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Abstract: Neurexin-1 (NRXN1) is a membrane protein essential in synapse formation and cell
signaling as a cell-adhesion molecule and cell-surface receptor. NRXN1 and its binding partner
neuroligin have been associated with deficits in cognition. Recent genetics research has linked NRXN1
missense mutations to increased risk for brain disorders, including schizophrenia (SCZ) and autism
spectrum disorder (ASD). Investigation of the structure–function relationship in NRXN1 has proven
difficult due to a lack of the experimental full-length membrane protein structure. AlphaFold, a deep
learning-based predictor, succeeds in high-quality protein structure prediction and offers a solution
for membrane protein model construction. In the study, we applied a computational saturation
mutagenesis method to analyze the systemic effects of missense mutations on protein functions in a
human NRXN1 structure predicted from AlphaFold and an experimental Bos taurus structure. The
folding energy changes were calculated to estimate the effects of the 29,540 mutations of AlphaFold
model on protein stability. The comparative study on the experimental and computationally predicted
structures shows that these energy changes are highly correlated, demonstrating the reliability
of the AlphaFold structure for the downstream bioinformatics analysis. The energy calculation
revealed that some target mutations associated with SCZ and ASD could make the protein unstable.
The study can provide helpful information for characterizing the disease-causing mutations and
elucidating the molecular mechanisms by which the variations cause SCZ and ASD. This methodology
could provide the bioinformatics protocol to investigate the effects of target mutations on multiple
AlphaFold structures.

Keywords: neurexin-1; AlphaFold; missense mutation; protein stability; computational
saturation mutagenesis

1. Introduction

Resolving protein structures experimentally can be achieved by using X-ray crystal-
lography, NMR spectroscopy, electron microscopy, and electron diffraction. Although
technological advancements in software and hardware have improved resolution, these
techniques can be extremely challenging, time-consuming, and costly. Hundreds of mil-
lions of proteins are listed in the UniProt database, but a relatively small number are
represented in the Protein Data Bank (PDB) [1]. Thus, having reliable computational mod-
eling approaches to investigate proteins is vital for understanding structure and function,
protein–protein interactions, and drug discovery. The latest tool, called AlphaFold [2], has
proved to be the most accurate, demonstrating a median backbone root mean squared devi-
ation (RMSD) of 0.96 Å [3]. AlphaFold uses the deep neural network algorithm that utilizes
homologous templates and multiple sequence alignment to predict protein structures. The
initial inputs to the algorithm are the primary protein sequence of interest and homologous
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proteins, which are used to construct a multiple sequence alignment [3]. Having access
to better models will make it possible to investigate the molecular properties of proteins
within an evolutionary context, as we can compare AlphaFold structures across multiple
species. The highly accurate models predicted by the AlphaFold make it an important tool
that can be used to investigate the structure and function of proteins for which we lack
experimentally derived structures, such as neurexin-1 (NRXN-1).

Neurexins are a group of polymorphic cell adhesion molecules that are important
in neurotransmission and synaptogenesis [4]. These proteins are primarily expressed in
presynaptic terminals and can bind several soluble and postsynaptic proteins [5]. Mammals
have three neurexin genes, which possess two different promoters capable of transcribing
longer α isoforms and shorter β isoforms [5–7]. Several splice variants are known for
both α and β isoforms, five splice sites are known for α neurexin, and two splice sites are
known to occur in β neurexin. NRXN1a is expressed in many brain regions, including the
cerebellum, claustrum, and thalamus [8]. Several complex mental disorders are associated
with mutations in NRXN1, along with dysfunction in the cerebellum, including ASD,
SCZ, and intellectual disability [5,9–12]. While overlapping expression patterns have been
demonstrated for NRXN1, NRXN2, and NRXN3 with some neurons expressing multiple
neurexins, the expression of these proteins is essential as they help determine the balance
of the excitatory/inhibitory properties of synapses based on the proteins they are capable
of binding [8,13–15]. The expression of NRXN1 in the brain is regulated by the Disrupted
in Schizophrenia 1 protein (DISC1). Previous investigations of RNA expression in an SCZ
mouse model carrying a missense mutation in Disc1 demonstrated dysregulated Nrxn1
and Nrxn3 expression profiles, indicating that Disc1 plays a role in regulating Nrxn1 [16].
Previous work demonstrated that NRXN1 expression increases significantly with age
in humans. Neurexins are known to bind extracellularly with neuroligin, dystroglycan,
neurexophilins, and leucine-rich repeat transmembrane neuronal protein (LRRTM) [17].

The NRXN1α protein can be up to 1477 amino acids in length. The domain structure
of NRXN1 consists of a large extracellular domain with an N-terminal signal peptide, three
epidermal growth factor-like (EGF-like) domains, each of which is flanked by two of the six
laminin neurexin sex hormone-binding globulin (LNS) domains, and this is followed by
an O-glycosylated domain that connects the extracellular domains to the transmembrane
region. Finally, a protein 4.1 binding site and a postsynaptic density zone (PDZ) domain
binding site 129–131 are found at the C terminus. The protein has an overall L shape with
two hinge regions [18]. However, the β isoform possesses only a single extracellular LNS
domain. The LNS domain structure is made up of a “lectin-like β-sheet with a conserved
Ca2+” binding-site [19–21]. The NRXN1 protein is subject to extensive alternative splicing,
leading to the potential generation of greater than 2000 variants [17]. These isoforms
(NRXN1a and NRXN1b) and their respective variants seem to play different roles within
the synapse [6]. For example, deletion of α neurexins results in diminished vesicle release
from presynaptic terminals in response to the induction of action potentials and altered Ca+
channel function [22–24]; α neurexins are also crucial to N-methyl-D-aspartate (NMDA)
receptor function, as a-neurexin knockout mice demonstrated a fifty percent decrease in the
ratio of evoked synaptic currents between NMDARs to AMPARs [25]. One major binding
partner of both α and β neurexins is neuroligin; these proteins bind postsynaptic density
zone scaffolding proteins. Neuroligins recruit postsynaptic proteins such as receptors
and ion channels and are important for synapse maturation and in the assembly of the
postsynaptic density (PSD) proteins [26–30].

The aim of the current study is to demonstrate the utility of AlphaFold for the study
of the evolution of proteins such as NRXN1. We compared the sequence and structural
similarity between the experimentally derived Bos taurus structure (PDB ID: 3poy) and the
computationally predicted human AlphaFold model (Uniprot ID: Q9ULB1). To determine
the effect of mutations on protein stability, we performed saturation mutagenesis on the
experimentally determined and predicted NRXN1 structures and calculated the difference
in free folding energy between the wildtype and mutated structures. The stability changes
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upon NRXN1 mutations were compared to deleterious effects for predicting the damaging
missense mutations. We investigated the effects of known disease-causing mutations on
NRXN1 stability and function. Finally, we examined the stability effects in the context of
evolutionary conservation.

2. Materials and Methods
2.1. Structure Preparation

We collected the AlphaFold structure for human NRXN1a (UniProt ID: Q9ULB1) from
the AlphaFold database [2]. The experimentally derived structures were downloaded
from the Protein Data Bank (PDB). We also collected a homology model from the SWISS-
MODEL Repository, 3qcw.1.A [31]. One of the largest NRXN1 structures available is the
crystal structure of the α-Neurexin-1 ectodomain, LNS 2–6 from B.taurus (Bovine) (PDB
ID: 3poy) [18]. The sequence of the experimental 3poy structure is 95.8% identical to the
canonical sequence of the human NRXN1 protein, based on pairwise alignment [32,33].
The 3poy structure includes two EGF-like domains and five of the six laminin-neurexin-
sex-hormone binding globulin domains, terminating just before the O-glycosylated stalk
region [18]. We applied Pymol to compare the AlphaFold and experimental NRXN1
structures using the “super” algorithm, which uses a sequence-independent approach to
align two structures that subsequently undergo a series of refinement cycles until the best
fit is achieved [34].

2.2. Mutation Collection

To investigate the effect of mutations on protein stability in the NRXN1, we utilized
the computational saturation mutagenesis procedure described in our recent study [35]. In
brief, we generated all possible mutations in the structure by mutating each residue to each
of the 19 other common amino acids. Additionally, the disease-causing mutations were
collected using the Human Gene Mutation Database (HGMD) [36].

2.3. Sequence-Based Analysis

A pairwise global alignment was performed using EMBOSS NEEDLE for the human
(Q9ULB1) and bovine (Q28146) NRXN1 sequences [32,33].

Transmembrane helices were predicted using bioinformatics tools. The TMHMM is a
transmembrane hidden Markov model prediction tool that uses protein sequence data to
predict transmembrane regions [37,38]. The DeepTMHMM is a protein structure prediction
tool that uses a deep learning algorithm to predict transmembrane domains and is meant to
replace the TMHMM tool [39]. The TOPCONS web server is a protein topology prediction
tool that generates a prediction based on the consensus of the output from several protein
structure prediction tools [40].

We utilized the sequence-based machine learning approach, SNAP2 [41], to obtain the
damaging scores to predict the mutation functional effects. The SNAP2 tool is a classifier
that uses neural network-based algorithms to determine whether a particular mutation is
likely to be neutral or cause an effect on protein function.

2.4. Structure-Based Stability Calculation

We utilized Foldx version 5 to calculate changes in protein stability in the NRXN1a
structures we collected. Foldx was used to derive information concerning the total folding
energy (∆∆G) and the contribution of entropy, hydrogen bonding, van der Waals inter-
actions, and electrostatic interactions [42]. We first used Foldx to repair structures using
the ”RepairPDB” command, which optimizes the structure by adjusting van der Waal’s
interactions, torsion angles, etc. Using the command-line interface, we generated mutations
by converting each residue to each of the 19 remaining amino acids. Then, we used Foldx
to calculate the free energy, ∆G, for both the wildtype and the mutant structures, using
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the function ”BuildModel” [42]. The folding energy change upon mutation was calculated
using the following equation:

∆∆G(stability) = ∆G(folding)MUT − ∆G(folding)WT

The ∆∆G(stability) scores can be used to estimate the effects of missense mutation
on protein stability, whereby negative scores represent increased stability and positive
scores represent decreased stability. These scores are grouped into five categories: highly
stabilizing (∆∆G < −2.0 kcal/mol), moderately stabilizing (−2.0 < ∆∆G < −0.5 kcal/mol),
neutral (0.5 < ∆∆G < +0.5 kcal/mol), moderately destabilizing (+0.5 < ∆∆G < 2.0 kcal/mol),
and highly destabilizing (∆∆G > 2.0 kcal/mol).

We calculated the correlational coefficient for alanine mutations, all mutations, and the
mean value of ∆∆G of mutations generated in both the bovine experimental and human
AlphaFold structures by using the formula:

r = ∑(xi− x)(yi− y)/√
[
∑ (xi− x̂)2

][
∑ (yi− ŷ)2

]
2.5. Conservation Analysis

Conservation scores were obtained from Consurf and Aminode tools [43,44]. Consurf
uses user-provided amino acid sequences to find homologous sequences using BLAST. A
list of the twenty species used in this study can be found in Supplementary Figure S1. The
program then performs a multiple sequence alignment to the homologous sequences using
a specified algorithm. The resulting alignment is used to build a phylogenetic tree which is
then used to calculate “position-specific” conservation scores [43]. The conservation scores
are converted to a color scale of 1–9, where highly variable residues are at the low end of
the scale and those that are highly conserved are at the high end of the scale. Aminode
is a bioinformatics tool based on “Amino Acid Evolutionary Constrained Analysis”. The
Aminode tool utilizes amino acid sequences and phylogenetic trees to determine the
best fit according to a “maximum parsimony approach”. The program then calculates a
substitution score, whereby the higher the score, the rarer the likelihood of amino acid
substitution [44]. The scores are then normalized across the entire MSA, which includes 23
species (Supplementary Figure S1). Consurf uses user-provided amino acid sequences to
find homologous sequences using BLAST. The program then performs a multiple sequence
alignment to the homologous sequences using a specified algorithm. The same species
used in the Aminode analysis were used for the Consurf analysis.

3. Results
3.1. Comparison of AlphaFold with Other Structures

The pairwise sequence alignment of the human AlphaFold model and the experimen-
tal bovine structure (3poy) resulted in a percent identity of 95.8% [33]. The human NRXN1
AlphaFold structure aligns very closely with the experimental structure (RMSD = 1.615
based on 7227 atoms) (Figure 1A). To further evaluate the reliability of AlphaFold model,
we compared the AlphaFold and experimental NRXN1 models with the homology model
obtained from the SWISS-MODEL Repository (3qcw.1.A). As shown in Supplementary
Figure S2B, the RMSD value between the AlphaFold NRXN1 to the SWISS-MODEL NRXN1
is 1.944 (7325 to 7325 atoms). When we made a similar comparison between the experimen-
tally derived bovine structure and the SWISS-MODEL, we found an RMSD value of 0.954
(5855 to 5855 atoms) (Supplementary Figure S2A). The RMSD of the structural comparison
of the experimental and SWISS-MODEL structures is lower than that obtained for the
AlphaFold. The reason is that the AlphaFold model has all 6 LNS domains along with
the transmembrane domain and C terminal domain, which are not modeled in homology
modeling or experimental approaches.
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found that the R-values ranged from 0.8649 for substitutions to proline (P) to 0.9337 for 
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effects of mutations in key residues on protein stability from the AlphaFold model. 

 

Figure 1. (A) Structural alignment of the human AlphaFold NRXN1 model. (B,C) Pie charts depict-
ing the percentages concerning stability changes calculated following saturation mutagenesis for
AlphaFold NRXN1 and experimental NRXN1 structures. The ∆∆G values are separated into highly
destabilizing (dark red), moderately stabilizing (pink), neutral, moderately stabilizing (light blue),
highly stabilizing (dark blue).

The full-length human NRXN1 AlphaFold structure is 1477 residues in length. Thus,
we generated 29,540 nonredundant missense mutations, which were used to calculate
overall protein stability. The stability heatmaps for the AlphaFold and bovine NRXN1
models are displayed in Supplementary Figure S3. The heatmaps appear very similar
except for the transmembrane domain and C terminus, which are present in the AlphaFold
model but absent in the experimental structure. We specifically calculated the percentages
of stabilizing and destabilizing mutations in each domain of the NRXN1 proteins.

We compared ∆∆G values of all mutations in all of the positions within the human
NRXN1 AlphaFold model and experimental structure. As shown in Figure 2, Pearson’s
correlation coefficient (R) value of ∆∆G is 0.9064 for substitutions to alanine (A) and
increases to 0.9139 for all mutations. We checked the substitutions to different residues
and found that the R-values ranged from 0.8649 for substitutions to proline (P) to 0.9337
for substitutions to aspartic acid (D) (Supplementary Figure S4). Interestingly, the R-value
is improved to 0.9490 for mean residue ∆∆G values (Figure 2). These results indicate
that saturation mutagenesis of residues common to the bovine experimental and human
AlphaFold NRXN1 models results in similar changes to the overall folding energy of
the protein structure. The significant positive correlation of residue mean ∆∆G value
(R = 0.9490, p < 2.2 × 10−16) implies that the mean ∆∆G is a reliable measure for predicting
the effects of mutations in key residues on protein stability from the AlphaFold model.
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3.2. Laminin G-like Domains and EGF Domains

There are six laminin G-like domains in the full-length NRXN1a protein; however,
only the last laminin G-like domain (LNS6) is incorporated into the NRXN1b isoform.
Most of the mutations generated in the Laminin G-like domains of the AlphaFold NRXN1
structure were destabilizing (37% highly destabilizing, 29% moderately destabilizing). Of
the remaining residues, 26% were found to be neutral and 8% were found to be moderately
stabilizing to the protein structure (Figure 1B). Four of the most destabilizing mutations,
G587W, G850W, G1256, and G182, and all five of the top stabilizing mutations, were found
in Laminin G-like domains.

Sixty-two percent of the mutations we generated in the EGF-like domains of the
NRXN1 protein were found to be moderately to highly destabilizing (32% highly destabiliz-
ing, 30% moderately destabilizing). Seven percent of mutations generated in the EGF-like
domains were moderately stabilizing. Mutations generated in the remaining residues were
neutral in their effect on stability (32%) (Figure 1B).

Of the three EGF-like domains, the EGF-like 2 domain has the most significant percent-
age of mutations predicted to be moderately to highly destabilizing. It is worth noting that the
EGF-like 2 domain, which is found between positions 676 and 713 and is a highly conserved
domain (Evalue = 2.98e− 07) (Supplementary Figure S3) [45]. Based on proteins that contain
homologous EGF-like domains, this region may possess an aspartate/asparagine hydrox-
ylation site between positions 691 and 702 (Interpro/Prosite) (Supplementary Figure S5).
The consensus sequence for this PTM is C-x- [DN]-x(4)- [FY]-x-C-x-C, and the sequence
in the canonical sequence of human NRXN1 is C-R-D-G-W-N-R-Y-V-C-D-C. Though the
consensus sequence does not completely match the sequence in the human NRXN1 EGF
domain, the positions 691–702 may play an essential role in maintaining the stability of the
overall protein as the average ∆∆G for these positions are 3.21, 1.572, 0.768, 6.778, 2.617,
2.363, 1.713, 1.181, and 0.841 kcal/mol, respectively. It is noteworthy that one of the most
destabilizing mutations we found in the full-length AlphaFold NRXN1 structure, G1096W,
is found in the EGF-like 3 domain (Figure 3).
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Figure 3. Top mutations affecting the protein stability (A). Top mutations are highlighted with
yellow boxes. The line graph represents the mean ∆∆G (line) and ∆∆G of alanine mutations
(shown as bubbles) for each position in the AlphaFold NRXN1 (B) and experimental bovine NRXN1
(C) structures.

We compared the ∆∆G of the mutations we generated by domain using a one-way
ANOVA and found there were significant differences between the domains (F = 16.39,
p < 2e − 16). The results of the Tukey test are displayed in Supplementary Table S1. Non-
domain positions were found to be significantly different from positions located within
domain regions (p < 0.01). The mean of the ∆∆G for non-domain positions in the NRXN1
protein is 0.49 kcal/mol (SD = 1.787), indicating that mutations in these residues are likely
to result in a neutral change in overall stability. The mean ∆∆G for mutations occurring in
residues contained in the recognized domains was 2.802 kcal/mol (SD = 5.102), indicating
that the generation of missense mutations in the recognized domains is likely to cause
destabilization in the NRXN1 protein.

3.3. Top Mutations Affecting the Protein Stability

As shown in Figure 3A for the AlphaFold model, the line graph represents the distri-
bution of mean ∆∆G values, red represents positive values for the average destabilization
effects of the NRXN1 protein upon mutation, and blue represents for negative values
the average stabilization effects of the mutations in the residue positions. The top five
most destabilizing positions in terms of average ∆∆G were 642, 1256, 587, 616, and 850
(∆∆G < −1.1 kcal/mol). The top five most stabilizing positions in terms of average ∆∆G
were 951, 8, 1324, 211, and 905 (∆∆G > 25 kcal/mol). The bubbles represent the ∆∆G values
of substitutions to alanine at each position. Note that the mean ∆∆G values and ∆∆G
values of substitutions to alanine for experimental structure (Figure 3B) have a similar
distribution to those for the AlphaFold model (Figure 3A).

Figure 3C depicts the top mutations that have destabilizing and stabilizing effects
based on their ∆∆G values on the overall protein stability of the human NRXN1. The top
five stabilizing mutations were D951M, S871R, D951L, D539P, and S341M
(∆∆G < −3.4 kcal/mol). The most destabilizing mutations were G182W, G1256W, G850W,
G1096W, and G587W (∆∆G > 70 kcal/mol). The top destabilizing alanine mutations are
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G587A, G417A, G616A, G1256A, and G642A (∆∆G > 8.2 kcal/mol). The top stabilizing
alanine mutations are L265A, S720A, S211A, T1324A, and D951A (∆∆G <−1.701 kcal/mol).
The top stabilizing and destabilizing mutations G587W, G1256W, S341M, and D951M are
depicted in Figure 4B.
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The top destabilizing mutations in the full-length experimental structure (3poy) were
G610W, G665W, G1309W, G873W, and G1119W. It is worth noting that the G610W, G665W.
G1309W, G873W, and G1119W are equivalent to the G587W, G642W, G1256W, G850W,
and G1096W mutations we generated in the NRXN1 AlphaFold model based on pairwise
alignment (Figure 3A,B). These and other similarities could be important in understanding
the evolutionary history of the NRXN1 protein.

3.4. Transmembrane Region Prediction

One advantage of using the human NRXN1 AlphaFold model is that it predicts the
transmembrane domain lacking in the bovine experimental model. TMHMM predicts a
structure consisting of an extracellular portion consisting of a signal peptide of 1–1400
amino acids, a transmembrane region with 22 amino acids in length, and an intracellular
portion of 53 amino acids in length. TOPCONS produced a similar prediction; however, it
predicted that positions 1–30 act as a signal peptide (Supplementary Figure S6). Most of the
mutations in the region predicted by TMHMM to contain the transmembrane helix were
neutral in terms of their effect on stability (50.2%), with an overall mean of 0.256 (Figure 5B).
Based on the MSA performed by Consurf, this region is highly conserved among humans
and 22 other species (Supplementary Figure S1). Sixteen percent of mutations generated
in this region were predicted to moderately increase the overall stability of NRXN1. The
remaining mutations were moderately (30.4%) or highly destabilizing (3.4%) (Figure 5A).
Using the sequence corresponding to the transmembrane region, we used the lipidation
prediction tool, CSS-Palm, and found an S-palmitoylation site at a cysteine residue at posi-
tion 1414 [46]. The average ∆∆G of mutations located at position 1414 is −0.639 kcal/mol
and therefore generally predicted to increase protein stability, with one notable exception
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being C1414P, which resulted in a ∆∆G of 2.417 kcal/mol, indicating a moderate decrease
in protein stability. This mutation has not been reported but could be significant in under-
standing the potential role of S-palmitoylation or other post-translational modifications in
the NRXN1 protein.
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Figure 5. (A) Illustration of the transmembrane domain of the NRXN1 protein. (B) Piechart shows
the percentages of predicted ∆∆G values. (C) Heatmap of residues 1401–1423, which correspond to
the transmembrane domain. The color gradient corresponds to the degree of stability change: dark
red to light red indicates highly to moderately destabilizing mutations, white indicates neutral, and
dark blue to light blue indicates highly to moderately stabilizing mutations.

3.5. Mutation Pathogenicity Prediction

We evaluated the damage scores obtained for the full-length AlphaFold NRXN1 model
using SNAP2. The correlational analysis found a moderate yet significant association be-
tween the protein stability and the SNAP2 scores (r = 0.334, p < 2.2 × 10−16). There was a
significant difference in stability between the mutations predicted to cause and “effect” and
those predicted to be “neutral” (t = −55.576, df = 21680, p-value < 2.2 × 10−16) (Supplemen-
tary Figure S7). We then compared SNAP2 scores based on whether their stability scores
were predicted to be highly destabilizing to highly stabilizing and found a significant
difference between groups (one-way ANOVA, df = 3, F = 2649, Pr < 2.2 × 10−16). The
Tukey test demonstrated significant differences between all groups except the moderately
stabilizing and moderately destabilizing groups (p < 0.1).

3.6. Disease-Causing Mutations

We attempted to verify the positions of the mutations by comparing the canonical
sequence of human NRXN1 with those referenced in the papers from which the disease-
causing mutations were derived using pairwise alignment (Supplementary Table S2.). We
were able to validate 21 of the 24 mutations we obtained from HGMD [36]. Of the 400 mu-
tations generated at positions corresponding to known disease variants, we found that 61%
were predicted to be moderately to highly destabilizing (Figure 6A). Approximately 4% of
mutations generated were found to be moderately stabilizing, while 36% of the mutations
were found to be neutral. The residue I1135V is located in a position that is associated with
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the greatest mean destabilization of the NRXN1 protein (Mean ∆∆G = 5.59 kcal/mol) (Fig-
ure 6B). A mutation in this location, I1135V, is associated with ASD and results in moderate
destabilization of the overall protein (∆∆G = 1.25 kcal/mol). The most stabilizing position
associated with disease-causing mutation is H1434. Mutations generated in this position
have a mean ∆∆G of −0.18 kcal/mol. A mutation in this position, H1434R, is associated
with SCZ and has ∆∆G of −0.5 kcal/mol. Of all the disease-causing mutations, the L893V
mutation associated with ASD was the most destabilizing, with a ∆∆G of 4.14 kcal/mol
(Figure 6C). Interestingly, the most stabilizing disease-causing mutation is H845Y, which is
also associated with ASD and has a ∆∆G of −1.01 kcal/mol (Figure 5C).
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Figure 6. (A) Pie chart of the mutations in positions associated with disease-causing mutations.
(B) Heatmap of mutations in positions associated with disease-causing variants. The color gradient
corresponds to the degree of stability change: dark red to light red indicates highly to moderately
destabilizing mutations, white indicates neutral, and dark blue to light blue indicates highly to mod-
erately stabilizing mutations. Disease-causing mutations are highlighted in yellow. (C) Illustration of
two top mutations: H845Y and L893V associated with ASD.

3.7. Evolutionarily Conserved Regions

Using Aminode, we found 50 region evolutionarily conserved regions across the
NRXN1 protein, and the human NRXN1 AlphaFold model covers 48 of those completely
and partially covers the 49th region. We evaluated the stability changes over the evolu-
tionarily conserved regions. We found approximately 61% of the mutations generated
in positions across the ECRs resulted in stability changes that were moderate to high. In
comparison, 39% of mutations generated were found to have a neutral or moderately
stabilizing effect. The stability heat map of positions corresponding to ECRs demon-
strates that most of the positions where mutagenesis has fewer destabilizing effects are
found toward the end of the protein model between positions 1303 and 1477. This region
overlaps with the 4.1 m binding motif (1422–1440), the sequence of which is MYKYRN-
RDEGSYHVDESRN. Welch’s two-sample T-test resulted in a significant difference being
found between the ∆∆G of evolutionarily conserved regions and nonconserved regions
(t = −6.9189, p-value = 4.645 × 1012).
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No correlations were found between mean ∆∆G as predicted by Foldx and Consurf
normalized score. We performed a one-way ANOVA on normalized Consurf scores and
mean ∆∆G grouping (i.e., highly destabilizing, moderately stabilizing, neutral, etc.). There
were significant differences between the variances of these groups in terms of their Consurf
scores per one-Way ANOVA (F = 3.02, Pr > 0.00746). Tukey test demonstrated that this
difference was primarily found between highly conserved and highly variable residues
(adj p-value < 0.01).

The conserved domain database identified seven conserved domains with significant
domain-specific E-values [45]. These seven domains represented the Laminin G and 4.1 m
superfamilies 1. Two additional domains were found: the EGF-like and the Syndecan-
like domains; however, they failed to meet the domain-specific E-value threshold. The
positions of the Laminin G and EGF conserved domains roughly mirror the positions of the
recognized domains for the entire length of NRXN1 protein (Supplementary Figure S3). For
example, the second EGF domain, which spans positions 676–713, is also a highly conserved
domain, with an E-value of 2.982 × 10−07 (CDD). We compared the stability of conserved
and nonconserved domains using one-way ANOVA (df = 9, F = 92.1, p = 2 × 10−16) and
found there was a significant difference between the groups. The pairwise results of the
Tukey test are displayed in Supplementary Table S1. Significant differences were found
between the variances of the conserved Lam G1, LamG2, and LamG4 domains when
compared to the conserved LamG3 domains (p < 0.01) (Supplementary Table S1).

4. Discussion

We have demonstrated the usefulness of AlphaFold models to investigate the evolution
of proteins such as NRXN1. Using the AlphaFold structures and experimental structures
in conjunction with bioinformatics tools, we can compare the structures and biophysical
properties of proteins to better understand their function. The AlphaFold model is reliable
for comparative analysis of homologous proteins. We can investigate and compare the
effects of mutations on homologous proteins to aid our understanding of how mutations
may affect protein structure and function and, therefore, how they may contribute to
disease processes.

There are few studies to date that have utilized AlphaFold to investigate protein
variations related to mental disorders. A previous study of a de novo heterozygous variant,
V456A, in the RNA polymerase II subunit A (POLR2A) found that there were no gross struc-
tural deformities in the local structure when comparing the WT AlphaFold or mutagenized
AlphaFold structures [47]. This variant was associated with intellectual and behavioral
symptoms in a long-term case study of a patient who had also been diagnosed with ASD
and epilepsy [47]. The author proposed that the weakening of hydrophobic bonds within
the catalytic site was to blame for the deleterious effect of this mutation on the function of
POLR2A protein [47]. Additionally, an investigation of the properties of yohimbine was
performed in silico mutagenesis on an AlphaFold model of the 5HT receptor [48]. Several
non-peer-reviewed studies have also utilized the AlphaFold to study specific mutations
related to intellectual disability, neurodevelopmental and neurodegenerative disorders,
and neuropsychiatric disorders [49–52].

Mental disorders such as SCZ and ASD and many neuropsychiatric symptoms are
associated with mutations in NRXN1 and its binding partners. The majority of mutations
we generated in positions associated with disease-causing mutations led to moderate to
highly destabilizing changes in the overall free folding energy of the NRXN1 protein.
One example is the L893V mutation that is associated with ASD. Although several of the
disease-causing mutations themselves are moderately to highly destabilizing, there are
some exceptions, including the highly stabilizing mutation H845Y, which is associated with
ASD, and H1434R, which is associated with SCZ.

Few functional studies of NRXN1 disease-causing mutations can be found in the
literature. For example, the L893V and I1135V mutations associated with ASD were found
to decrease protein expression and disrupt circadian rhythms in transgenic flies when
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compared with control flies [53]. An in vitro study found reduced cell surface expression
of NRXN1 and decreased binding of NRXN1 and NLGN1 for selected disease-causing
missense mutations [54]. Neurexins seem to be important in the history of mammalian evo-
lution, as mammals express three neurexin proteins, and invertebrates such as Drosophila
and C. elegans only express NRXN1a [55]. Most evolutionary studies of NRXN1 have
focused mainly on alternative splicing or the effect of mutations, as there is a large degree of
structural and sequential similarity between mammalian and vertebrate neurexin proteins.
However, due to the relative paucity of reliable protein models, these studies are limited to
comparing biophysical tendencies or changes resulting from mutations that are limited in
scope. Nevertheless, with better models, such as those generated with AlphaFold, we can
better investigate more local structural and biophysical changes across species, which may
reveal important evolutionary or functional insights [56,57]. We also demonstrated a signif-
icant correlation between the protein stability changes following alanine mutation across
the AlphaFold and experimental NRXN1 models. Furthermore, we demonstrated signifi-
cant differences in the mean effect of mutation on protein stability between evolutionarily
constrained and nonconstrained regions of the AlphaFold NRXN1 model. These results
demonstrate the utility of AlphaFold in exploring local structural and other differences in
the evolutionary history of NRXN1 and other proteins.

There are, however, several limitations to utilizing this methodology. One limitation of
using AlphaFold to study proteins involved in mental disorders is that AlphaFold may not
adequately predict the conformations of intrinsically disordered regions of proteins [58]. As
many as 80% of proteins currently investigated for their association with mental disorders
include intrinsically disordered regions [59]. Additionally, modeling the relative positions
of domains, modeling shifts in response to stimulation, etc., are issues that remain to be
solved within ab initio protein structure modeling [60].

However, a recent study demonstrated that AlphaFold could reliably predict trans-
membrane proteins despite the fact that the algorithm’s training was based more on soluble
proteins [61]. The study found that 53% of transmembrane regions had pLDDT scores
above 90, indicating a high degree of confidence in the prediction [61]. Furthermore, we
demonstrated how the transmembrane region prediction of AlphaFold aligns with the
results of transmembrane domain prediction tools. Thus, while AlphaFold offers several
advantages to the realm of structure modeling, there are several caveats one should keep
in mind.

We have demonstrated how AlphaFold can be used to investigate evolutionary dif-
ferences in proteins. Though we primarily investigated protein stability in the context of
this paper, future work may interrogate the domain–domain interactions within proteins
such as NRXN1 together with interactions with other proteins. It may be the case that some
disease-causing variants may not have a significant effect on protein stability but might
be important in the maintenance of the tertiary structure. The mutations we generated in
several positions associated with deletion variants in the protein seem to have neutral to
moderate effects on protein stability; however, their placement might make them important
to maintaining the overall tertiary structure. An investigation of the domain–domain
and protein–protein interactions might help explain how some mutations with modest
effects on protein stability might still contribute to severe disease. This study provides a
framework methodology for investigating aspects of protein evolution, including struc-
ture, protein stability, and conservation. The utility of this methodology extends beyond
evolutionary research to the investigation of protein dynamics, disease-causing mutations,
protein–protein interactions, and drug discovery.

5. Conclusions

We demonstrated that the human AlphaFold NRXN1 is a good model to use for
studying protein structure and energetic changes resulting from missense mutations. Ad-
ditionally, we demonstrated that AlphaFold can be used to compare homologous protein
structures and their energetic landscapes. We found significant positive correlations when
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comparing the mean ∆∆G and ∆∆G of alanine mutations between the AlphaFold model
and experimental structure. After analyzing 29,540 mutations across the entire human
NRXN1 AlphaFold model, we determined the degree to which these mutations would
affect protein stability. The vast majority of mutations we generated were moderately to
highly destabilizing. We found roughly equivalent percentages for the bovine experimental
structure, which shares 95.8% identity with the human sequence. Our analyses found
several human NRXN1 mutations that are predicted to increase protein stability signif-
icantly: S341M, D539P, D951M, S871R, D951L (∆∆G < −3.4 kcal/mol), and several that
are predicted to decrease protein stability: G587W, G1096W, G850W, G1256W, and G182W
(∆∆G > 70 kcal/mol). Several of these mutations share equivalent positions in the B. taurus
experimental structure. We also found that the majority of mutations we generated in
evolutionarily conserved regions were predicted to be moderately to highly destabilizing.
Therefore, we believe that AlphaFold, in conjunction with the use of experimental and
homologous protein structures, can be extremely useful in investigating the effects of
missense mutations on protein structure and for the investigation of protein evolution.

6. Key Points

• We compared the human AlphaFold NRXN1 structure to the experimental bovine
NRXN1 structure.

• The folding energy changes in the human AlphaFold model are highly corrected to
those found for the bovine experimental structure.

• Several human NRXN1 mutations are predicted to affect protein stability significantly.
• The target mutations associated with brain disorders could destabilize human

NRXN1 protein.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13050789/s1, Figure S1: Multiple Sequence alignment of
NRXN1a protein sequences from 23 species; Figure S2: Structural alignment of SWISS-MODEL
structure 3qcw.1.A with the bovine NRXN1 structure (PDB ID: 3poy). (B) Structural alignment of
SWISS-MODEL structure 3qcw.1.A with the AlphaFold NRXN1 structure (Uniprot ID: Q9ULB1);
Figure S3: Heatmap displaying the effects of saturation mutagenesis for the full-length human NRXN1
AlphaFold model (Top) and experimental bovine NRXN1 model (Bottom); Figure S4: Scatterplots
depicting the corrections of ∆∆G of substitutions to 20 different residues between the AlphaFold
and experimental structures; Figure S5: Heatmap of residues 691-702, the equivalent location of a
consensus sequence for a hydroxylation site in homologous proteins; Figure S6: Transmembrane
prediction from THMM (A), DeepTMHMM (B), and TOPCONS (C); Figure S7: Boxplot of SNAP2
predictions vs. stability prediction from FoldX; Table S1: Pairwise Results of Tukey Test comparing
the DDG associated with mutations generated in residues in conserved domains and non-conserved
regions of the NRXN1 AlphaFold structure; Table S2: Disease-causing NRXN1 mutations with DDG,
Mean DDG, and SNAP2 scores from HGMD.
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