid (see details in Subsection 2.6 and S7 in SI).
Consistent with this, the inhibitor binding probabilities in the energy
wells are generally higher than other areas (Fig. 5B).

We found that, in all 6 energy landscapes, the deepest and largest
energy well is located at the catalytic pocket of PDE2A, i.e., DW1 with
ΔG b −13.0 kcal·mol−1 (Fig. 5A). So the PDE-bound inhibitor in the
PDE2A catalytic pocket may be considered as the most stable one in
thermodynamics. Also, the DW1 area of PDE2A is the largest one
among the deep wells inside the PDE catalytic pockets (78 grids,
Table 2), and could increase the probability of the inhibitor to move
into the catalytic pocket (Fig. 5B). Indeed, the binding probabilities in
the catalytic pocket are the highest among all 6 PDE catalytic pockets
(N 550 num./grid) (Fig. 5B). These indicate that the PDE2A catalytic
pocket possesses the greatest capability to associate with BAY60–
7550.Meanwhile, the number of deep energywells outside the catalytic
pocket is the least, since ~79% of grid occupied by the deep wells are lo-
cated inside the PDE2A catalytic pocket (Table 2). Clearly, this is benefi-
cial for the inhibitor to move quickly into the catalytic pocket, because
the inhibitor is not easily trapped in the regions outside the catalytic
pocket. This leads to that 7 of the 11 high B.P. grids are inside the
PDE2A catalytic pocket (Table 2, Fig. 5B). Consequently, the inhibitor
in 8% of the MD snapshots of the PDE2A:BAY60–7550 system is in the
effective binding states to the catalytic pocket, the highest percentage
in all 6 PDEs (Table 2).

In the vicinity of the PDE5 catalytic pocket, there are 3 energy wells:
DW1, DW2, and DW3 (Fig. 5A). Compared to DW1 of PDE2A, they are
shallower and smaller (49 deep-well grids inside the PDE5 catalytic
pocket, Table 2), especially DW2 and DW3 (ΔG N −9.0 kcal·mol−1).



Fig. 5. (A) The binding energy landscape of the 6 PDE:BAY60–7550 systems. (B) Corresponding binding probabilities. The catalytic pockets are indicated by red circles. Some deep energy
wells (DWs, ΔG b −8.2 kcal·mol−1) and shallow energy wells (SWs,−8.2 b ΔG b −4.1 kcal·mol−1) on the maps are marked.
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Fig. 6. The binding pathway in PDE2A:Traj. 1-D. (A) The global 3D energy landscape of PDE2A. (B) The binding pathway in the 3D energy landscape. (C) The global energy landscape in the
2Dmap. (D) The binding pathway in the 2Dmap. The binding pathway (red lines) and time (red numbers) are shown on the energy landscape. The magnitudes of binding-energies are
displayed in rainbow colors; and the deep energy well DW1 are labeled.
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So the catalytic pocket of PDE5 possesses relativelyweak ability to asso-
ciate with BAY60–7550, as also indicated by the binding probability of
~300 num./grid (Fig. 5B). In addition, the PDE5 energy landscape has
higher proportion of deep-well area outside (~59% deep-well grids in-
side the PDE5 catalytic pocket, Table 2), leading to more high binding
probability area outside the catalytic pocket (only ~9% high B.P. grids in-
side the PDE5 catalytic pocket, Table 2 and Fig. 5B). Together, the cata-
lytic pocket of PDE2A appears to be a better binding site for BAY60–
7550 than that of PDE5. In other words, PDE2A is more favorable for
the binding of BAY60–7550 than PDE5, in agreement with the experi-
mental data [12].

In the catalytic pockets of other 4 isoforms, the energy wells are
shallower than those of PDE2A and PDE5, especially the catalytic
pockets of PDE4B and PDE10A (ΔG N −8.0 kcal·mol−1, Fig. 5A). Mean-
while, these deep-well areasmuch smaller (0–6 the deep-well grids in-
side the catalytic pockets, Table 2 and Fig. 5A) than PDE2A and PDE5.
Correspondingly, the binding probabilities in most these energy wells
are smaller, too, especially those of PDE4B and PDE10A (b 250 num./
grid, Fig. 5B). In addition, the proportion of deep-well area outside
their catalytic pockets are much higher than those inside (only 0–16%
of deep-well grids inside the catalytic pocket, Table 2 and Fig. 5A). As
a result, landscape areas outside their catalytic pockets might have
much stronger ability to trap inhibitors than those inside the areas.
For example, there is no high B.P. grid inside the PDE4B catalytic pocket,
but 19 high binding probability grids outside the pocket (Table 2 and
Fig. 5B); and one of them has a binding probability about three times
greater (N 550 num./grid) than that in the catalytic pocket (~200
num./grid). Thus, in theMD simulations of the PDE4B:BAY60–7550 sys-
tem, the inhibitor population in the effective PDE-bound state is the
very low (3.9% in Table 2).
The above analyses clearly show that the distinct binding energy
landscapes dominate the distributions of binding energy wells on the
PDE surfaces, and eventually the inhibitor binding probabilities on the
surfaces. As a result, theMDpopulations of the inhibitors in the effective
binding state are different in the catalytic pockets for the 6 PDEs. In prin-
ciple, this difference is correlated with the residence times of the inhib-
itor in the catalytic pockets. Since the residence time is positively related
to the selectivity of the inhibitors [45,46], the binding selectivity of
BAY60–7550 for the 6 PDEs might be ranked as: PDE2A N PDE5
N other PDE isoforms. Again, this order agrees with the IC50 data (see
Table 1).

3.3. Low-Energy Binding Pathways to Target Sites

Since the energy wells are hot spots to associate with BAY60–7550,
its association processes can be regarded as continuous movements
from one energy well to another. To provide mechanistic insights, we
map such binding pathways in the 6 PDE energy landscapes, as shown
in Fig. 6 and S11-S24 in SI.

In PDE2A:Traj. 1-D, the binding pathway of BAY60–7550 starts from
the DW1 boundary at about 8.44 ns, and eventually enters into DW1
(Fig. 6B and D). Because no high barrier exists in this process, BAY60–
7550 moves quickly into the catalytic pocket, without significant con-
formational change, i.e., it binds to the catalytic pocket with the native
pose. Clearly, before the binding to DW1, the inhibitor needs to adjust
its conformation to the native pose. In fact, BAY60–7550 has already
adopted the native pose when binding to the M-loop, as indicated by
the RMSD values (Fig. 3A).

In PDE5:Traj. 8-B, the pathway begins from the southeast corner of
the catalytic pocket, and travels through DW3, and then reaches DW1
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(Fig. S18 in SI). Before crossing over the barrier betweenDW1andDW3,
the inhibitor stays in SW1 for about 45 ns, with RMSDvalues b3.0 Å (see
also Fig. S6 in SI). This implies that DW3 is an important region for the
inhibitor to adjust its conformation before entering into DW1. However,
DW3 is often occupied by the H-loop, which may hamper the BAY60–
7550 entrance into the catalytic pocket (Fig. 4B). Thus, it seems that
the H-loop interrupts the conformational adjustments of BAY60–7550
in SW1.

Compared to two above pathways of PDE2A and PDE5, other path-
ways are very different. Other three pathways of PDE2A are located in
the basin containing DW2 in first 20 ns and extend toward DW1
(Fig. S11~S13 in SI). The energy basin is located at the interspace be-
tween the helices H15 and H12, where significant conformational
changes occur, as indicated by the RMSDs (Fig. S4 in SI). To reach
DW1, these pathways climb over the energy barrier of about
0.0 kcal·mol−1 between DW1 and DW2 through the saddle, SD1 or
SD2. Likely, the energy basin acts as a metastable area for the inhibitor
to adjust its conformation for the binding to the catalytic pocket. Conse-
quently, BAY60–7550 usually passes through DW2 instead of staying in
this energy well, leading to smaller binding probabilities (~200 num./
grid) in DW2 (Fig. 5B).

In the energy landscapes of PDE4B, PDE5, and PDE9A, their cata-
lytic pockets contain 2 or more energy wells, and all of them are the
destinations of the corresponding pathways. In that of PDE5, the path-
way 3-A climbs over the energy barrier between DW1 and DW2, and
reaches DW2 (Fig. S17 in SI). Two pathways in the PDE4B energy
landscape start from 2 distinct sites and arrive at SW2 and SW3, re-
spectively (Fig. S15~16 in SI). Even more, three pathways on the
PDE9A energy landscape leads to 3 different destinations. The path-
ways 4-A and 6-D reach DW1 and DW2, respectively. But the pathway
2-A wanders between DW1 and DW2 (Fig. S19~21 in SI). Like the
pathways 2-B of PDE2A, the pathway 6-D of PDE9A also passes
through a metastable area including the energy wells SW1 and
DW2~4 (Fig. S21 in SI).

The pathways on the energy landscapes of PDE10A wander in the
catalytic pockets (S22~24 in SI). For example, the pathway 3-B on the
PDE10A energy landscape wanders in the region of about 1800 square
degrees (Fig. S22 in SI). This is attributed to the relatively shallow en-
ergy wells (−5.0 b ΔG b−4.0 kcal·mol−1) and the low energy barriers
in the catalytic pockets. As a result, the trapped inhibitor can easily es-
cape from these wells and further climb over the barriers. The singular
pathway on the PDE3B surface even stops outside the catalytic pocket
(Fig. S14 in SI). Although its time-dependent RMSDs converge under
15 Å (Fig. S4 in SI), the inhibitor actually bind to the interspace between
helix H12 and H15 which is close to the PDE3B catalytic pocket. As a re-
sult, almost no inhibitor stably binds into the pocket (~0 effective bind-
ing snapshots in Table 2).

As described, the low-energy binding pathways reveal how the
binding energy landscapes guide the spontaneous associations of the in-
hibitor with its target binding pockets. In these pathways, the inhibitor
usually adjusts its conformations in the energy wells outside the cata-
lytic pockets. Thus, in thefinal phases of the binding processes only sub-
tle conformational changes are required for binding to the targeted
sites. Therefore, both conformation selection [43] and induce-fit [47]
occur in the associations of BAY60–7550 with the catalytic pockets.

4. Conclusions

In this study, we have performed unbiased MD simulations to suc-
cessfully capture the spontaneous associations of BAY60–7550 with
the catalytic pockets of the 6 PDE isoforms. In the simulations of
PDE2A and PDE5, the final stable conformations binding to the
pockets agree completely with the native pose revealed by our previ-
ous experiments [11], and the induced H-pocket was also correctly
reproduced. We found that the PDE surface residues determine the
distributions of the binding energy wells on the protein surfaces;
and these wells form the favorable low-energy binding pathways of
BAY60–7550 toward its target binding sites. Interestingly, for all 6
PDE isoforms, the binding pathways on PDE2A are most favorable
for the inhibitor binding, and thereby explain the high selectivity of
BAY60–7550 for PDE2A.

In structure-based drug design, amajormethod to improve the drug
selectivity is to optimize its binding affinity for the target binding site,
e.g., the active site of an enzymes [48]. However, it is difficult to use
this rational approach when developing inhibitors for targeting a spe-
cific isoform in a large protein family, e.g., human protein kinase family
with ~510 isoforms [49]. Because the isoforms in such a large family are
often encoded by homologous genes for carrying out similar functions,
usually their active sites are very conserved in the amino-acid se-
quences [49]. So, an inhibitor could bind to the active sites of various iso-
forms with similar interactions. Often, to optimize such interactions is
not enough for an inhibitor to discriminate different isoforms. Our pre-
vious study [11] also showed that themolecular docking affinities alone
could not explain the different selectivity values of BAY65–7550 for var-
ious PDE isoforms (see also Table 1).

In fact, our MD simulations have revealed that, except in PDE2A and
PDE5, the binding of BAY60–7550 did not induce the H-pocket in other
4 PDE isoforms,whichwas found to occur in themolecular docking. This
strongly suggests that molecular docking alone may be difficult for the
design of the selective PDE inhibitors. Meanwhile, the binding affinity
is a thermodynamic equilibrium measurement of the extent of the in-
hibitor bound to its receptor. And the thermodynamic equilibrium
may not be reached or maintained in an open in vivo system, because
the inhibitor concentrations in vivo vary faster than the binding and un-
binding processes [14]. Indeed, structure-based drug design on the basis
of the binding affinity has been found to have certain false-positive rates
[50]. For example, the study by Biggin and co-workers [51] showed that
the selectivity predictions of broad-spectrum inhibitor bromosporine
have only modest accuracy.

As demonstrated by our work, to overcome such limitations, one
may investigate the binding processes of the inhibitor to its target site.
These processes are the time-dependent behaviors of the PDE-
inhibitor complexes, e.g., the transition states [52]. Transition states
are crucial to understand the inhibitor selectivity and to rationally opti-
mize the inhibitor binding kinetics. For example, our unbiased, atomis-
tic MD simulations and pathway analyses indicate that the M-loop,
alpha-helix H12 and H15 of PDE2A play an important role in guiding
BAY60–7550 into the catalytic pocket. So, further investigations on
these factors might be useful for developing better selective inhibitors
of PDE2A. In combination with the binding energy landscape analysis,
the unbiased, long-time scale MD simulation is a promising strategy
for the rational design of selective inhibitors, e.g., to identify selective in-
hibitors for a given protein isoform from a group of candidate
molecules.

In conclusion, this study reveals that the high selectivity of BAY60–
7550 for PDE2A is likely determined by its interactions with the PDE
surface residues outside the target binding sites. Thus, our study pro-
vides new fundamental insights into the PDE inhibitor selectivity, and
suggests an MD-based strategy for the rational design of the selective
PDE inhibitors.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2018.11.009.
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