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Purpose: Radiomics has already been proposed as a prognostic biomarker in head and
neck cancer (HNSCC). However, its predictive power in radiotherapy has not yet been
studied. Here, we investigated a local radiomics approach to distinguish between tumor
sub-volumes with different levels of radiosensitivity as a possible target for radiation
dose intensification.

Materials and Methods: Of 40 patients (n=28 training and n=12 validation) with biopsy
confirmed locally recurrent HNSCC, pretreatment contrast-enhanced CT images were
registered with follow-up PET/CT imaging allowing identification of controlled (GTVcontrol)
vs non-controlled (GTVrec) tumor sub-volumes on pretreatment imaging. A bi-regional
model was built using radiomic features extracted from pretreatment CT in the GTVrec
and GTVcontrol to differentiate between those regions. Additionally, concept of local
radiomics was implemented to perform detection task. The original tumor volume was
divided into sub-volumes with no prior information on the location of recurrence. Radiomic
features from those sub-volumes were then used to detect recurrent sub-volumes using
multivariable logistic regression.

Results: Radiomic features extracted from non-controlled regions differed significantly
from those in controlled regions (training AUC = 0.79 CI 95% 0.66 - 0.91 and validation
AUC = 0.88 CI 95% 0.72 – 1.00). Local radiomics analysis allowed efficient detection of
non-controlled sub-volumes both in the training AUC = 0.66 (CI 95% 0.56 – 0.75) and
validation cohort 0.70 (CI 95% 0.53 – 0.86), however performance of this model was
inferior to bi-regional model. Both models indicated that sub-volumes characterized by
higher heterogeneity were linked to tumor recurrence.
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Conclusion: Local radiomics is able to detect sub-volumes with decreased radiosensitivity,
associated with location of tumor recurrence in HNSCC in the pre-treatment CT imaging. This
proof of concept study, indicates that local CT radiomics can be used as predictive biomarker
in radiotherapy and potential target for dose intensification.
Keywords: local radiomics, radioresistance, head and neck cancer, predictive biomarker, contrast-enhanced CT,
tumor recurrence
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) accounts for
approximately 4% of all malignancies across Europe and the USA
(1, 2). For locally advanced HNSCC, the standard of care is
definitive radiotherapy, whenever possible combined with
concurrent chemotherapy. Despite advances in treatment using
modern radiotherapy delivery techniques, local recurrences still
occur in up to 50% of patients and pose the predominant pattern of
failure in HNSCC (3). Therapeutic options for recurrent HNSCC
are mainly palliative and comprise salvage surgery, re-irradiation
and systemic therapy – however, outcome is poor, and treatment
often is associated with significant morbidity (4). Therefore,
improvement of primary radiochemotherapy is essential.

Several early clinical trials have studied the role of radiationdose
intensification to the primary tumor andmetastatic lymphnodes in
order to improve local control forHNSCC(5–7).However, concern
still exists about excessive acute and late toxicities of this approach
and therefore no large randomized trial has been conducted so far.
In addition, intensification of radiotherapy by using altered
fractionation schemes only lead to very modest improvement of
outcome (8). Thus, a dose of 70 Gy delivered over 7 weeks to the
entire tumor iswidely considered a standard in patients undergoing
chemoradation for HNSCC (9). Heterogeneity within a tumor has
been recognized as a characteristic of head and neck cancer (10),
with some sub-regions beingmore resistant to radiochemotherapy.
Consequently, the strategyof treatment intensification to these sub-
volumes could lead to better outcomes in terms of local control and
subsequently overall survival, without a significant increase in
treatment-related toxicities. Recent advancement in radiation
technology in principle allows such an escalation of radiation
dose to tumor sub-volumes. However, identification of these sub-
volumes is a crucial step within this therapeutic concept.

In contrast to selective biopsy specimens obtained from a small
areaof the tumor, theuseof imagingasbiomarkerhas the advantage
to analyze the entire three dimensional tumor volume. The
feasibility of delivering a dose boost, so-called dose painting, to
tumor sub-volumes has been previously demonstrated, mostly
based on functional, metabolism-related (fluorodeoxyglucose)
or hypoxia-related (fluoromisonidazole) positron emission
tomography (PET) imaging (11–13). In recent years, high-
throughput, multidimensional and quantitative images analysis
(radiomics) revealed that relevant biological information can be
extracted also from routinely acquired, easy to perform
morphological imaging, such as regular computed tomography
(CT) (14–16). Many investigations have studied the potential of
radiomics to predict the risk formetastatic spread, progression-free
in.org 2
survival, overall survival or biological phenotypes (17–19) showing
encouraging results. In the context of radiotherapy, several studies
indicated an association betweenCTheterogeneity and local tumor
control (20–24).However, there is so far scarce data on radiomics as
a method to individually tailor dose distribution to specific sub-
volumes within a tumor (25–27).

Here, we investigated CT radiomics for identification of
radioresistant sub-volumes of the primary tumor leading to
persistence or recurrence after curative radiochemotherapy.
Reliable detection of these resistant sub-volumes may allow for
a tailored treatment by increasing radiation dose to these parts.
METHODS

Study Population
We retrospectively analyzed patients with primary locally
advanced HNSCC (cT3/4 or cN+) treated at our institution
between June 2004 and October 2015, who experienced a local
in-field tumor recurrence. Local in-field tumor recurrence was
defined as a recurrence occurring within the high-dose target
volume (excluding lymph nodes), and had to be confirmed by
biopsy. Only patients that received a definitive high dose
radiation treatment with an equivalent total dose of 68 - 70 Gy
in 2-2.11 Gy fractions and a concomitant systemic therapy with
either cisplatin and/or cetuximab during the course of
radiotherapy were included. A further requirement was a
contrast-enhanced CT (CE-CT) imaging before treatment and
a FDG-PET/CT at the time of local recurrence. Contrast protocol
was not standardized, however patients with contrast visible only
in thyroid were not included. Follow up of patients was done
according to the institutional routine. The first FDG-PET/CT for
treatment response was usually done three months after
completion of treatment. A subset of patients included in this
study and now reviewed retrospectively has been treated within a
prospective trial back then (28).

Data analysis was approved by the Swissethics and was
carried out in accordance with Swissethics guidelines and
regulations. Patients gave informed general consent.

We identified in total 66 patients fulfilling the above mentioned
inclusion criteria. However, twenty-one cases had to be excluded,
as a reliable image registration between follow-up 18F-
fluorodeoxyglucose (18F-FDG) PET and CE pretreatment planning
CTwasnotpossible. Five additional patientswere excludeddue to the
small size of recurrence (volume < 27 voxels), which precludes a
reasonable radiomics analysis. Thus, in total 40 patients were
available and were split into a training cohort, consisting of
May 2021 | Volume 11 | Article 664304
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retrospectively collected data (n = 28), and a validation cohort,
comprising patients from a prospective phase II clinical study
(n = 12) (28). In the majority of cases, the primary tumor was
located in the oropharynx, for further details see Table 1.

Contrast-Enhanced Planning CT
Image Acquisition
Iodine contrastwas injected intravenouslyprior toCT imaging.The
contrast protocol varied over the years of data acquisition. Images
were acquired on five different scanners (Siemens Somatom
Definition AS n = 20, Siemens Volume Zoom n = 13, Siemens
Somatom Plus n = 5, GE Healthcare, Discovery STE n = 1 and GE
Healthcare,Discovery LSn= 1)with 120or 140 kV tube voltage, 2 –
3.27mm slice thickness and <1mm in-plane voxel size. The tube
current varied between 120-450 mAs, and angular exposure
adaption was applied in 7 scans (17%). Images were
reconstructed using filtered back projection and soft kernel (B30).

Definition of Primary Tumor and
Recurrence Volume
The primary tumor was contoured based on the CE planning CT
assisted by the co-registered pretreatment diagnostic FDG-PET/
CT and MRI scans if available. However, in contrary to the FDG-
PET, which was available in all the patients, a pretreatment MRI
was only present in 5 cases. The recurrence region was contoured
as high FDG uptake in the follow-up FDG-PET/CT at the time of
the detection of the recurrence (Supplementary Figure S1).
High FDG uptake region was considered as 40% SUVmax
threshold-based sub-volume in the recurrence PET-CT. Details
of the PET scanning protocol can be found in the supplement
(Supplementary Table S1). The contours were then transferred
Frontiers in Oncology | www.frontiersin.org 3
to the initial planning CT by rigid registration with focus on the
tumor region (Eclipse v.15, Varian Medical Systems, USA). Two
structures were created for further analysis: the overlap of tumor
recurrence and primary tumor (GTVrec) and the primary tumor
contour minus the recurrence (GTVcontrol). Prior to radiomics
analysis both GTVrec and GTVcontrol were postprocessed, by
removal of contours on slices affected by metal artifacts.

Radiomics Analysis for Differentiation
of Controlled to Non-Controlled Tumor
Sub-Volumes and Detection of
Radioresistant Volumes
Radiomics analysis was performed using Z-Rad software
implementation (Python v 2.7). This implementation was
benchmarked in the Image Biomarker Standardization Initiative (29,
30). Images were resampled to cubic voxels (3.3 mm, largest voxel
dimension in the dataset) using trilinear interpolation.Hounsfield unit
rangeof -20 to180HUwas set to limit the analysis to soft tissue.Due to
the small size of analyzed volumes, the feature set was limited to
intensity (n=25) and texture features (n=136).The full list of analyzed
features is presented in the Supplementary Table S2. Volumes with
less than 27 voxels were excluded from analysis.

In total, three different radiomics models were built (Figure 1):
The “bi-regional radiomics” analysis aims to differentiate tumor
regions, which stay controlled after treatment (GTVcontrol) and the
non-controlled region,which resulted in a recurrence detectedon the
FDG-PET CT (GTVrec). For detection of radioresistant volumes
within the primary tumor without prior knowledge on their location
and prior to any treatment two “local radiomics models” were built.
Here, the predefined region of interest (ROI), corresponding to the
primary GTV and from now on namedGTV, is divided into smaller
sub-regions,whichare later used as amask for feature extraction.As a
consequence, instead of one vector of features describing the GTV,
local radiomics returns a set of radiomics-based parametric maps.
These maps visualize for example changes in heterogeneity or
contrast across the GTV. The local features are calculated based
only on the voxels within the GTV, whereas the neighboring voxels
(e.g. healthy tissue, manually excluded artifacts) are set to ‘not a
number’ (discarded). We have implemented two approaches for the
definition of sub-regions (Figure 1):

• Division of the GTV into a fixed number of sub-regions with
the center of the grid attached to the center of the GTV (in
this study 8 sub-regions, the number was chosen to provide
sufficient information in 3D and to ensure large enough
neighborhood to define texture). The same number of sub-
regions was analyzed per patient and their volume depended
on the GTV size.

• Division of the GTV into sub-regions with fixed size. In the
second approach, the placement of the grid is optimized to
cover a GTV volume as large as possible. The full coverage is
rarely feasible, because in order to avoid meaningless features
calculated only on a few voxels, we have set a threshold T = 25
of minimum number of ROI voxels (voxels with value
different than ‘not a number’) in the sub-region. In this
study, we decided for 5x5x5 voxels grid with 5 voxel shift.
There was no overlap between sub-regions to ensure
TABLE 1 | Patient characteristics of all included patients.

Training Cohort
(n=28)

Validation Cohort
(n=12)

Tumor location
Oropharynx 19 (68%) 6 (50%)
Hypopharynx 5 (18%) 4 (33%)
Larynx 3 (11%) 0 (0%)
Oral Cavity 1 (3%) 2 (17%)

Time to recurrence (median
[range] months)

7 [2 - 59] 8 [4 -24]

T stage
1 1 (3%) 0 (0%)
2 5 (18%) 0 (0%)
3 7 (25%) 3 (25%)
4 15 (54%) 9 (75%)

N stage
0 5 (18%) 2 (17%)
1 4 (14%) 1 (8%)
2a 0 (0%) 1 (8%)
2b 7 (25%) 2 (17%)
2c 12 (43%) 6 (50%)
3 0 (0%) 0 (0%)

HPV status
Positive 3 (11%) 3 (25%)
Negative 12 (43%) 8 (67%)
Unknown 13 (46%) 1 (8%)
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independent description of the sub-regions. The 5 voxels grid
size was a trade-off between ensuring a large enough
neighborhood to define texture and a high spatial resolution
of the model. Other sizes of the grid were not tested. In
contrary to the first approach different numbers of sub-
regions were analyzed per patient but their size was constant.
Statistical Analysis
The classification and detection tasks were performed using
logistic regression. In the bi-regional model, the two labels
were assigned to GTVcontrol and GTVrec volumes. For local
radiomics models, the recurrent label was assigned to regions
with more than 50% of voxels overlapping with GTVrec. The 50%
threshold was chosen arbitrarily, other thresholds were not
tested. The remaining sub-regions were labeled as control.

The following feature reduction and binary classification
procedure was used. Features with high and moderate correlation
to number of voxels in the local region were excluded (r > 0.5).
Principal component analysis combined with univariate logistic
regressionwas used for dimensionality reduction (20). The number
of retained principal components was computed using the Horn
method. Radiomic features were grouped based on their Spearman
correlation to principal components. Per group, only the feature
with the largest area under operator receiver characteristic curve
(AUC) was chosen, given that p-value < 0.05. The final model was
built in themultivariable logistic regressionwith backward selection
of variables based on the Akaike Information Criterion. The final
model was tested in the separate set as described in the sections
below.The confidence intervalswere computedwith 2000 stratified
bootstrap replicates.
Frontiers in Oncology | www.frontiersin.org 4
For the bi-regional radiomicsmodel and thefirst local radiomics
model based on 8 sub-volumes, training was performed on the
training cohort and the results validated in the validation cohort as
previously specified in the `study population` section. The 75th
percentile threshold of predictions in the training cohort was set as
classification threshold to optimize the sensitivity and specificity of
the model.

The second local radiomics model with a fixed 5x5x5 grid
size, was trained and tested in leave-one-out cross-validation
(LOOCV) on the patient level. The full split into training and
validation cohort was not feasible due to the presence of metal
artifacts in some images. These artifacts, especially when present
in the middle of the GTV, strongly influence optimal placement
of the grid and thus for this experiment only patients with no
visible artifacts in the GTV were selected. Data from 23 patients
with no visible CT artifacts were analyzed. The final model was
trained on 12 patients (= 48%), who had both classes of sub-
volumes (at least one sub-region with 50% contribution of
recurrent voxels), which was a requirement of LOOCV.

RESULTS

Differentiation of Controlled to
Non-Controlled Tumor Regions
On average, the volume of GTVrec was 20% (range: 2%-71%) of
the initial primary tumor volume. A logistic regression model
with backward selection of variables showed a good
discrimination between GTVrec and GTVcontrol, in both the
training and the validation cohort, see Figure 2A (training
AUC = 0.79 (95%CI: 0.66 – 0.91); validation AUC = 0.88 (95%
A

B

FIGURE 1 | Scheme of the analysis giving an overview on all three radiomics models. The recurrence region was identified on PET/CT imaging and rigidly
transferred to the contrast-enhanced planning CT. Different models were trained using different methods and aiming at different purposes. (A) In the bi-regional
radiomics, features were extracted from GTVrec and GTVcontrol and only a differentiation between recurrent and controlled sub-volumes was performed; (B) in two
local radiomics models, a detection task was performed and thus sub-volumes were defined without any prior information on the location of recurrence. In the
classification task, a sub-volume was classified as recurrence (X) if more than 50% of the voxels belonged to the original contour of the recurrence (red).
May 2021 | Volume 11 | Article 664304
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CI: 0.72 – 1.00). This bi-regional radiomics model consisted of
two features: “GLRLM gray level non-uniformity” and “merged
GLCM sum entropy” - indicating that sub-volumes showing
higher density heterogeneity have a higher propensity of
recurrence. In the validation cohort, the model achieved high
sensitivity (= 0.75) and specificity (= 0.83).

Detection of Radioresistant Sub-
Volumes – Local Radiomics Model
The first model with division of the GTV into 8 equi-volume
regions comprised three features: “GLCM cluster shade”,
“GLDZM gray level variance” and “histogram median”. This
local radiomics model showed slightly inferior performance
(AUC = 0.70; 95%CI: 0.53–0.86) in the validation cohort
compared to the bi-regional radiomics model (Figure 2B). In
the validation cohort, in all patients in whom recurrence sub-
volumes were detected, at least one of the sub-volumes was
correctly identified. The median size of detected recurrence was
43% of the entire recurrence volume. This result is linked to the
threshold for recurrence sub-volume definition (50%) and thus
can be further improved in the future studies.

For the second definition with division of the GTV into sub-
volumes of an equal size (5x5x5 voxels) the rigid grid placement
was chosen on an individual patient basis in order to maximize
the coverage of studied tumor. 12 patients (= 48%) had both
classes of sub-volumes (recurrence and tumor control, based on
a 50% criterion). The average AUC in leave-one-out cross-
validation was 0.68. In three cases the AUC was below 0.5,
indicating worse than random prediction. This was tracked back
to a small number of analyzed sub-volumes (e.g. only two sub-
volumes) or a high recurrence involvement (more than 25%) in
most of the sub-volumes, meaning that in this tumor no true
controls with no contribution of radioresistant clones were
present. Similar features were selected in different cross
Frontiers in Oncology | www.frontiersin.org 5
validation folds: GLSZM zone size entropy (n=12), GLCM
joint maximum (n=9) and histogram range (n=8).

Detailed summary of the all models together with numbers of
sub-volumes used for model training and validation is presented in
Table 2. Number of sub-volumes in the local radiomics analysis per
patient is summarized in the Supplementary Figures S2 and S3.
DISCUSSION

HNSCCs, exhibiting a high heterogeneity in CT images, were
previously shown to respond worse to radiochemotherapy (20–
24). Several prognostic radiomic signatures have been proposed
recently, but studies on predictive signatures with potential impact
on treatment optimization are scarce (31). In this study, we were
able to differentiate intratumoral levels of radiosensitivity bymeans
of CT radiomics. Further, we proposed an algorithm for
pretreatment detection of radioresistant regions.

Identification of treatment resistant tumor sub-volumes by
means of medical imaging has been previously investigated,
mainly by detection on hypoxic imaging but also different
imaging modalities. Tumor hypoxia is a known adverse
prognostic factor for local control after radiotherapy of HNSCC
(32). However, only two studies tried to correlate spatial location of
tumor recurrence and initial hypoxic region, and only one of them
showedoverlap of those regions (33, 34). A correlation of high FDG
uptake parts of a tumor to regions of more resistant tumor sub-
volumes leading to recurrences has been shown (35, 36).
Accordingly, FDG-based dose escalation strategies have already
been exploited and proven to be feasible (37). However, also other
imaging modalities like diffusion-weighted MRI or dynamic
contrast-enhanced MRI, were shown to be able to identify risk
factors for worse outcomes in head and neck cancer (38).
Comparison studies have shown that the volumes defined by
A B

FIGURE 2 | Receiver operating characteristic for (A) differentiation between recurrent and controlled sub-volumes in bi-regional radiomics model showing a good
discrimination between the radioresistance levels, in both the training and the validation cohort (B) detection of recurrent sub-volumes with local radiomics showing a
good performance of the model with ability to detect radioresistant sub-volumes of the tumor on pretreatment CT images.
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FDG-PET versus DWI – MRI do not overlap completely and
identify distinct volumes within the primary tumor (39, 40).

Recently, Beaumont et al. (25) correlated location of tumor
recurrence to pretreatment local texture features in FDG PET
imaging in a small cohort of 15 patients. The performance of
their model was comparable to ours (median AUC of 0.71).
However, in contrast to our study, their results were only tested
in leave-one-out cross-validation, owing to a small number of
patients. In addition, the study did not clearly define if CT
information was used together with PET information for
definition of the primary tumor contour. Delineation based solely
onPET imagesmay lead to neglecting tumor regions with lowFDG
uptake (41). Our local radiomics results indicate that sub-volumes
with higher CT heterogeneity are more radioresistant, which is in
agreement with previous studies showing that higher tumor-wide
CT heterogeneity is linked with reduced local control rate (20–24).
Local radiomics inPET/CThas also been investigated in the context
of outcome prediction in nasopharyngeal cancer, showing a higher
prognostic value than with models based on entire tumor volume
analysis (26). However, this study did not use local radiomics for
sub-regional detection of treatment resistance sub-volumes.

With the introduction of intensity modulated radiation therapy
(IMRT) the concept of delivery higher doses to head and neck
tumors has regained interest. IMRT allows not only for better
sparing of OARs, but also enables delivery of simultaneously
higher doses to selected areas (42), so called dose painting. The
identification of radioresistant tumor sub-volumes that require
higher radiation doses, is an unmet clinical need. The ESCALOX
study currently investigates a dose escalation up to 80.5 Gy using a
simultaneous integrated boost (SIB) to the whole primary tumor
and large involved lymph nodes (43), whereas another group
performed a planning study with dose escalation only to hypoxic
areas within the tumor as defined by 18F-Fluoroazomycin
arabinosid (FAZA) PET/CT and found it to be feasible while
respecting the maximum OAR constraints (44). Resistance of
head and neck cancer cells to radiotherapy is not conditioned by
one single biological feature but rather driven by several different
Frontiers in Oncology | www.frontiersin.org 6
mechanisms (39). Consequently, a method capturing all these
distinct features is desirable. The underlying biology for the
distinct radiomics signature is not simple nor exactly known for
the individual case. But, a correlation of radiomic signature with
underlying genomic alterations and biological phenotype has been
shown (45). In our study, the selection of the radioresistant sub-
volumes is meant to be done by radiomics analysis, which does not
account for any particular biological background/histopathological
difference. However, a strong relationship between medical
images, or more precisely, the extracted, quantitative imaging
features, and the underlying tumor phenotype and biology
was shown previously (46, 47). Thus, in contrast to the above
mentioned study, which selected the radioresistant parts solely
based on hypoxic regions, our radiomics approach covers a broader
spectrum of underlying biological phenotypes/alterations. Still, the
histopathological factors behind the selected sub-volumes in our
study are unknown, and thus definition of an adequate dose boost
is not straightforward and should be a subject of further research.

This study was performed on relatively small patient cohort.
However, for two out of three proposed models (bi-regional and
local radiomics with fixed number of sub-volumes), a successful
model validation in a priori defined cohort was performed.
Remarkably, the performance of the models was higher in the
validation cohort, in comparison with the training cohort. The
validation cohort is a prospective cohort with standardized imaging
and treatment protocol – in comparison to the training cohort,
which was retrospectively collected. Therefore, higher model
performance in the validation might be a result of premature
training or better data quality. In the head and neck region, HPV
status is known to influence CT values distribution within primary
tumor (48). Unfortunately, HPV status was unknown for a large
proportion of patients (35%). Consequently, an analysis on HPV
status as an effector is not possible due to the high number of
missing values in the individual patient cohorts. The analyzed
cohort is also heterogeneous in terms of tumor subsites, and
theirs impact on the performance of the model should be further
investigated. The presence of artifacts did not allow for a full
TABLE 2 | Details of the final radiomics models.

Model Model endpoint AUC training AUC
validation

Selected features Model
coefficients

No of analyzed sub-volumes/
No of recurrent sub-volumes

training validation

Bi-regional
radiomics

Sub-volumes
differentiation

0.79
(0.66-0.91)

0.88
(0.72 –

1.00)

GLRLM gray level non-uniformity
merged
GLCM sum entropy
intercept

141.43
4.56
-32.64

56/28 24/12

Local radiomics:
fixed number of
sub-volumes

Recurrence detection 0.66 (0.56 –

0.75)
0.70

(0.53 –

0.86)

GLCM cluster shade
GLDZM gray level variance
histogram median
intercept

0.0015
0.019
-0.11
-0.24

222/48 91/11

Local radiomics:
fixed size of
sub-volumes

Recurrence detection — 0.68
(AUC < 0.5

in n=3
cases)

GLSZM zone size entropy*,
GLCM joint maximum* histogram
range*

—

—

—

114 (105
-122)#/

41 (33 - 42) #

10 (2 - 19)#/2 (1-10)#
May
 2021 | Volume
Area under receiver operating characteristic curve (AUC) and 95% confidence intervals. The second local radiomics model was tested in the leave-one-out cross-validation, thus no results
for the training cohort are shown and the validation AUC is the average over the folds. *Most frequently chosen features over different folds. #Median and range of the number of sub-
volumes analyzed over different folds.
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validationof thefixedgrid size localmodel.With the introductionof
iterative metal artifact reduction reconstruction algorithms in CT
few years ago, this limitation of the model is addressed for future
studies (49). Availability of larger data collections may also permit
for testing different settings in the local radiomics analysis, such as
variable size of the grid or smaller value of the translation vector,
allowing for an overlap between sub-volumes. Today, it is not clear
which methodology provides optimal results. In our study, we
assumed that all of the analyzed tumor sub-volumes are
independent and thus, no overlap was allowed. Additionally,
classification was performed using logistic regression. In the
future, segmentation algorithms may be tested to improve the
predictive power of local radiomics.

Additional validation of the proposed approachmay be derived
from surgical cohorts, where pretreatment local radiomics maps
may be correlated with full-mount tumor histopathology.
Alternatively, if contrast-enhanced CT is present at the time of
recurrence similarity of the radiomics features in the corresponding
areas in the two, sequential investigations could be measured to
evaluate if the signature remains stable over time.

This study has an inherent selection bias, since only patients
with observed recurrences were analyzed. In the real pretreatment
classification, a standard radiomics analysis can be used prior to
local radiomics to preselect patients with high risk of tumor
recurrence, as shown by other studies (20–24).

In conclusion, this is the first study indicating that tumor
radioresistance can be localized on pretreatment CT images with
validation of the radiomics model in an independent cohort. This
is a proof of concept study, indicating that local CT radiomics
can be used as predictive biomarker in radiotherapy and
potential target for dose intensification.
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