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ABSTRACT

Several recent studies focus on the inference of de-
velopmental and response trajectories from single
cell RNA-Seq (scRNA-Seq) data. A number of com-
putational methods, often referred to as pseudo-time
ordering, have been developed for this task. Re-
cently, CRISPR has also been used to reconstruct
lineage trees by inserting random mutations. How-
ever, both approaches suffer from drawbacks that
limit their use. Here, we develop a method to de-
tect significant, cell type specific, sequence muta-
tions from scRNA-Seq data. We show that only a
few mutations are enough for reconstructing good
branching models. Integrating these mutations with
expression data further improves the accuracy of the
reconstructed models. As we show, the majority of
mutations we identify are likely RNA editing events
indicating that such information can be used to dis-
tinguish cell types.

INTRODUCTION

Several recent methods have been developed to infer
psuedo-time and branching trajectories from time series
single-cell RNA-seq (scRNA-Seq) data (1–10). These meth-
ods rely on the assumption that cells that are in a sim-
ilar state (developmental time, fate etc.) are also close
in expression space. Based on these assumptions psuedo-
time methods construct models based on minimum span-
ning trees (MST) (2,9), clustering (4) or other graphical
models (1,5,11) to connect cells that share the same state
and identify branching events that lead to different cell
fates. Such methods have been successfully applied to study
several developmental and response processes including
lung (7,10), neuron (7,10), myeloid (3,5), heart (12) and
liver development (13), various treatment responses (14),
aging (15) and more. While scRNA-Seq expression infor-
mation is useful, it is also very noisy. Further, some recent
studies indicate that a small subset of the genes, which are
sometimes expressed at very low levels and so do not sig-

nificantly impact overall expression similarities, can have a
large impact on changing cell states (16). Indeed, in several
cases the relationships identified by the pseudo-time order-
ing methods do not accurately capture known biological
trajectories (10).

In addition to methods that rely on expression data, sev-
eral genetic based lineage tracing methods have been de-
veloped over the last two decades, though these have not
been combined with scRNA-Seq analysis (17). Recently, a
number of methods that combine scRNA-Seq with Clus-
tered Regularly Interspaced Short Palindromic Repeats
(CRISPR) technology for lineage tracing were developed
(18,19). These methods are based on the insertion of ran-
dom mutations during cell division to a pre-determined
RNA. Once RNA is sequenced the set of random mutations
can be traced backwards to construct a phylogenetic tree
which can then be used to assign cells to branches and fates.
Such CRISPR based lineage tracing methods have been re-
cently applied to study zebrafish development (18) and to
study the lineages in mouse embryonic cells (20). Results
indicate that for short durations (until the RNA mutations
saturate) such method can indeed lead to good results when
attempting to infer cell branching.

While CRISPR based methods are useful, they are lim-
ited in several ways (17,21). First, it is not clear how such
method would be applied to higher organisms in vivo, espe-
cially when studying diseases and responses in humans. Sec-
ond, the method requires genetic interventions which may
alter wild-type behavior. Finally, the method to date is lim-
ited to short durations (given the length of the sequenced
region) and so may not be appropriate for all studies.

An alternative to using CRISPR is to rely on de novo mu-
tations. These have several advantages since they do not re-
quire any engineering, are not restricted in time and can be
used for all species. The major challenge for using such an
approach is the fact that such mutations are rare. For exam-
ple, the mutation rate is ∼1.1e−8 per site per generation (22)
in human, which is ∼35 mutations genome-wide per gen-
eration and so it is unlikely that many of them would be
encoded in the coding regions that are profiled by scRNA-
Seq. However, de novo mutations are only one reason why
RNAs can differ between cells. Another reason is RNA edit-
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ing, which is a molecular process through which some cells
make discrete changes to specific nucleotide sequences with
an RNA molecular after it has been generated by RNA
polymerase and was previously reported to involve in the
cell differentiation process (23). Gommans et al. reported
that RNA editing is a highly regulated process in higher
organisms with editing levels specifically changing during
development. They further claim that editing is often cell
and tissue specific (24). Gagnizde et al. reported that A-to-I
patterns reveal specific editing signatures distinguishing ma-
jor cell types in the human brain, among which neuron and
astrocytes constitute the most edited cell types (25). Com-
bined, de-novo mutations and RNA editing can provide ad-
ditional information that is not captured by the expression
profiles themselves to aid in reconstructing the branching
trajectories. To enable the use of such sequence information
when reconstructing dynamic differentiation models from
scRNA-Seq data we developed a new method for Trajectory
inference Based on SNP information (TBSP) that identifies
such mutations (we refer to them as SNPs though several
are likely due to RNA editing as we discuss below). Once
significant SNPs have been identified we use them to recon-
struct a phylogenetic tree for the cells profiled. We show that
the tree agrees quite well with known cell states for these
cells even though we did not use the expression levels them-
selves to construct it. Next, we extend a previous method we
developed to reconstruct dynamic models of cell differenti-
ation so that it can utilize both expression and SNP data.
As we show, the reconstructed models that utilize the SNP
data further improve upon models generated by only using
the expression level data indicating that SNPs provide infor-
mation that is not captured by the expression levels them-
selves. We also discuss the biological meaning of the SNPs
and argue that many of them are likely RNA editing events
rather than de-novo mutations.

MATERIALS AND METHODS

TSBP starts by filtering potential SNPs in the scRNA-Seq
data. Next cells in the input data are clustered using all sig-
nificant SNPs. Starting from the initial clusters, we iterate
(in an EM-like algorithm) between cell assignments to clus-
ters and SNP selection until convergence or the maximal
iterations. The final selected SNPs are used by TBSP to cal-
culate distances between cells (based on the Hamming dis-
tance). Neighbor-joining is then used to construct trajec-
tories for the cells based on the calculated distance matrix.
Finally, TBSP combines SNP and expression data to pro-
vide a more comprehensive view of the developmental or
progression trajectories. Figure 1 presents an overview of
TBSP.

Detecting SNPs from single-cell RNA-seq data

We mapped all the scRNA-Seq reads to the reference
genome using HISAT2 (26) with the default parameters. We
next used the GATK variant-calling pipeline (27,28) to call
all potential SNPs for each of the cells. The obtained SNPs
were filtered by the VariantFiltration function included in
the GATK pipeline with the recommended parameters (in-
cluding QD < 2.0 which is cutoff recommended for obtain-
ing significant variants). We further filter SNPs found in
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Figure 1. TBSP Method Overview. (A) Cells used in the study. (B) Reads
are mapped to the reference genome. (C and D) Reads are used to deter-
mine expression levels and to identify SNPs. (E) Cells are clustered based
on identified SNPs. (F) Iterating between selecting a subset of key SNPs
and clustering using selected SNPs. Once a set of key SNPs is established,
it is combined with expression values to determine the branching model.
(G) Final predicted trajectories (using SNPs and/or expression informa-
tion).

<10% of the cells (rare SNPs) or >80% of the cells (Univer-
sal SNPs). Rare SNPs are most likely false positives. On the
other hand, Universal SNPs (which we term baseline SNPs)
are uninformative and likely represent differences between
the cell line or animal used for the experiment and the refer-
ence. We also tried other cutoffs such as 20% for Rare SNPs,
and found the results to be very similar (Supporting Meth-
ods and Supporting Figure S1)

In addition to baseline SNPs that appear in a large frac-
tion of the cells, the method can also identify baseline SNPs
in a fraction of the cells. This would happen if the gene in
which this SNP resides is only expressed in a subset of the
cells. Such SNPs are redundant with gene expression data
and so do not provide any additional information. To re-
move these, we only use SNPs identified in regions where we
have multiple aligned reads in most cells (>8 reads on aver-
age aligned in >80% of the cells). Since we find that most
significant SNPs are only identified in a small fraction of
cells (much smaller than 80%) such requirement means that
identified SNPs represent real differences between the cells.

Identifying informative SNPs for trajectory inference

We first build a cell-SNP matrix (M) for all cells (denoted
by C) and all SNPs after the initial filtering (denoted by X),
where M(i, j) is a binary value, which tells whether SNP j is
detected in cell i. As the initial set of SNPs X could possibly
contain many false positive or non-informative SNPs, our
objective here is to find the best subset of SNPs P from X,
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which can best distinguish cells of different sub-types.

M(i, j ) =
{

1, if X[ j ] detected in C[i ]
0, else (1)

We initialize the cell clusters (denoted by N) using K-
means (29) on rows (cells) of the cell-SNP matrix M(i, j)
where i ∈ C, j ∈ X . The number of clusters is determined
using Silhouette score (30). To find the most discrimina-
tive SNPs among the full set, for each cluster I in the N,
we search for the best SNP set P(I).

To find such SNP subset P = ⋃
I∈N P(I), we use an EM-

like algorithm that tries to infer the best SNPs for splitting
the data into k groups: for each sub-population (I) (cluster)
in the data, we identify the set of SNPs that best separates
the cells in I from all other cells (C − I), where C represents
all the cells in the data.

P(I) = Argmaxx∈X
f (x, I)

|I| − f (x, C − I)
|C − I| (2)

f (x, cells) =
∑

i∈cells

M(i, x) (3)

P =
⋃
I∈N

P(I) (4)

where N denotes all the sub-population (clusters) in the data
and P(I) denotes the signature SNPs for I ∈ N. Since this
is a challenging combinatorial problem we use a greedy al-
gorithm to find a local optimal solution. See Supporting
Methods for complete details.

The initial P matrix might contain both false positive and
non-informative SNPs. To refine the matrix and the cluster-
ing, we iterate using the identified SNP set. In each iteration,
we re-cluster the cells and use the new clusters to re-identify
SNPs. This is repeated until convergence or when the max-
imal iterations are reached. When the algorithm converges,
we are left with a selected set of SNPs (P). Similar to all clus-
tering methods this approach can be sensitive to the initial
clustering result and so we include additional SNPs if they
improve the Silhouette score. See Supporting methods for
details.

Inferring the trajectory using identified SNPs

Using the selected SNPs we utilize a distance-based
neighbor-joining algorithm (31) to construct an initial tra-
jectory. Each cell is represented using a binary SNP vector
Vi = [M(i, j)|∀j ∈ P] where M(i, j) was defined in equation
(1). The distance between two cells (a, b) is calculated us-
ing hamming distance d(a, b) = ∑|P|

j=1 |Va( j ) − Vb( j )|. The
distance between two clusters (Ii, Ij) is calculated as the av-
erage distance between every pair of cells in the two clusters

d(Ii , Ij ) =
∑

a∈Ii ,b∈I j
d(a,b)

|Ii |∗|Ij | . These cluster distances are used as
the input to the Neighbor-joining algorithm to build the cell
trajectory.

Integrating the identified SNPs with the expression-based
trajectory inference

The SNPs we selected provide information that is comple-
mentary to the profiled scRNA-Seq expression data. We
have thus next integrated SNP information with our previ-
ously developed method for reconstructing dynamic regula-
tory networks from scRNA-Seq data, scdiff (10,32). As the
single-cell RNA-seq data is very noisy, it’s not accurate to
estimate the gene expression in each cluster (state) based on
only the direct single-cell RNA-seq measurement. An ad-
ditional source of information is needed to overcome the
noisy nature of the scRNA-Seq data. In scdiff, we use the
TF-gene regulatory networks as extra information, which
impacts the state transition of the underlying Kalman Filter
model. scdiff starts with building the initial tree-structured
trajectories by clustering the cells and connecting the cell
clusters. Next, scdiff iteratively refine the initial trajecto-
ries by integrating the extra TF-gene regulatory networks.
It re-estimates the gene expression for each state (cluster)
of the trajectory tree using Kalman Filter, which utilizes
both the direct scRNA-Seq observation (emission model)
and also the TF-gene regulatory information (transition
model). With the re-estimated expression for each cluster,
all the cells will be re-assigned, and the trajectories will be
re-inferred based on the new cell assignments. Such process
will be iterated until convergence or maximal iterations. The
converged trajectories will be the final predictions together
with predicted TFs, which are critical to the state transition
in the Kalman Filter.

Here, We integrated the SNP information into scdiff.
First, we build up the initial trajectories in the same way
as scdiff. Next, we use not only the expression information
(and the TF-gene regulatory information) as in scdiff but
also the SNP information to refine the initial trajectories.
We use the clusters from the initial trajectories to identify
informative SNPs (though we do not iterate, just use the
greedy heuristic on a fixed set of clusters) list(P) to help re-
assign cells to states. This new assignment combines the ex-
pression profile and SNP for each cell ci as follows:

Assign(ci ) = argmaxs P(ci , s) (5)

= argmaxs P(s)P(ci |s) (6)

= argmaxs P(s) ∗ ps(ci |s) ∗ pe(ci |s) (7)

= argmaxslog P(s) + log ps(ci |s) + log pe(ci |s) (8)

where P(ci, s) represents the probability of ci in cluster s and
pe(ci|s) denotes the conditional probability of ci in cluster s
based on expression, which is calculated in the same way
as in scdiff (10). See supporting methods for how we com-
pute ps(ci|s), the conditional probability of cell ci in cluster
s based on SNP information. The initial trajectories will be
refined by the aforementioned cell assignments and the ini-
tial clusters will be also updated. Next, we re-identify the
informative SNPs using the same method described above
on the updated clusters. We iterate the above process until
convergence or maximal iterations. The converged trajecto-
ries will be the final predictions. Here, we demonstrated the
integration of the SNP information using the scdiff method.
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However, such SNP information can also be integrated into
other existing single-cell expression based methods. TBSP
provides a Cell-SNP matrix, which describes the signature
SNP vector for each of the cells in the dataset and thus can
be used to refine the cell assignments/trajectories in the ex-
isting expression-based methods.

Post analyses of the predicted SNPs

We used PAVIS (33) to annotate the genomic position
(Exon, Intron, 3’UTR and so forth) of the predicted SNPs.
If the predicted SNP is located in the promoter (+5 kb), gene
body or downstream (1 kb) of a gene, such gene will be re-
garded as the SNP target. We use PANTHER (34) GO en-
richment tool to analyze the GO terms associated with the
targets genes of the predicted SNPs.

Software availability

The TBSP software is freely available on GitHub at https:
//github.com/phoenixding/tbsp with a detailed user manual
and a test set.

RESULTS

Differentiation trajectories can be inferred based on SNP in-
formation

We first tested the reconstruction of temporal and spa-
tial trajectories using only the SNP information. For this
we used several different scRNA-Seq datasets including
the ‘Neuron’ scRNA-Seq expression data which studies
neuron reprogramming (35), the ‘Liver’ scRNA-Seq data
which studies human liver bud development from pluripo-
tency (13) in 2D culture and 3D liver buds (LB) and a ‘Lung’
scRNA-Seq expression dataset which profiles distal lung ep-
ithelium differentiation (36). The Neuron dataset has four
time points and a total of 252 cells. The Liver dataset has
765 cells, which falls into four stages (iPSC → DE → HE,
IH → MH, LB and others). The Lung dataset has three
time points and a total of 152 cells. For all these datasets the
original papers provide some information (based on known
markers) about the expected trajectories or organizations,
and these can be used to test the accuracy of the SNP based
analysis.

For the mouse ‘Neuron’ data (35), the SNP-based trajec-
tories inferred by TBSP are consistent with current knowl-
edge (Figure 2). SNP data was informative enough to cor-
rectly cluster the cells (Supporting Table S1). Next, we
looked at the trajectory inferred from these SNPs. As can be
seen in Figure 2A, the model correctly starts with Cluster 1
(Mouse Embryonic Fibroblasts-MEF) and then continues
to d2 intermediate (Cluster 2), d2 induced, d5 intermediate
and d5 failedReprog d5 earlyiN and Neuron. This order-
ing is very similar to the one presented in (35) based on
the expression of marker genes. Cluster 0 (d2 induced dom-
inated) seems to be misplaced in the trajectory (earlier than
d2 intermediate). However, the trajectories inferred using
all SNPs, including those potentially redundant ones, dis-
play the correct assignment in which the d2 induced cells
are assigned to follow d2 intermediate cells (Supporting
Figure S2).

A

B

Figure 2. Predicted models using SNP information. To use the SNP
data for inferring trajectories we relied on a well-established phylogenetic
method: neighbor-joining. We interpret the resulting branching models as
cell trajectories. In the figure, gray circles represent internal nodes in the
phylogenetic tree that are not assigned any cells. The length of the lines
in the constructed lineage graph represents the phylogenetic distance be-
tween nodes (clusters). The circle size represents the number of cells within
the cluster. (A) Predicted model for the Neuron data (35). The model
correctly starts with Cluster 1 (Mouse Embryonic Fibroblasts-MEF) and
then continues to d2 intermediate (Cluster 2), d2 induced (Cluster 4),
d5 intermediate and d5 failedReprog (Cluster 5), d5 earlyiN (Cluster 3)
and Neuron (Cluster 6). This trajectory is very similar to the one presented
in the original paper. (B) Predicted model for the Liver data (13). Similar
to the mouse neuron data, cells are clustered well using only SNP infor-
mation. As for the trajectory analysis, the original study (13) reported a
bifurcation in 2D and 3D trajectories. In the 2D culture, the iPSC cells dif-
ferentiate to mature hepatocyte-like (MH) cells, which are different from
the liver bud (LB) and mesenchymal stem cell (MSC)-LB cells in their 3D
differentiation counterparts. This is also the branching determined based
on the SNP information.

For the human Liver differentiation data (13), the SNP-
based trajectories also agree with marker based reconstruc-
tion (Figure 2B). First, as with the mouse neuron data, cells
are clustered well using only SNP information (Support-
ing Table S1). As for the trajectory analysis, the original
study (13) reported a bifurcation in 2D and 3D trajecto-
ries. In the 2D culture, the iPSC cells differentiate to ma-
ture hepatocyte-like (MH) cells, which are different from
the liver bud (LB) and mesenchymal stem cell (MSC)-LB
cells in their 3D differentiation counterparts. This is also
the branching determined based on the SNP information
by TBSP. SNP based models mix IH and MH cells, which
is inconsistent with prior knowledge that indicates that IH
cells are progenitors of MH cells. However, such a mixture
of MH and IH cells also be observed in the Monocle re-
sults (Supporting Figure S3), which indicates that the cell

https://github.com/phoenixding/tbsp
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states of the IH and MH may be quite similar. Based on
both TBSP and Monocle models, HE and a small fraction
of early IH cells seem to serve as progenitors for the branch-
ing.

For the mouse ‘Lung’ differentiation data (36), the SNP-
based predicted trajectories are also partially supported
by the known model (Supplement Supporting Figure S4).
The first time point (E14.5) is associated with a number of
unique clusters (1, 3 and 4) residing at the beginning of the
tree while more mature epithelial cells (mainly Bi-potential
Progenitors (BP), Alveolar Type 2 and ciliated cells) are
clustered together afterward, and the last to branch are
Type 1 cells. On the other hand, the SNP-only model in-
correctly assigns the E16.5 time point to a later branching
location than its actual position in the process. Still, when
the SNP information is combined with expression data, it
still improves the accuracy of the reconstructed trajectories
as we discuss below and in Supporting Results.

We also compared TBSP with Monocle2 (3). These com-
parisons demonstrated the advantages of our SNP-based
methods as shown in Supporting Figure S3. For exam-
ple, when analyzing the neuron reprogramming dataset,
d2 induced cells are displayed on a separate branch in the
Monocle 2.4.0 results while neuron cells are on the top
branch. In contrast, the reconstructed model based on SNP
data correctly connects them. Please refer to the Supporting
Results for the complete details on all 3 datasets.

Unique SNPs are associated with the different clusters

The reconstruction above used 36, 55 and 33 SNPs for the
Neuron, Liver and Lung data respectively. As can be seen
in Figure 3, several of these are associated with one or only
a few of the clusters in each model. For example, in the liver
data, SNPs 31-38 are only enriched in Cluster 2 (Human
umbilical vein endothelial cell (HUVEC) cells). SNPs 49-52
are only enriched in Cluster 0 (MH,immature hepatoblast-
like (IH) cells) and SNPs 15–20 are only enriched in Cluster
4 (iPSC). Clusters of cells that are connected in development
(for example, one is right after the other) usually share over-
lapping SNP patterns. An example of this is liver Cluster
4 (iPSC) and Cluster 5 (definitive endoderm (DE), hepatic
endoderm (HE)). See Supporting Results for detailed dis-
cussion. We have also plotted the SNP distribution along
the known trajectories(Supporting Figure S5). For the neu-
ron data, we see several mutations that are only associated
with the initial state. We also see some cell types (for ex-
ample d2 intermediate and d2 induced or d5 earlyiN and
Neuron) that share the same mutations while other types
(for example, Fibroblasts) do not. This supports their use
in unsupervised model reconstruction. For the liver data,
we observe the main difference between MSC, LB cells and
IH, MH cells. iPSC cells, also display a subset of unique
SNPs. For the lung data, we observe a clear separation be-
tween progenitor cells E14 and terminal cells (AT1, AT2,
Clara, and ciliated).

Predicted SNPs may represent RNA-editing changes

As noted in Methods, we removed baseline mutations that
are only identified because some genes are only expressed

in the subset of the cells. All of the mutations we iden-
tified overlap genes that are expressed in the majority of
cells. Given the relatively low genomic mutation rate and
the small number of cell divisions in the data we studied (less
than 10), it is unlikely that most of the SNPs we identified
represent de novo mutations. We have thus looked for alter-
native explanations for the significant SNPs we found. One
such possibility is RNA editing, which is a molecular pro-
cess through which some cells make discrete changes to spe-
cific nucleotide sequences with an RNA molecular after it
has been generated by RNA polymerase and was previously
reported to involve in the cell differentiation process (23).

The predicted SNPs are dominated by A/G ( A → G,
G → A) and C/T (U) ( C → T, T → C) substitutions (Fig-
ure 4 A). Note that these substitutions are quite similar. The
direction of the A/G substitution (A to G or G to A) de-
pends on the reference and the A/G and C/T are essentially
the same substitution at different strands. In the neuron
data, A/G and C/T substitutions account for 34.4% and
51.7% respectively(combined total of 86.1%). For the Liver
data, A/G accounts for 39.2% and C/T accounts for 41.2%,
(80.4%) and in the lung data, A/G and C/T substitutions
account for 81.4% of all predicted SNPs. A/G and C/T sub-
stitution dominance were also shown for RNA-editing (37).

In addition to the type of substitution, their locations also
match. Predicted SNPs are found mostly in non-coding re-
gions (Figure 4B) especially in 3’UTR regions. For exam-
ple, in the neuron data, 44.4% of the SNPs are found in
the 3’UTR, 19.4% of the SNPs are found in the intronic
regions, 2.8% upstream of the gene (5kb), 2.8% are found
in the 5’UTR region and 5.6% are found in Exons, 25% are
found in the other region including gene downstream(1kb)
and intra-genic regions. See Supporting Results for the dis-
tribution in other datasets. This also agrees with the fact
that most RNA editing sites are located in the non-coding
region (37).

We found that predicted SNPs are located near the Alu
elements, which is also observed for RNA-editing sites (38).
We also looked at the intersection between SNPs identified
by TBSP and previously identified RNA-editing sites from
the RADAR database (39). For the human data (for which
we have many more known sites compared to the mouse)
we find that 3 of the 55 SNPs we identified for the liver data
are found in RADAR (P-value: 2.4e−4). Note that current
knowledge of RNA editing sites is still limited. Finally, we
used an RNA-editing site prediction tool RED-MEL (40)
to score each of the predicted liver SNPs. Twenty one out
of 55 predicted SNPs are identified as RNA-editing sites by
RED-MEL (P-value = 0). See Supporting Results for de-
tails.

To further investigate the origin of the SNPs identified,
we have analyzed data from a study that jointly performed
RNA and DNA seq analysis in single cells (41). We down-
loaded DNA-seq and RNA-seq for 112 cells from this study
and used our method to identify mutations in both. Un-
der the parameters used for other studies we analyzed, we
obtained 7 DNA SNPs (all in non-coding regions) and
31 SNPs from RNA-seq. None of the 31 RNA-seq SNPs
were found in the DNA-seq results. Therefore, these muta-
tions are only identified at the RNA but not the DNA level
supporting their likely assignments as RNA-editing events.
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Figure 3. Distribution of predicted SNPs in clusters. All the clusters are ordered based on the trajectory inference. In many cases, we see SNPs at contiguous
clusters which can explain their usefulness for reconstructing the trajectories of the different studies. Still, some SNPs (e.g. cluster 2 in the liver data) are
very specific and only detected for one cell type.

A B

Figure 4. Predicted SNPs may represent RNA-editing changes. (A) Pre-
dicted SNPs are enriched with A/G(A→G,G → A) or C/T(C → T,T →
C). Similar to several other studies that characterize RNA editing sites we
find that SNPs detected by TBSP are enriched for specific substitutions.
(B) The predicted SNPs are enriched in 3’UTR regions which is also where
RNA editing sites are enriched in.

Please see Supporting Table S2 for the list of SNPs identi-
fied.

GO terms associated with the predicted SNPs

We also looked at the function of genes for which we identi-
fied SNPs in each of the datasets (Methods). In the neu-
ron data, we found 26 such genes associated with the 36
predicted SNPs. The most significant GO terms associ-
ated with these 26 genes are ‘Regulation of protein depoly-
merization’ (P-value = 1.32e−4, FDR = 1) and “Regula-
tion of protein complex disassembly” (P-value = 1.98e−4,
FDR = 1), which are consistent with the potential pro-
tein degradation related functions of RNA-editing previ-
ously reported by study (42). In the Liver data, we found 42
genes associated with the 55 predicted SNPs. These 42 genes
are enriched with ‘protein targeting (P -value = 4.51e−9,
FDR = 7.05e−5)’ and ‘contranslational protein targeting to
membrane (P-value = 2.02e−08, FDR = 1.06e−4)’, which
is also supported by (42). For the Lung data, we found
24 genes associated with 33 predicted SNPs. The top GO
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Figure 5. Combining expression data with SNP information to improve
the reconstruction of branching models. Expression only and SNP added
trajectory inference for the mouse Neuron data. (Left) A model recon-
structed using only expression information for the neuron development
data. The lowest cluster (red) is a descendant of the cluster with a mix-
ture of Fibroblast, Myocyte and Neuron cells. In contrast, when using
the SNPs. (Right) the neuron dominant cluster is descending from the
d2 induced and d5 earlyiN dominant states. Also the d5 earlyiN cells are
relatively closer to the Neuron cells, which is more consistent with the tra-
jectory reported in (35).

terms for these 24 target genes are ‘protein-containing com-
plex assembly (P-value = 1.94e−4, FDR = 0.376)’ and
‘protein-containing complex subunit organization (P- value
= 5.37e−5, FDR = 0.139)’.

SNP information further improved expression based pseudo
time reconstructing methods

We next used the SNP data to improve the reconstruction of
expression based trajectory inference methods. For this, we
extended scdiff, a method we have previously developed to
reconstruct trajectories from scRNA-Seq data (10). Briefly,
scdiff is a probabilistic method that integrates expression
data with TF-gene interaction data to learn a branching
model and assign cells to states. We used the SNP data to
further improve cell assignment and state inference (Meth-
ods). Results of the combined model are shown in Figure 5.
As can be seen, for the Neuron data, the SNP based model
leads to trajectories that are more consistent with prior
knowledge (35). In the expression only model, the neuron
(red) cluster is a descendant of the cluster with a mixture
of Fibroblast, Myocyte and Neuron cells. In contrast, when
using the SNPs the neuron dominant cluster is descending
from the d2 induced, and d5 earlyiN dominant states. See
Supporting Figures S6,S7 and Supporting Results for the
additional analyses on other datasets.

To further study if SNP information is complimentary
to expression data we combined the two and used the
combined dataset as input for another trajectory inference
method, Monocle (version 2.4.0) (3). For each cell we con-
catenated the SNP vector for that cell to the expression val-
ues to create a new input (Supporting Methods). We next
ran Monocle on the SNP plus expression input to recon-
struct trajectories. Results indicate that SNP data improves

the trajectories reconstructed by Monocle. The major dif-
ference between the expression only and expression plus
SNP trajectories is the position of d2 induced cells. In the
expression plus SNP model, d2 induced cells are predicted
to be progenitors (including for Neuron cells), consistent
with their known role. In contrast, when only using expres-
sion data as input for Monocle, d2 induced cells are located
at a separate branch without any descendants. See Support-
ing Results and Supporting Figures S8, S9 for the complete
details.

TBSP scalability

While all three datasets discussed above studied dynamic
processes, they have only profiled hundreds of cells each
(though with relatively high overage). This number is quite
low compared to more recent studies that usually profile
thousands of cells. To test the scalability of TBSP, we have
also used it to analyze a larger dataset which profiled close
to 4000 Hematopoietic stem/progenitor cells (HSPCs) from
mice bone marrow (43). While the data was collected over
two days in order to study cell differentiation, all HSPCs
were pooled before profiling and so unlike the longitudi-
nal datasets discussed above, no time information is avail-
able for cells in this dataset. Still, TBSP was able to iden-
tify several significant SNPs for this data and these were
used to cluster the cells and derive trajectories. Results are
presented in Supporting Figure S10. Even though it does
not use the expression data itself, TBSP derived trajecto-
ries agree well with the observation in the original paper of
near-continuous differentiation process, from Haematopoi-
etic stem cell/multipotent progenitor to Haematopoietic
progenitor cell. Both the differentiation direction and the
continuous process are captured by the SNP-based model,
in which the trajectory starts from Cluster 0 (dominated by
Haematopoietic stem cell), ends at Cluster 1 (which is heav-
ily dominated by Haematopoietic progenitor cells) and the
percentage of Haematopoietic progenitor cells in the cluster
is increasing along the trajectories. See Supporting Results
for complete details. We also include information on run-
time and computing resources for different number of cells
(we simulated up to 30 000 cells with 1.5M reads on average
for each cell). Please refer to the Supporting Figure S11 for
the runtime and memory requirements.

DISCUSSION

Existing methods for the analysis of time series scRNA-Seq
data mostly utilize the expression levels for each cell. Such
methods reconstruct developmental or response trajectories
based on similarities between their expression (often in re-
duced dimensional space). While these methods have been
successfully applied, it is also clear that in many cases that
cannot accurately capture the dynamic process that they are
modeling due to noise, dropouts and the impact of low ex-
pressed genes.

Here, we presented a complementary approach, TBSP,
which utilizes what, until now, was a discarded part of the
data: The errors in the sequenced RNAs. While some of
these may indeed be just that (errors), others, especially



e56 Nucleic Acids Research, 2019, Vol. 47, No. 10 PAGE 8 OF 9

those that pass stringent filtering criteria and that are iden-
tified in multiple cells, are likely to be true differences. As we
show, by using the identified SNPs we can construct reason-
able trajectories assigning cells to different branches even
without using the expression level information. We applied
TBSP to four different datasets ranging in size from less
than 200 to close to 4000 cells. As we show, in all cases the
method was able to obtain good clusters and trajectories
when only using SNP data. When combined with expres-
sion data to resulting models are even better and improve
upon expression only models.

Some of the SNPs we identified may represent de-novo
mutations inserted during cell division. However, it is un-
likely that the majority are indeed such mutations given
the small number of expected de-novo mutations in cod-
ing regions for the data that we studied as we estimated
in the introduction. Instead, we argue that many of these
likely represent RNA-editing events. Several lines of evi-
dence support this claim. First, the type of mutation we
observed, A/G or C/T substitutions, is consistent with
RNA-editing sites are also mostly substitutions (44). Sec-
ond, the locations of these mutations are enriched near
the Alu elements, which has been also reported for RNA-
editing sites (45). Third, the identified SNPs significantly
overlap known RNA-editing sites reported in RADAR
database (46). Fourth, many reside in genes that are known
to be associated with processes that are regulated by RNA-
editing such as protein degradation (42).

While SNP only models provide useful information about
cell fate and branching, their performance is limited. Since
the method depends on the mutation changes it often re-
quires longer time scales than expression changes as we ob-
served for the lung data. However, when SNP information
is combined with gene expression data, the resulting mod-
els can improve upon the expression only models. For the
lung data, the AT2 dominated cluster is the sibling node of
AT1 dominated cluster when SNP information is combined
with expression whereas the AT2 dominated cluster is the
descendant of the AT1 dominated cluster in the expression
only model (36).

While we believe that the integration of SNP and expres-
sion information would be useful for many studies, we note
that it may not be a viable option in some cases. For exam-
ple, when sampling rates are very short it is unlikely that
many SNPs would be identified by our method TBSP even
if large changes in expression occurs. Low coverage would
also impact the accuracy of the method. In addition, many
unique molecular identifier (UMI) technologies sacrifice the
full-length coverage to sequence part of the primer used for
cDNA generation (47,48), which would reduce the ability
to detect SNP. Still, several existing and new datasets are
sequencing full-length cDNA, and these can benefit from
the method we presented.

Software implementing TBSP is freely available at
GitHub (https://github.com/phoenixding/tbsp). As the
number and types of biological processes that are stud-
ied using scRNA-Seq data increases, methods that can
accurately infer developmental and response trajectories
become an important part of the analysis and modeling
process. We hope that TBSP, which aims at better uti-

lization of existing data, would aid researchers seeking to
analyze such time series scRNA-Seq data.
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