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Abstract: This study aimed to improve the transdermal delivery of lidocaine hydrochloride (LidH)
using elastic nano-liposomes (ENLs) and microneedle (MN) array pretreatment. LidH-containing
ENLs were prepared using soybean phosphatidylcholine and cholesterol, with Span 80 or Tween 80,
using a reverse-phase evaporation method. The ENL particle size, stability, and encapsulation
efficiency (EE) were characterized and optimized based on the component ratio, pH, and type of
surfactant used. In vitro transdermal diffusion study was performed on MN-pretreated mouse skin
using Franz diffusion cells. The anesthetic effects of LidH in various formulations after dermal appli-
cation were evaluated in vivo in rats by measuring the tail withdrawal latency after photothermic
stimulation. Stable LidH-loaded Tween 80 or Span 80 ENLs were obtained with particle sizes of 115.8
and 146.6 nm and EEs of 27% and 20%, respectively. The formulations did not exert any cytotoxicity
in HaCaT cells. Tween 80 and Span 80 ENL formulations showed enhanced LidH delivery on
pretreated mice skin in vitro and prolonged the anesthetic effect in vivo compared to that by LidH
application alone. LidH-loaded ENLs applied to MN-pretreated skin can shorten the onset time and
prolong the anesthetic effect safely, which merits their further optimization and practical application.

Keywords: lidocaine; solid microneedles; elastic vesicles; topical drug administration; anesthesia

1. Introduction

Lidocaine hydrochloride (LidH) is the only intravenous anesthetic approved by the
Food and Drug Administration [1]. As a local anesthetic, lidocaine blocks nerves via the
inhibition of the voltage-gated sodium, potassium, and calcium channels and other recep-
tors [2]. Currently, LidH is mainly administered by intramuscular injection or transdermal
delivery using mucilages; however, this method of delivery has some shortcomings in
clinical application. For example, anesthesia for surgical operations that involve superficial
skin, such as esthetic surgeries, tattooing, birthmark removal, scar dispelling, and skin
transplantation, often require multiple injections, thereby causing pain and discomfort and
generating a large amount of sharp contaminants [3]. Methods for transdermal delivery
commonly take a long onset time (e.g., 60 min for the eutectic mixture of the local anesthesia
EMLATM, a commercial topical anesthesia cream that contains 2.5% lidocaine and 2.5%
prilocaine), which prolongs the preparation time for surgery [4,5]. Methods to enhance
LidH transdermal delivery have been developed using iontophoresis [6], sonication [7],
and laser pretreatment [1] of the skin, but these methods need sophisticated equipment and
can damage skin permanently. Thus, improving the transdermal delivery of topical anes-
thetics featuring economy and more safety, while shortening the onset time and prolonging
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anesthesia duration, will benefit both patients and physicians. Drug delivery systems like
microparticles, ethosomes, solid lipid nanoparticles (SLNs), and elastic nano-liposomes
(ENLs) can increase skin transportation [8]. Among them, microparticles present higher
particle size and poor skin permeation than SLNs and ENLs; and ethosomes lack long-term
structural and chemical stability during storage, following by possibility of skin irritation
due to high ethanol content [8].

ENLs, also known as transfersomes or deformable liposomes, have been optimized for
transdermal drug delivery [9]. ENLs possess higher elasticity and smaller vesicle size than
SLNs, the traditional liposomes without surfactants, because of the surfactants addition [8].
El Maghraby et al., prepared Span 80- and Tween 80-containing ENLs encapsulating
estradiol using a thin-film hydration method [10]. In vitro permeation studies have shown
that the transepidermal fluxes of ENLs containing Span 80 and Tween 80 are approximately
six and nine times higher than those of SLNs, respectively [11]. The use of ENLs alone
for topical anesthesia application increases drug deposition in the stratum corneum and
dermis [12]. Although liposomes enhance the transdermal delivery of drugs to some extent,
the barrier function of the stratum corneum reduces the transdermal permeation of drugs,
which prevents its therapeutic window from being reached.

Microneedle (MN) arrays, an arrangement of needles shorter than 1 mm, mechanically
perforate the stratum corneum and form conduits for transdermal drug delivery [13,14]. The
topical application of drugs using MN arrays may optimize the drug delivery across the
skin and enhance its therapeutic effects [15]. The MNs do not touch the nerve endings
or the capillaries of the dermis, as they can only reach the epidermis [16]. Therefore, MN
application causes little pain and no bleeding, thereby reducing the risk of discomfort
and infection accompanied by intramuscular injection [17]. MNs are usually classified as
solid MNs, drug-coated MNs with the drug loaded onto the MN surface, hollow MNs
with internal conduits, and dissolvable MNs with the drug incorporated into a soluble
matrix [18–21]. As the first-generation, solid MNs are convenient for animal experiments
and capable of enhancing transdermal LidH delivery.

To the best of our knowledge, the combined strategy of using solid MN array pre-
treatment followed by the application of LidH-loaded ENLs has not been reported. Thus,
the purpose of this study was to shorten the onset time and prolong the duration of local
anesthesia using LidH-loaded ENLs after pretreating the skin with a solid MN array. This
study describes the preparation, characterization, optimization, and in vitro toxicological
properties of LidH ENLs. Additionally, the transdermal diffusion characteristics were
investigated in vitro, and the pharmacodynamics of LidH ENLs after MN pretreatment
were assessed in rats (Figure 1). The results demonstrate that the combination of MN array
pretreatment and ENLs formulations can enable local anesthetization more rapidly and
economically, in a safe manner.
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Figure 1. Schematic diagram of research methods employed in the study. (a) The ENL consisted of 
soybean phosphatidylcholine, cholesterol, drug molecule, and surfactant. (b,c) After treatment, the 
ENLs containing LidH permeated into skin through the conduits formed. Abbreviations: ENL, 
elastic nano-liposome; LidH, lidocaine hydrochloride; MN, microneedle. 

2. Materials and Methods 
2.1. Materials 

Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Gibco® Life 
Technology (Grand Island, NY, USA). Polyoxyethylene sorbitan monooleate (Tween 80) 
and sorbitan monooleate (Span 80) were obtained from J&K® (Shanghai, China). Soybean 
phosphatidylcholine (SPC) and cholesterol were purchased from Shanghai Advanced Ve-
hicle Technology Co., Ltd. (Shanghai, China) and the Cell Counting Kit-8 (CCK-8) was 

Figure 1. Schematic diagram of research methods employed in the study. (a) The ENL consisted
of soybean phosphatidylcholine, cholesterol, drug molecule, and surfactant. (b,c) After treatment,
the ENLs containing LidH permeated into skin through the conduits formed. Abbreviations: ENL,
elastic nano-liposome; LidH, lidocaine hydrochloride; MN, microneedle.

2. Materials and Methods
2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Gibco® Life
Technology (Grand Island, NY, USA). Polyoxyethylene sorbitan monooleate (Tween 80)
and sorbitan monooleate (Span 80) were obtained from J&K® (Shanghai, China). Soybean
phosphatidylcholine (SPC) and cholesterol were purchased from Shanghai Advanced
Vehicle Technology Co., Ltd. (Shanghai, China) and the Cell Counting Kit-8 (CCK-8)
was obtained from Dojindo Co., Ltd. (Shanghai, China). Red blood cell lysis buffer was
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purchased from Beyotime Biotech (Shanghai, China). LidH was purchased from Aladdin
Co., Ltd. (Shanghai, China). Protamine sulfate and rhodamine B were obtained from
Sangon Biotech Ltd. (Shanghai, China). Pentobarbital sodium was obtained from Merck
(Darmstadt, Germany). All chemicals used were of analytical grade, and water was
double distilled.

2.2. Animals

Specific pathogen-free BALB/c mice and Sprague Dawley rats (female, 6–8 weeks
old at the beginning of the experiments) were obtained from the Laboratory Animal Cen-
ter of Nanjing Medical University (Nanjing, China) and maintained under standardized
pathogen-free conditions in the animal facility of the State Key Laboratory of Pharma-
ceutical Biotechnology, Nanjing University. All mice and rats were housed at a constant
temperature (22 ± 1 ◦C) and humidity (55 ± 10%) under a 12 h light/dark cycle with free
access to food (pelleted feed) and water. All animals were housed in standard plastic cages
with corncob granule bedding (four mice or three rats per cage) and acclimatized for 1 week
before further experiments. The animal use protocols have been reviewed and approved
by the Animal Ethical and Welfare Committee of Nanjing University (IACUC-2007017).

2.3. LidH SLNs and ENLs Preparation

The LidH SLNs and ENLs were prepared using the reverse-phase evaporation method
as previously described [22]. Briefly, SPC and cholesterol in the mass ratio 5:1 were
dissolved in trichloromethane and mixed evenly. Two surfactants, Span 80 or Tween 80,
were chosen and weighed according to the SPC: surfactant mass ratio of 10:1 in the ENL
formulations, while no surfactant was added in the SLN formulation [23]. LidH solution
(2%, w/w) was added to the mixture (1:3, v/v). The mixture was sonicated in an ice-bath
for 3 min, until the dispersion became milky and monophasic. If the dispersion was not
layered after at least 30 min, the solvent was removed from the reverse micelle dispersion
by rotary evaporation under reduced pressure (200 rpm, 45 ◦C, 355 mmHg). After a thin
and viscous film formed on the inner wall of the round-bottom flask and collapsed into a
suspension, 1× phosphate-buffered saline (PBS; 10 mM phosphate buffer, 137 mM NaCl,
pH 7.4) was added to hydrate the suspension under reduced pressure. Finally, the emulsion
was sonicated for 3 min in an ice-bath, under 3 s sonication with 5 s intervals.

2.4. Determination of Entrapment Efficiency (EE)

The amount of LidH entrapped in liposomes was illustrated using the protamine ag-
gregation method. Protamine solution (0.1 mL, 10 mg/mL) was added to 1.5 mL Eppendorf
tubes containing 0.1 mL of liposome suspension and mixed for 3 min. After the addition
of physiological saline (0.9% w/w, 1 mL), the supernatant was obtained from the mixture
by centrifugation for 20 min at 48,400× g at 20 ± 5 ◦C. The amount of free LidH (W1) was
measured using a UV spectrophotometer (Persee, TU-1800, Beijing, China) at 228 nm. The
LidH content of the stock solution (W2) was determined by ethanol demulsification of the
liposome stock solution (0.1 mL). EE was calculated using the following equation:

% EE = (W2 − W1)/W2 × 100% (1)

2.5. Formulation Characterization

To obtain the mean particle size and polymer dispersity index (PDI), the LidH lipo-
some dispersion was diluted to 0.1 mg/mL with distilled water, mixed evenly, and mea-
sured three times with a particle size analyzer (Brookhaven, 90 PLUS, Austin, TX, USA).

2.6. Cytotoxicity Test

The human immortalized keratinocyte cell line HaCaT was purchased from the Cell
Bank of the Chinese Academy of Sciences (Shanghai, China), and cultured in DMEM (90%)
supplemented with fetal bovine serum (FBS, 10%) and penicillin (100 U/mL)-streptomycin
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(100 µg/mL) in an incubator (Thermo Scientific, Shanghai, China) at 37 ◦C and 5% CO2.
The cell suspensions (~5 × 105 cells/mL) were seeded in 96-well plates (100 µL/well)
and cultured for 24 h. Then, different concentrations (12.5, 25, 50, and 100 µg/mL) of
Span 80 ENL (10 µL) or Tween 80 ENL (10 µL) were added to the wells and cultured for
6 h. Cell viability was measured using the CCK-8 assay according to the manufacturer’s
instructions.

2.7. Skin Insertion of MN

To evaluate the skin penetration by the MN array, mice (n = 3) were anesthetized
with 2% pentobarbital sodium by intraperitoneal injections (40 mg/kg) and the abdominal
skin of mice was pretreated with the MNs. Each MN was assembled as a 500 µm-long,
6 × 6 array on a backplate. Then, 1% trypan blue solution (w/w) was smeared onto the
skin and the treated mice were kept on a temperature-controlled mat for 30 min at 37 ◦C.
The mice were euthanized by cervical vertebra dislocation and the skin was photographed
under an inverted microscope (Nikon, Ti-U, Tokyo, Japan).

Similarly, rhodamine B (1 mg/mL) was applied to the abdominal skin of mice (n = 3)
with or without MN array pretreatment and the mice were also kept at 37 ◦C for 30 min
on the temperature-controlled mat. Then, the mice were euthanized by cervical vertebra
dislocation and the skin was cut into small pieces (1 × 1 cm2), frozen, and sectioned. The
sections were imaged and analyzed by laser scanning confocal microscopy (Ti-C2, Nikon,
Tokyo, Japan).

2.8. Transdermal Diffusion of LidH from ENLs In Vitro

Less than 1 h after the mice (n = 3) were euthanized by cervical vertebra dislocation,
the abdominal skin (2 × 2 cm2) was removed, examined for wounds, and pierced with
the MN array (Figure 2a). A piece of skin with or without MN array pretreatment was
placed on the top of the receptor compartment containing 1× PBS solution (15.5 mL) in
a Franz diffusion cell. Next, 100 µL of the LidH solution, SLN or ENL formulation was
spread evenly on the area of treated skin. The occlusive application was conducted with
occluded donor compartments sealed with parafilm, while the non-occlusive application
was conducted with open donor compartments. Once preparation was completed, the cells
were placed on a transdermal diffusion system (Xinzhou, TP-6, Tianjin, China) at 37 ◦C
with 350 rpm stirring. Samples (400 µL) were removed from the receptor compartment
at 15 min (0–1 h), 30 min (1–3 h), and 1 h (3–6 h) intervals. After each removal, the same
amount of prewarmed PBS was added. The concentration of LidH was measured using a
UV spectrophotometer (Persee, TU-1800, Beijing, China).

2.9. In Vivo Thermal Hyperalgesia Study

To study the effect of local anesthesia, the thermal pain threshold of rat tails was
determined as previously described [24]. The D’Armour and Smith test was employed
using a tail flick test apparatus of a thermal radiation stimulator (Sansbio, SA-YLS-12A,
Nanjing, China) for pain induction. The tail-flick reaction time of rats was measured as
an index of pain sensitivity. The rats were assigned randomly into seven groups (n = 5):
(1) blank, (2) LidH, (3) MN/LidH, (4) Span 80 ENL, (5) MN/Span 80 ENL, (6) Tween 80
ENL, and (7) MN/Tween 80 ENL. The rats were fixed in a glass tube, with only their tails
exposed. After the rats were allowed to settle for 30 min, the middle part of the tail was
exposed to thermal radiation through the stimulator; the protective time was set to 20 s
to avoid excessive injury. The rat tail withdrawal latency (TWL) was recorded each time
after the irradiation at 5 min intervals for 30 min. Then, after alcohol application and
volatilization, the following formulations with LidH of 3.75 mg/cm2 were administered to
a 1 cm2 area of the photothermic stimulation site per group (except the blank group), and
incubated for 15 min in an occlusive dressing using sterile bandages. In detail, 187.5 µL
LidH solution was applied to groups 2 and 3, and 526.5 µL ENL dispersion was applied to
groups 4–7.
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Figure 2. In vitro transdermal delivery of LidH ENL formulations. (a) In vitro diffusion studies
of LidH ENLs on mouse skin using Franz diffusion cells. (b) Cumulative permeation of LidH in
MN-pretreated skin after occlusive application. (c) Cumulative permeation of LidH in two types
of ENL formulation was compared with that in SLN after occlusive application on MN-pretreated
skin. Data are shown as mean ± SD, n = 3. *: p < 0.05, **: p < 0.01, ***: p < 0.001; Student’s t-test.
Abbreviations: ENL, elastic nano-liposome; LidH, lidocaine hydrochloride; MN, microneedle; SLN,
solid lipid nanoparticle.

2.10. Statistical Analysis

All results are presented as the mean ± SD. Statistical analysis was carried out using
a two-sided Student’s t-test or ANOVA with Bonferroni’s post-hoc test in the software
GraphPad 7.0 (Prism, San Diego, CA, USA). A p-value of <0.05 was considered significant.

3. Results
3.1. Preparation and Optimization of LidH-Loaded ENLs

The preparation method used was previously verified as efficient to introduce diverse
agents into organic systems in vitro and in vivo [22]. The influence of surfactants was
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evaluated, as no surfactant, Span 80, or Tween 80 was added in the system. The sizes of
the liposomes are shown in Figure 3a. The average particle sizes of Span 80 and Tween
80 ENLs were 146.6 and 115.8 nm, respectively. The PDI of SLNs, Span 80, and Tween
80 ENLs were 0.284, 0.277, and 0.236, respectively. Tween 80-containing ENLs displayed
lower PDI and higher homogeneity than SLNs (Figure 3b). The EEs of SLN, Tween 80
ENL, and Span 80 ENL were 31%, 27%, and 20%, respectively. The results showed that all
groups achieved high EE levels. Significant differences in EE were only observed between
the Tween 80 ENL and SLN groups (p < 0.05; Figure 3c). The EE of LidH in the ENLs was
slightly lower than that in the SLNs.
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untreated skin (Figure 4c), MNs pierced the stratum corneum and formed conduits in the 
treated skin (Figure 4d); thus, LidH could permeate through the skin faster after MN pre-
treatment. The amounts of LidH that permeated the skin in the SLN, Span 80 ENL, and 
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Figure 3. Formulation characteristics. (a) Sizes of LidH-loaded liposomes. (b) PDIs of LidH-loaded
liposomes. (c) EEs of LidH-loaded liposomes. Data are shown as mean ± SD, n = 3. *, **, and
*** indicate statistical significance at p < 0.05, p < 0.01, and p < 0.001 using one-way ANOVA with
Bonferroni’s post-hoc test. (d) Cell survival rates of HaCaT cells cultured with 12.5, 25, 50, and
100 µg/mL ENL. Cell survival rates were measured as an index of cytotoxicity. Data are shown as
mean ± SD, n = 3. Abbreviations: SLN, solid lipid nanoparticle; EE, encapsulation efficiency; ENL,
elastic nano-liposome; LidH, lidocaine hydrochloride; PDI, polydispersity index.

HaCaT cells were used to evaluate the cytotoxicity of ENLs (Figure 3d). The average
cell survival rates were approximately 98.75% and 98.05% 3 h after Span 80 ENL and Tween
80 ENL addition. No group showed significant cytotoxicity up to an ENL concentration of
100 µg/mL.
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3.2. MN Pretreatment of the Skin

Figure 4a shows the skin area of the mouse for MN pretreatment. The conduits formed
were observable after incubation with 1% trypan blue (Figure 4b). The untreated and MN-
pretreated skin were frozen sectioned for histological observation. Unlike in the untreated
skin (Figure 4c), MNs pierced the stratum corneum and formed conduits in the treated skin
(Figure 4d); thus, LidH could permeate through the skin faster after MN pretreatment.
The amounts of LidH that permeated the skin in the SLN, Span 80 ENL, and Tween 80
ENL groups with MN pretreatment were 1.62, 1.86, and 2.40 times higher than those in the
untreated groups, respectively (Figure 4e–g). The results showed that transdermal LidH
flux was significantly increased by MN pretreatment (p < 0.05), especially in the Tween 80
ENL group (p < 0.01).
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**: p < 0.01; Student’s t-test. Abbreviations: ENL, elastic nano-liposome; LidH, lidocaine hydrochloride; MN, microneedle;
SLN, solid lipid nanoparticle.

3.3. Transdermal Delivery of LidH from ENLs on MN-Pretreated Skin In Vitro

To increase the transdermal flux of LidH and shorten the lag time, formulations were
applied to the skin using an occlusive dressing. After 6 h of incubation, the permeated
amount of LidH in the occlusive application group increased by approximately 80.2% from
539.2 ± 106 to 971.7 ± 67 µg/cm2 compared with that in the LidH solution group and by
approximately 21.3% from 539.2 ± 106 to 654.1 ± 89 µg/cm2 compared with that in the
non-occlusive application group (Figure 2b).

In this assay, the occlusive topical application of LidH solution, LidH-loaded SLNs,
Span 80 ENL, and Tween 80 ENL with MN pretreatment were investigated, using LidH
solution on intact skin as the control. The cumulative amount of permeated LidH in both
ENL groups was significantly higher than that of the control group (p < 0.001), and that in
the SLN group was significantly lower than that in the Tween 80 ENL (p < 0.01) and Span
80 ENL (p < 0.05) groups. After MN treatment, the cumulative amount of permeated LidH
in the SLN, Span 80 ENL, and Tween 80 ENL groups was 1.21, 1.67, and 2.1 times higher
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than that of the MN/LidH group, respectively (Figure 2c). In summary, the transdermal
flux of LidH was significantly higher in the ENL group with MN pretreatment.

3.4. Pharmacodynamic Evaluation of LidH-Loaded ENLs In Vivo

To test the local anesthetic effect in vivo, we determined the TWL of rats against
photothermic stimulation (Figure 5a). Thermal radiation was applied to the central part of
the tail of each rat, then the TWL of each rat was measured after different LidH formulation
treatments, with or without MN pretreatment (Figure 5b). The TWL of the rats with no
treatment on exposure to thermal radiation was used as the blank. The MN/LidH group
sustained a better anesthetic effect than the LidH group in the first 25 min. Additionally,
TWLs of the MN/ENL groups were both significantly longer than those of MN/LidH
group (p < 0.001). In general, either MN/Span 80 ENL or MN/Tween 80 ENL application
induced a significantly longer and stronger anesthetic effect than that in the LidH group
(p < 0.001). After approximately 45 min, the TWL measured in the LidH group was similar
to that in the blank group, and no anesthetic effect was observed after that, while the TWLs
of the MN/ENL groups were extended to more than 80 min.
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*: p < 0.05, ***: p < 0.001; two-way ANOVA with Bonferroni’s post-hoc test. Abbreviations: ENL, elastic nano-liposome;
LidH, lidocaine hydrochloride; MN, microneedle; TWL, tail withdrawal latency.

4. Discussion

As a local analgesic, LidH is effective both systemically and topically and several
prescriptions and over-the-counter formulations are available, such as creams, gels, and
patches [25]. Topical application of LidH has a lower risk of toxicity than systemic adminis-
tration; thus, it is generally considered safe. The delivery route, thickness of the stratum
corneum, and the duration of application are three key factors in LidH absorption. LidH
needs to penetrate the outer layer of the skin, which consists of keratinized epithelium as
a natural barrier, to act when applied topically. Encapsulation of water-soluble LidH in
liposomes is a relatively simple but advantageous delivery method, which improves skin
penetration ability and maintaining its effect consistently. ENL undergoes much higher
vesicle deformability than SLN [26]. Besides vesicular system application, microneedles
can compromise the barrier of the stratum corneum through a convenient and minimally
invasive way and shorten the onset time.
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We optimized the ENL preparation method (reverse-phase evaporation method) by
adjusting the ratio of SPC to cholesterol, pH of aqueous solution, and sonication process
to increase the EE level and cumulative penetration amount of LidH (Figures S1 and S2).
The organic solvent dissolving lipids was added to the aqueous phase and removed by
evaporation. The surfactant is absent in the organic phase of SLN, while Span 80 or Tween
80 helps liposome formation in ENLs. Both particle sizes and PDIs of ENLs are superior to
those of the SLN group (Figure 3). The results suggest that ENLs have a more suitable size
distribution. The significant difference between the PDI of SLN and that of Tween 80 ENL
(p < 0.01) could be explained by the lower particle size of Tween 80 ENLs [27]. Span 80 and
Tween 80 may form presented with low phase transition temperatures, and thus membrane
of ENLs is less rigid with slightly decreased EE; however, the ENLs prevented significant
drug waste. [28] Additionally, Tween 80 has a higher hydrophile-lipophile balance (HLB)
value than Span 80, causing a smaller EE, as HLB and EE are negatively related [28].

To study cell survival rates, HaCaT cells were exposed to ENL formulations, con-
sidering different concentrations, for 6 h (Figure 3d). The results show no cytotoxicity
in HaCaT cells with the increase in ENL concentration. Even cultured in medium with
an ENL concentration up to 100 µg/mL, the cell viabilities still remained above 99%.
The ENL formulations are eligible for in vitro tests of transdermal diffusion and in vivo
pharmacodynamics tests.

Regarding the in vitro experiments with both SLN and ENLs, the results of most of
them indicate that intact liposomes have quite limited ability to reach the viable epidermis.
However, MN is a physical method to promote skin permeation, as it can cross over
the stratum corneum and even reach the viable epidermis [26]. The ability of MN to
penetrate mouse skin as well as the microconduits caused by MN to permit transdermal
drug delivery was demonstrated (Figure 4). The number of microconduits displayed on
trypan blue-stained skin is 36 after 6 × 6 MN array application, suggesting complete MN
penetration. Fluorescence microscopy images clearly show that the stratum corneum was
pierced and that rhodamine B was delivered through the conduits into the skin. To further
prove the function of MN, we conducted transdermal diffusion tests with LidH-loaded
SLN, Span 80 ENL, and Tween 80 ENL in vitro, with and without MN pretreatment. All
cumulative amounts of LidH that permeated through MN-pretreated skin were higher
than those permeating through untreated skin. The permeation profile demonstrated a
good capability of MN to improve cutaneous delivery of LidH liposomes.

To enhance skin delivery of LidH, we compared its occlusive and non-occlusive
application to the skin (Figure 2b). The absolute delivery amount of LidH was signifi-
cantly improved under occlusive conditions. Similar improvements have been reported
using estradiol- and docetaxel-loaded ENL formulations [26,29]. The stratum corneum
hyper-hydration caused by occlusion weakens the protective barrier abilities of the skin,
which could explain these results to a great extent. Therefore, permeation studies were
subsequently performed with occlusive application. Recent data indicate that surfactants
enhance the transdermal delivery of LidH-loaded vesicles [12,30,31]. The results of this
study showed that ENL formulations deliver significantly more LidH in 6 h than SLN
formulations, probably because the surfactants effectively decrease the surface tension at
the interface of oil and water, and ENLs can readily deform during diffusion [31]. This
characteristic facilitates a deep diffusion of ENL in the skin and LidH release.

The transdermal effect of Tween 80 ENLs was higher than that of Span 80 ENLs after
1 h. Moreover, the particle size of Tween 80 ENLs was lower than that of Span 80 ENLs,
whereas the EE was slightly higher (Figure 3). Both of these factors may account for the
higher LidH skin penetration during 6 h. However, for local anesthesia, the first hour of
LidH transdermal delivery is of high significance, and there was no evident difference in
cutaneous drug penetration between the ENL groups in this time range. To shorten the
lag time and improve drug permeability, both ENLs were more effective than the LidH
solution and SNLs.
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The in vivo anesthetic assay was performed to prove the efficacy of MN pretreatment
and ENLs as LidH carriers. The results indicate the positive effect of MN array pretreat-
ment (p < 0.05). Besides, in accordance with the findings above, the anesthetic effect was
prolonged effectively in the groups with the ENLs, suggesting that ENL formulations,
especially with Tween 80, facilitate the transdermal permeation of LidH and prolong the
anesthetic duration. The properties of biocompatibility and colloidal stability of ENLs may
characterize its longer-term anesthesia effect. ENLs may also provide protection against
LidH metabolization [32].

Through the optimization of the LidH ENL preparations, in vitro drug diffusion tests,
and in vivo pharmacodynamic evaluation, the results indicate that the combination of
ENLs and MN array pretreatment improves the transdermal delivery of LidH safely and
shortens its onset time. Additionally, occlusive application is more suitable for the ENL
formulations. It has been reported that 100% of the public and 74% of healthcare profes-
sionals positively accept the MN technique as a drug delivery approach [33]. Furthermore,
MNs are considered advantageous for drug delivery to children [34].

The preparation procedure can be further optimized to improve the EEs of LidH
in ENLs, while improving the delivery efficiency of LidH and its anesthetic effect. In
clinical practice, ENL formulations can be sprayed onto the skin upon MN pretreatment.
Another comparable approach is the development of LidH-containing dissolvable MNs,
which combine the steps of skin treatment and LidH delivery into one step to achieve the
rapid onset of local anesthesia, as reported by Yang et al. [35]. Both the methods using
the MN pretreatment plus spray and dissolvable MNs are competitive and worthy of
further investigation and optimization regarding the safety, efficacy, patient compliance,
and manufacture costs.

5. Conclusions

The combination of MN pretreatment and ENL formulation exhibits the potential to
conduits through the stratum corneum with low pain, to improve transdermal lidocaine
delivery, shorten the lag time, and to prolong the duration of local anesthetization with neg-
ligible cytotoxicity. This strategy has considerable potential for the improvement of patient
compliance and for optimization of the efficacy of superficial surgical operations in clinical
practice, and can also be utilized for other transdermal formulations in future studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9060592/s1, Figure S1: EE of LidH in different formulations; Figure S2: Cumula-
tive permeation of LidH with 1 or 3 min sonication at the end step of SLN preparation.
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Abbreviation

CCK-8 Cell Counting Kit-8
DMEM Dulbecco’s modified Eagle’s medium
EE Encapsulation efficiency
ENL Elastic nano-liposome
HLB hydrophile-lipophile balance
LidH Lidocaine hydrochloride
MN Microneedle
PDI Polydispersity index
PBS Phosphate-buffered saline
SD Standard deviation
SLN Solid lipid nanoparticle
Span 80 Sorbitan monooleate
SPC Soybean phosphatidylcholine
Tween 80 Polyoxyethylene sorbitan monooleate
TWL Tail withdrawal latency
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