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ABSTRACT

Existing machine-readable resources for large-scale
gene regulatory networks usually do not provide
context information characterizing the activating
conditions for a regulation and how targeted genes
are affected. Although this information is essentially
required for data interpretation, available networks
are often restricted to not condition-dependent,
non-quantitative, plain binary interactions as
derived from high-throughput screens. In this
article, we present a comprehensive Petri net
based regulatory network that controls the diauxic
shift in Saccharomyces cerevisiae. For 100 specific
enzymatic genes, we collected regulations from
public databases as well as identified and manually
curated >400 relevant scientific articles. The
resulting network consists of >300 multi-input
regulatory interactions providing (i) activating con-
ditions for the regulators; (ii) semi-quantitative
effects on their targets; and (iii) classification of the
experimental evidence. The diauxic shift network
compiles widespread distributed regulatory infor-
mation and is available in an easy-to-use machine-
readable form. Additionally, we developed a
browsable system organizing the network into
pathway maps, which allows to inspect and trace
the evidence for each annotated regulation in the
model.

INTRODUCTION

Gene regulatory networks (GRNs) model the effects of
transcription factors (TFs) on the expression of their
target genes (TGs). As large networks are collected in
existing databases, such as RegulonDB (1), YEASTRACT
(2) and REDfly (3), it is tempting to use them for the
interpretation of large-scale gene and protein expression
data.

However, to perform meaningful interpretation of such
high-throughput transcriptomic and proteomic data,
GRNs need to be modeled at least by (i) defining the
conditions under which a regulation takes place or does
not take place and (ii) characterizing the effect on the
expression of the regulated TG.

The first requirement results from the fact that, to adapt
to changing environmental conditions, the cell usually
responds with altered gene expression. For example,
gene regulation in baker’s yeast Saccharomyces cerevisiae
changes in response to different nutrients in the growth
medium (4). Hence, the interpretion of gene expression
measured under certain conditions requires a dynamic
condition-dependent definition of the enabled
regulations—the active subnetwork of all possible
regulations.

The second requirement is due to the fact that genes,
qualitatively and quantitatively, are not regulated in a
uniform way. On the one hand, again depending on the
environmental conditions, relevant genes are activated or
repressed to a different extent. On the other hand,
combinatorial control of a TG by several TFs can have
a non-trivial synergistic effect (5,6). Thus, to understand
the observed expression in the data, that is to assign
observed expression changes to certain regulators, a
detailed characterization of the regulatory effect on the
TG expression is necessary. This includes the
determination of the ‘effect type’ (activation or inhibition)
and the ‘effect strength’ (weak or strong activation/
inhibition) as well as an appropriate combination of
multi-input effects.

Although both requirements are therefore essential,
such context information characterizing a regulation is
often unknown or not annotated. Derived from high-
throughput protein–protein interaction or TF-binding
experiments (7,8), the majority of available large-scale
GRNs consists of plain binary interactions, e.g. stating
for a certain TF F and its TG G that F interacts with G.
The effect of these interactions on gene expression is
usually not further characterized. It is also unclear
whether the interactions take place under conditions
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different from the setup used in the respective
experiments.

In this article, we propose a model for large-scale GRNs
satisfying both requirements and present a comprehensive
realization of the model for transcriptional regulation of
the diauxic shift in yeast.

Saccharomyces cerevisiae is a facultative anaerobic
organism preferably fermentating glucose to produce
energy for fast growth. Subsequent to the depletion of
glucose, fermenting yeasts switch to slower respiratory
growth on a non-fermentable carbon source like ethanol,
lactate, glycerol or fatty acids. This involves a major
reprogramming of gene regulation that includes the
deactiviation and activation of specific TFs, which in
turn activate or repress specific metabolic genes (1,9,10).
Many of the differentially regulated genes code for
enzymes, which metabolize the non-fermentable carbon
source available in the growth medium, and use the
resulting products for the recreation of glucose via
gluconeogenesis and the production of energy via the
tricarboxylic acid (TCA) cycle.

MATERIALS AND METHODS

The yeast GRN

Experimental techniques
TFs activate or repress the expression of TGs in response
to extra- and intracellular signals. Such gene regulatory
interactions (GRIs) between TFs and TGs can be
experimentally determined either by directly confirming
the TF binding to the regulatory region of the TG or
indirectly inferred from TG expression changes following
a TF perturbation.

Direct evidence (TF binding). Physical binding of a TF to
the promoter of its TG can be determined using several
techniques such as wild-type versus TG promoter mutant
analysis via a lacZ-fusion assay (11) or northern blot (12),
DNA footprinting (13), Electrophoretic Mobility Shift
Assay (14) and Chromatin ImmunoPrecipitation [ChIP;
(15)].

The combination of ChIP with the microarray
technology [ChIP-chip; (16)] allows the genome-wide
identification of TF-binding sites. ChIP-chip experiments
have been comprehensively performed for all yeast TFs
(17,18).

Putative TGs of a TF can be predicted based on high
sequence similarity to its binding sites at the promoter of
known TGs. Consensus sequences of TF-binding sites,
represented as position weight matrices (PWMs), have
been computed for many known yeast TFs and stored in
databases like TRANSFAC (19) and JASPAR (20).
However, PWM-based GRIs are hypothetical, and only
a fraction of them can be experimentally validated
(Figure 1).

It is frequently observed that the binding of a certain TF
to the promoter of its TG is ineffective, i.e. it does not
result in an observable quantitative expression change of
the TG. This has several reasons, either other TFs might
be required to bind or post-translational modifications

(e.g. phosphorylation of the TF) or other signals might
be needed to activate the regulatory function of the TF
(21). Indeed, as depicted in Figure 1, <10% of known
direct physical bindings are associated with a subsequent
quantitative fold change of the corresponding TG.

Indirect evidence (TG expression). In contrast to binding
studies, regulatory effects (activation or inhibition of TG)
can be derived and quantified (fold change) from gene
expression studies, where certain TFs have been either
knocked out, over-expressed or in other ways functionally
modified. Frequently used experimental techniques
include lacZ-fusion assays, northern blot, real-time PCR
(22) and microarrays (23). The most comprehensive series
of yeast TF knockout microarrays has been performed by
Hu et al. (24), where significant expression changes of
putative TGs have been assigned to the individual
deletion of almost every single yeast TF.
A large fraction of effects observed exclusively in such

TF perturbation studies are assumed to be indirect, i.e.
the expression change of a TG is a secondary effect,
which is due to the deregulation of the TF caused by
another knockout. Indeed, <12% of known indirect
effects are associated with direct physical binding
(Figure 1).

Confidence classes of experimental evidence. Whether the
confidence in reported GRIs is ‘low’ or ‘high’ depends on
the available experimental evidence. Usually, combined
evidence of TF binding and TG expression, i.e. the TF
binds to the promoter of the TG and a perturbation of
the TF results in an expression change of the TG,
increases the confidence. In contrast, GRIs with evidence
for either binding or expression are not highly reliable per
se (see again Figure 1). The same holds for additional

Figure 1. Overlaps between predicted, direct and indirect GRIs in
S. cerevisiae. GRIs with experimental evidence were taken from
YEASTRACT (microarray and binding studies). Predictions were
performed for all 160 yeast TF PWMs in JASPAR for the promoter
regions of all yeast genes (using the R package cureos, default settings).
The percentage of predictions, which have an experimental evidence for
binding is �5.2% (5025 of 96 097). On the other hand, 9.3% (2336 of
25 101) bindings are associated with a change of TG expression.

Nucleic Acids Research, 2013, Vol. 41, No. 18 8453

paper
S.
,
transcription factor
]
Transcription f
actors (
)
target genes (
)
,
P
.
]
N
]
]
(EMSA; 
]),
(
[
])
(
[
])
]
]
]
,
for example 
and
]
less than 
:
employed 
N
]
,
]
]
less than 
:


evidence from consensus analyses and author statements
for which the experimental evidence cannot be traced. We
thus discriminate in the following between ‘high’
confidence regulations having combined evidence for
binding and expression and ‘low’ confidence regulations
in all other cases.

Resources
We exploited three representative resources for yeast
GRIs: The Sacharomyces Genome Database [SGD; (25)]
is the source for a variety of genomic and biological
information on S. cerevisiae and contains regulatory
information for many yeast genes (as quantified in
Figure 2b). Besides other widespread biological facts,
including post-transcriptional regulation, metabolic
function and orthology to genes in other organisms, the
SGD summary paragraph on a specific yeast gene often
contains different aspects of transcriptional regulation
(upstream signals, putative binding sites, validated TF
binding, expression effects). However, this valuable
information is not easy accessible: the gene summaries
are written in free text, and the aspects described differ
considerably between genes. Manual curation is thus
required to extract this information.
Compared with SGD, YEASTRACT (2) is a specific

database for transcriptional regulation in S. cerevisiae, in
which GRIs are uniformly represented as binary TF–TG
associations in a machine-readable format (obtainable as
tabular flat file). Mainly derived from recent genome-wide
TF binding and TF perturbation experiments,
YEASTRACT aims to collect all TFs either binding to a
particular TG or show expression changes of the TG
when perturbed. Although YEASTRACT stores a large
number of GRIs (Figure 1), it does not provide context
information characterizing under which conditions the
GRIs take place and how targeted genes are affected.
In contrast to YEASTRACT, Herrgard et al. (26) have

curated the nutrient-controlled regulation of yeast genes
involved in metabolic pathways. Mainly derived from
detailed studies with a focus on one or a few specific
genes, it presumably contains significantly less false-
positive GRIs as compared with untargeted genome-
wide experiments. Each GRI is classified (activation/
inhibition), frequently assigned to a nutrient-based
context (extra- and intracellular signals) and described
by a boolean rule (e.g. if SIGNAL and TF, then TG).
Although enriched with required context information,
the GRN is sparse: only a small fraction of the vast
amount of articles existing on the regulation of metabolic
yeast genes has been taken into account.

The diauxic shift GRN

Curation
We curated a GRN that controls the diauxic shift in three
steps (our approach is illustrated in Figure 2a, and the
information collected in each step is detailed in Figure 2b):

(1) TG set determination: We collected current reviews
on transcriptional regulation of the diauxic shift to
define the set of involved TGs. We concentrated on
Zaman et al. (4), an extensive description of how

Saccharomyces responds to different nutrients, Hiltunen
et al. (27) and Gurvitz and Rottensteiner (28) for
transcriptional regulation of fatty acid metabolism and
oleate induction, and especially on Schüller (9) and
Turcotte et al. (10), who comprehensively reviewed the
transcriptional control of non-fermentative metabolism
in S. cerevisiae. Based on this literature, we determined
the involved metabolic processes and the associated
enzymatic TGs.

(2) GRI collection: We systematically queried existing
resources, i.e. SGD, YEASTRACT and Herrgard et al. (26),

Figure 2. Curation approach. (a) Protocol: based on a set of selected
reviews, we defined the set of diauxic shift TGs. Each gene was queried
for regulatory information in SGD, YEASTRACT and Herrgard et al.
(26). The GRN was compiled from information directly retrieved from
the resources and from the curation of all extracted references. The
information collected in each step of our approach is detailed in (b).
Slots on the x-axis from left to right: (1) Number of diauxic shift TGs
for which regulatory information could be annotated; (2)–(6) Number
of regulations with (2) either Signal or TF annotated; (3) Signal and
TF; (4) regulation type: activation or inhibition; (5) effect strength:
weak, medium, strong; (6) High confidence, see ‘Materials and
Methods’ section; (7) Number of articles in which regulations could
be annotated.
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for information on the transcriptional regulation of the
identified TGs. The representation of the information
available in each of the three resources is described in
more detail in the previous section.
In SGD, we used the summary site for each TG and
manually screened the Description slot and the
Summary Paragraph (if existing) for regulatory
information. Additionally, we collected all references to
the primary literature listed on that page.

In YEASTRACT, we retrieved for each TG all regulating
TFs using the Search for TFs (by regulated TG)
functionality. From the resulting list of binary TF–TG
associations grouped by experimental evidence (direct or
indirect, see previous section ‘Experimental techniques’),
we also collected all references assigned to the associations
for experimental support.

Eventually, we restricted the curation of Herrgard
et al. for all metabolic yeast genes on the information
available for the diauxic shift TGs. That yielded a list of
regulatory TF–TG relationships (classified as activating or
repressing) that are enabled under certain conditions, i.e.
triggered by a particular extra- or intracellular signal.
Again, we collected all cited references.

(3) GRN compilation: We compiled the GRN via
combination of the regulatory information that was
directly retrieved from the resources or curated from the
references collected in Step 2.
The combination of the directly retrieved information
initially required the identification of GRIs contained in
two or all three resources. For such well-studied GRIs, the
resources often complemented each other. For example, a
binary TF–TG association from YEASTRACT could be
characterized in more detail with features retrieved from
SGD or Herrgard et al. such as regulation sign (+/�), effect
strength and the enabling context. In addition, GRIs with
low confidence in one resource alone frequently gained
high confidence when evidence was combined from
several resources (see previous section ‘Confidence classes
of experimental evidence’).

On the other hand, curation of the collected references
often allowed the annotation of additional features and a
more detailed characterization, especially for poorly
studied GRIs contained in only one resource. Curation
was performed down to the actual experimental evidence
for a GRI under investigation, i.e. references were traced
iteratively until the experimental confirmation of the
regulation was found. In general, we aimed at the most
detailed GRI characterization possible from literature
curation, for which we propose a general representation
in the next section.

Representation
We integrate the curated GRIs into discrete regulation
models, i.e. models in which discrete states of the
regulators (TFs and signals) result in discrete quantity
states of the regulated gene (for instance a low, medium
or high expression) depending on the regulation type. We
use Petri net models to efficiently represent the
information typically available in the literature. Petri
nets are well-established graphical and mathematical

models (29) and have been extensively applied to bio-
chemical processes, such as signal transduction pathways
(30,31) and GRNs (32,33). The extension of Petri net
models with fuzzy logic (34) in the PNFL approach (35)
allows a more detailed semi-quantitative representation of
in- and output of the Petri net transitions, which are
defined by simple rule sets according to the regulation
type (36,37). Thus, we replace the frequently used
representation of GRIs as ‘binary’ TF–TG interactions
by ‘multi-input’ Petri net transitions, in which the
required context knowledge (activating conditions,
combinatorial control and effects on TG expression) can
be integrated by accurate parametrization of in- and
output and definition of the transition type. The
parametrization of such transcriptional transitions is
based on a differential regulation setting, where the
presence or absence of a signal induces an enhanced or
reduced activity of specific TFs, which in turn regulate
their TGs differentially (up or down, as compared with
the corresponding opposite signal state).

Input. The input of a transcriptional transition is
composed on the one hand by the context signals, which
trigger the regulation and, on the other hand, by the
TFs, which perform the actual regulation of the TG
under investigation. For example, the depletion of
glucose and the availability of a non-fermentable carbon
source (the signals) trigger the derepression of enzymes
involved in non-fermentative metabolism (the TGs) by
specific TFs.
Signals can be extra- or intracellular messenger

molecules (such as cAMP), nutritional compositions (for
instance, growth media lacking glucose), environmental
and experimental conditions (such as high pH or heat
stress) and even cellular states (such as retrograde
regulation depending on the functional state of the
mitochondria).
Based on the absence or presence of given signal(s),

the TFs are classified as up- or downregulated in
discrete states ‘weak’, ‘medium’ or ‘strong’. The special
states ‘overexpression’ (for up) and ‘knockout’ (for
down) were annotated as well (see Figure 3 for an
example).
In general, the signal and TF assignments define the

conditions under which the transition is enabled.

Output. Analogously, TGs are classified as up- or
downregulated by a given transition with a ‘weak’,
‘medium’ or ‘strong’ effect strength. Intuitively, this
models the fold change in the transcription of the TG.
Although the effect strength might differ considerably
between data sets in range and distribution, the literature
often explicitly states whether a regulation has a weak or
strong effect on TG expression. In cases where an exact
fold change is reported, we discretize the fold change
according to empiric standards: ‘weak’ regulation refers
to expression changes below 2-fold, ‘medium’ between 2-
and 5-fold and ‘strong’ above 5-fold. The transition type
results immediately from a given in- and output
configuration, e.g. a TF knockout, resulting in a weak
upregulation of the TG, indicates a weak inhibition.
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Annotation framework
To collect regulatory knowledge effectively from
publications, we performed the curation using our in-
house annotation software RelAnn (Csaba et al.,
unpublished). The web-based tool was developed for
general text-based annotations of different kinds of
relations within a systematic framework.
The main design principles of RelAnn are as follows:

. pre-indexing of defined biological entities (genes,
proteins, etc.) in the literature;

. simple click-based annotations to relate the entities to
each other; and

. representation of relations as Petri net transitions.

As illustrated in Figure 3, we use RelAnn for the
transformation of literature knowledge to the
representation of GRIs as semi-quantitative Petri net
transitions (as described in the previous ‘Representation’
section).

Subsequent to the pre-indexing of the relevant text
using a named entity search, occurrences of defined
entities are used for the definition of input (regulators,
i.e. TFs and signals), output (regulatees, i.e. TGs) and
experimental evidence for a regulatory transition. Thus,
every part of the transition (regulatory, regulatees,
evidence) is linked to some phrase in a scientific article
of the PUBMED database, thereby making the source of
the knowledge traceable. In addition, in- and output
specification allow the assignment of the semi-quantitative
type of needed (input) or induced (output) change
associated to the regulation, to wit ‘up’ or ‘down’, with
‘weak’, ‘medium’ or ‘strong’ effect strength (bottom right
of Figure 3b).

A special feature of RelAnn is the organization of all
components (gene, signal, evidence, regulation and
parameter types) in ontologies enabling powerful queries
and specifications using generalization and specialization.
For example, the regulation annotated in Figure 3 can be

Figure 3. From pure text to semi-quantitative models of GRIs. Within our annotation framework, the pre-indexed regulatory entities in (a) can be
easily selected and used for the parametrization in (b) of input and output of the Petri net model of the GRI in (c). In the same manner, experimental
evidence can easily assigned to the model.
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not only captured by searching for all regulations having
ethanol as input, but also by searching for all regulations
having a non-fermentable carbon source as input.

RESULTS

Descriptive analysis

We have curated a gene regulatory network for the diauxic
shift in S. cerevisiae. As illustrated in Table 1, the curation
yielded 1133 text-based annotations of regulatory
interactions in 410 scientific articles. The resulting 322
GRIs cover the core processes, taking place during the
switch from fermentation to respiration. This includes
the regeneration of fermentable glucose (gluconeogenesis),
oxidation of glycolytic products (TCA cycle) and
catabolism of non-fermentable carbon sources (ethanol,
glycerol, lactate, acetate and fatty acids). In addition, we
characterized the upstream regulation events of glucose
signaling and the corresponding transcriptional regulation
of the key signal proteins that act once glucose is depleted.
Our network connects 100 TGs with 72 regulating TFs
driving the transcriptional response to >50 different
extra- and intracellular signal classes. The transcriptional
regulation of the regulators themselves has been
investigated and integrated into the network.

To estimate the completeness of our network, we
extrapolated the expected number of interactions
contained in an infinite number of articles relevant for
the diauxic shift. Using a first order Hill equation, we
estimated that our network is 71% complete (Sup-
plementary Figure S1). The curation of further articles is
expected to increase the network size only slightly. For
instance, doubling the number of articles by curating
410 additional articles would increase the completeness
by just 11 percentage points.

Visualization

The systematic Petri net representation of GRIs in our
annotation framework is visualized in schematic
flowcharts of the subprocesses of the diauxic shift
(Figure 4), which we created using the CellDesigner
software (38).

As exemplarily illustrated for the metabolism of fatty
acids in Figure 5, the pathway maps are structured by a
regulation, transcription and metabolic layer assigned to
different cell compartments (cytoplasm, nucleus,
peroxisome and mitochondrium). Thus, the maps are
not restricted to the pure illustration of the signals and
TFs (regulation layer) regulating the transcription of the
mostly enzymatic genes to the corresponding mRNA
transcripts (transcription layer), but they also visualize
the metabolic reactions that are subject to the
transcriptional control.

Each transcriptional transition in the CellDesigner
maps is clickable and connected to the corresponding
annotations, enabling a seamless tracing of the evidence
from the schematic representation of a regulation in one of
the maps down to the exact place in the curated literature.
The interactive network can be accessed under http://
services.bio.ifi.lmu.de/diauxicGRN.

Comparison to existing resources

General comparison
Existing resources on the transcriptional regulation in S.
cerevisiae differ considerably in the way how GRIs are
represented (see ‘Materials and Methods’ section for an
overview). Concentrating on the diauxic shift, we
combined and extended the representations in SGD (25),
YEASTRACT (2) and Herrgard et al. (26), especially
improving on three major aspects:

(1) Context, determination of the conditions under
which a regulation is enabled

(2) Effect, characterization of regulation type and
strength

(3) Evidence, collection and classification of experimental
support

Considering these aspects, the amount of information
that the respective resources provided in each step of our
curation approach is illustrated in Figure 2.
Of the 100 genes classified beforehand as relevant for

the diauxic shift (see ‘Materials and Methods’ section),
SGD provides regulatory information on 59 genes,
Herrgard et al. on 80 genes and YEASTRACT on all 100
genes. A resource is defined to provide regulatory
information on a gene, if it either has a regulating signal
or TF assigned.
In YEASTRACT, each diauxic shift gene has a number

of regulating TFs annotated, yielding in total 1567 binary
interactions (i.e. one-to-one TF:TG associations). Context
information, such as extra- or intracellular signals, which
turn the regulating TFs active, is not available. However,
this is an essential aspect as the transcriptional response of
yeast to different environmental conditions varies
drastically (39), and most yeast TFs are known to
change their activity in dependence on the environmental
conditions (18). In SGD and Herrgard et al. (26), the
fraction of regulations with thorough context definition
(signal and TF) out of all regulations with signal or TF
is small (44 and 29%, respectively). In contrast, the

Table 1. Annotation summary

Genes TFs Interactions Annotations Articles

Higha All

Total 100 68 212 322 1133 410
Gluconeogenesis 18 37 56 77 252 117
Fatty acid metabolism 19 20 34 57 203 79
TCA cycle 23 24 29 52 146 64
Glyoxylate cycle 5 27 16 26 102 67
Ethanol metabolism 5 17 13 16 108 76
Glycerol metabolism 3 19 9 18 36 24
Lactate metabolism 3 10 11 11 38 21
Glucose signaling 11 22 25 35 147 71
TF-TF 14 24 19 31 101 69

Shown are the numbers for the total annotation outcome and for the
corresponding subprocesses of the diauxic shift. TF: Transcription
Factor.
aHigh-confidence gene regulatory interactions have experimental
evidence for binding and expression (Materials and Methods). All
interactions include low- and high-confidence interactions.
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Figure 5. Pathway map of fatty acid metabolism. The map is compartmentalized (cytoplasm, peroxisome, mitochondrium and nucleus) and
composed from three layers: the regulation layer on the right, which contains the TFs (light green rectangles) and the signals (green and purple
ellipses for metabolites and conditions, respectively) that govern the transcription of genes (yellow rectangles) to their corresponding transcripts
(green rhomboids) in the middle. The metabolic layer on the left depicts the translated enzymes (light green rectangles) that catalyze the
interconversion of substrates and products (green ellipses), some of which are needed or produced from other subprocesses (blue hexagons) of
the diauxic shift.
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regulations in our network have a context annotation in
>96% of the cases.
Second, we characterized the regulatory effect in more

detail via annotation of the effect type and strength. That
means we determined whether a regulation results in a
weak, medium or strong activation or inhibition of the
affected gene. This feature enables a more fine-grained
interpretation and prediction of the expression change of
a target in dependence on the TF activity. Herrgard et al.
and SGD typically provide regulations with an annotated
effect type (activation/inhibition), whereas YEASTRACT
does not distinguish between different interaction types.
The semi-quantitative characterization of the effect
strength is a novel feature of our network, and little is
annotated here in other resources.
Third, we designed a classification to judge how reliable

the experimental evidence of a regulatory interaction
is. As defined in ‘Materials and Methods’ section, a
regulation with ‘high’ confidence is given if the
corresponding TF has been experimentally determined
to bind to the promoter of its target and the target is
expressed differentially when the TF is perturbed. Our
network contains 66% interactions with high confidence,
compared with <10% in the other resources.
Concentrating on the diauxic shift genes, our work is

based on by far the largest number of articles in which
regulations of these genes could be annotated (410 articles,
compared with 242, 126 and 85 articles by YEASTRACT,
SGD and Herrgard et al., respectively). Although this
implies that the quantity of curated articles is crucial for
a comprehensive characterization, it is also important
which articles are considered. Interestingly, we observed
that the five review articles on transcriptional regulation of
the diauxic shift (see ‘Materials and Methods’ section)
provide more regulatory information than SGD
(see again Figure 2).

PCK1 example
Considering the example of PCK1 regulation, a key
enzyme of gluconeogenesis, the differences in the three
existing resources—with respect of the three aspects
context, effect and evidence elucidated in the previous
section—are illustrated in Figure 6.
The SGD notes, besides a variety of biological

information on PCK1, putative binding sites for the TFs
MIG1, CAT8, MCM1 and the HAP complex.
Furthermore, it is stated that glucose represses PCK1
expression, which seems to be mediated by Ras/cAMP
signaling.
YEASTRACT yields a relatively large number of

additional TFs experimentally determined to bind to the
PCK1 promoter, and TFs for which PCK1 shows a
differential expression in TF mutant versus wild-type
analyses. Herrgard et al. lists that CAT8 and SIP4
activate PCK1. As explained earlier in the text, we
extended the current representations of PCK1 regulation
as follows.
First, we performed an accurate context assignment.

In the PCK1 example, SGD, YEASTRACT and Herrgard
et al. indicate that CAT8 regulates PCK1. However, this
regulation takes place only during growth on

non-fermentable carbon sources, in particular on ethanol
(10)—a crucial context information only included in our
work (Figure 6c). As CAT8 is inactive under standard
conditions (glucose medium), a CAT8 knockout would
not influence PCK1 expression at all (21).

Second, we discriminate for all regulations in our
network between weak, medium or strong activation and
inhibition (correspondingly depicted as +/++/+++ and
�/��/��� in Figure 6c).

Third, we classified the experimental evidence for a
regulation to have low or high confidence to distinguish
biological regulation in vivo from ineffective or indirect
regulation. In the PCK1 example, all regulatory
interactions from SGD, YEASTRACT and Herrgard et al.
have low confidence per se. The four putative TF-binding
sites in the PCK1 promoter mentioned by SGD are
not experimentally confirmed by a binding technique like
ChIP (see ‘Materials and Methods’ section). In
YEASTRACT, one subset of TFs is shown to bind PCK1,
but a regulatory effect on expression of PCK1 is not
annotated. Vice versa, the subset of TFs annotated to
have an expression effect lacks information on binding.
Similarly, Herrgard et al. (26) cites an expression study
for the regulation of PCK1 by CAT8; for regulation by
SIP4 no evidence is annotated.

In part, we increased the confidence in these regulations
by collecting additional evidence (for CAT8, SIP4 and
RDS2). We also identified new regulations with high
confidence (ERT1 and GSM1) by directly querying
PUBMED for regulation of PCK1. On the other hand, we
determined regulations that are indirect. For example, the
HAP2/3/4/5 activator complex and the MIG1 glucose
repressor act indirectly via regulation of CAT8, rather
than by direct regulation of PCK1 (10). Lastly,
we discarded putative regulators not biologically plausible
to regulate PCK1, i.e. TFs known to exclusively regulate
targets functionally unrelated to PCK1. These are
presumably false positives from high-throughput
experiments (e.g. ASH1, GCN4 and STE12).

DISCUSSION

The gene regulatory network of baker’s yeast S. cerevisiae
has been comprehensively studied during the past decades.
To provide a machine-readable review of the current
diauxic shift knowledge and to investigate how it could
be represented to model the regulation of important
molecular processes, we addressed the following
questions:

(1) Do the existing resources already fully characterize
the regulation of a given process?

(2) If not, how can such a comprehensive characteri-
zation be achieved?

(3) Which level of granularity is best suited to represent
the volume and detail of the available heterogeneous
information?

For these questions, we considered different
representative resources such as the SGD (25). SGD
provides, for one gene at a time, a brief summary of
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major regulatory impacts such as extra- and intracellular
signals. YEASTRACT (2), on the other hand, is a repository
for binary GRIs (i.e. one-to-one TF:TG associations),
mainly derived from published high-throughput TF
binding (18) and perturbation experiments (24). In
contrast, Herrgard et al. (26) have manually curated the
transcriptional regulation of metabolic yeast genes in
more detail from the literature, annotating additional
features such as the interaction type (activation or
inhibition).

As all three resources have a different focus, they thus
provide characteristic information on different aspects of
gene regulation that we combined to obtain a more
complete picture. Thus, we first evaluated to which
extent the integration of the heterogeneous resources
yields a comprehensive yet detailed characterization of a
process-scale gene regulatory network. As a showcase, we
chose the particularly well-studied transcriptional
regulation of switching from fermentation to respiration,
the diauxic shift in yeast.

Based on current reviews on transcriptional regulation
of the diauxic shift, we defined the set of �100 TGs whose
gene products perform relevant steps of the shift such as
the enzymatic conversion of metabolites. For this gene set,

we aimed to retrieve details on their regulation from the
three resources. That involves not only the regulators
affecting a given TG but also the conditions under
which the TG is affected and whether the gene is activated
or inhibited by this relationship. Although a large number
of raw binary TF:TG regulatory interactions can be
obtained from YEASTRACT, their corresponding context
information necessary for a detailed understanding of the
interaction could only partially annotated using
information from SGD and Herrgard et al. Although
each of the three resources cited a large part of the
relevant literature as evidence for the regulations, they
did not fully exploit the regulatory context information
described in the literature. Consequently, thorough
manual re-curation of the cited scientific articles, i.e. the
full text including tables and figures, was necessary to
obtain the activation context of the regulator(s), potential
interplay between regulators, the regulation type
(activation or inhibition) and the experimental evidence.
We thus dealt with the first two questions by performing

a hierarchical curation approach whereby we compiled a
comprehensive set of process-relevant genes, extracted and
integrated the regulatory information available for these
genes from current databases and resources, and finally

Figure 6. Current representations of PCK1 regulation. (a) SGD states that the PCK1 upstream region contains consensus binding sites for MIG1,
the HAP complex, CAT8 and MCM1. Further, that PCK1 is glucose-repressed, which seems to be mediated by Ras/cAMP; (b) Herrgard et al. state
that PCK1 is CAT8/SIP4 activated, with expression evidence for the activation by CAT8; however, no annotated evidence for the activation by SIP4;
(c) Our work extends current views by accurate context assignment and effect characterization (+/�) and quantification (weak, medium, strong) for
each regulation; (d) YEASTRACT lists a variety of direct and indirect effects, which are not further detailed. In addition, combined evidence is
collected for strong confidence regulations (binding and expression; continuous lines) and weak confidence regulations (binding or expression only;
dashed lines).
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complemented the obtained regulatory interactions by a
thorough manual literature curation.
We estimate that our network, result of an exhaustive

databases and literature search, captures >70% of the
complete regulatory network affecting genes involved in
the diauxic shift. Covering each interaction more than
three times on average, we reached a saturation degree
that it would, by extrapolation, need twice the number of
currently considered articles to achieve 80% completeness.
Efficiently scaling up from process-specific to organism-

wide regulatory networks requires authors and data
resources to accurately and uniformly annotate context
information when reporting gene regulatory information.
Using established machine-readable formats like SBML
(40) would then allow a semi-automated processing in
which expert intervention and curation is only necessary
when compiling regulatory information from conflicting
studies.
Addressing the third question, we compiled information

on the activation context of TFs and their effect strength
on their targets. The latter is often stated in terms of fold
changes or discrete quantity changes of the TGs (e.g. ‘In a
yeast strain deleted for ADR1, expression of ADH2 was
found to be strongly decreased.’). Although such semi-
quantitative information was abundantly found in the
literature, kinetic parameters as required for quantitative
modeling with ordinary differential equations (ODEs)
were only rarely reported.
We therefore suggested an intermediate representation

of GRIs that is beyond current coarse-grained purely
qualitative characterization; on the other hand, of
course, it does not match the fine-grained quantitative
ODE models.
In such a representation, an interaction between one or

more TFs and a TG is characterized in dependence on the
activation context of the TFs and by the semi-quantitative
effect on corresponding TGs. This seems to strike the
balance between striving for a detailed model granularity,
and optimally and comprehensively exploiting the
available knowledge on the other hand. This also
enables a model-based data view, i.e. the model can be
tested whether the annotated, and thus expected,
behavior of regulations agrees with the observed
behavior in a particular data set of gene expression
measurements under investigation.
The suggested representation is exploited in our

resulting diauxic shift network, comprising >300 multi-
input regulations that also account for combinatorial
control by more than one regulator. Available in a
machine-readable flat format, it is readily usable in
network-based approaches for the interpretation of gene
expression data. As a front end, we further provide
interactive pathways maps, enabling intuitive exploration
of the network modules integrated into our annotation
system, where the evidence for each regulation can be
entered or retrieved down to the exact reference position
in the primary literature. Our system can serve as a
starting point to similarly annotate and incorporate
additional processes, e.g. all processes subject to glucose
control, as the addition of new annotations to existing

transitions and pathway maps is straightforward and
can be interconnected to the already existing maps.

The system and all accompanying resources are
available under http://services.bio.ifi.lmu.de/diauxicGRN.
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