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ABSTRACT Microbially produced electrically conductive protein filaments are of in-
terest because they can function as conduits for long-range biological electron
transfer. They also show promise as sustainably produced electronic materials. Until
now, microbially produced conductive protein filaments have been reported only for
bacteria. We report here that the archaellum of Methanospirillum hungatei is electri-
cally conductive. This is the first demonstration that electrically conductive protein
filaments have evolved in Archaea. Furthermore, the structure of the M. hungatei ar-
chaellum was previously determined (N. Poweleit, P. Ge, H. N. Nguyen, R. R. O. Loo,
et al., Nat Microbiol 2:16222, 2016, https://doi.org/10.1038/nmicrobiol.2016.222). Thus,
the archaellum of M. hungatei is the first microbially produced electrically conductive
protein filament for which a structure is known. We analyzed the previously published
structure and identified a core of tightly packed phenylalanines that is one likely route
for electron conductance. The availability of the M. hungatei archaellum structure is
expected to substantially advance mechanistic evaluation of long-range electron trans-
port in microbially produced electrically conductive filaments and to aid in the design
of “green” electronic materials that can be microbially produced with renewable
feedstocks.

IMPORTANCE Microbially produced electrically conductive protein filaments are a
revolutionary, sustainably produced, electronic material with broad potential applica-
tions. The design of new protein nanowires based on the known M. hungatei ar-
chaellum structure could be a major advance over the current empirical design of
synthetic protein nanowires from electrically conductive bacterial pili. An under-
standing of the diversity of outer-surface protein structures capable of electron
transfer is important for developing models for microbial electrical communication
with other cells and minerals in natural anaerobic environments. Extracellular elec-
tron exchange is also essential in engineered environments such as bioelectrochemi-
cal devices and anaerobic digesters converting wastes to methane. The finding that
the archaellum of M. hungatei is electrically conductive suggests that some archaea
might be able to make long-range electrical connections with their external environ-
ment.
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Electrically conductive pili (e-pili) expressed by microbes in the domain Bacteria play
an important role in extracellular electron exchange between cells and their

extracellular environment (1, 2). e-Pili are found in diverse bacteria (1, 3, 4) but have
been studied most extensively in Geobacter sulfurreducens and related Geobacter
species in which e-pili are essential for long-range electron transport to Fe(III) oxide
minerals, interspecies electron transfer, and electron conduction through biofilms (1).
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e-Pili enable unprecedented long-range (micrometer) electron conduction along the
length of a protein filament, which not only has important biological implications but
also suggests diverse applications for these “protein nanowires” as a sustainably
produced electronic material (1, 5–7). There is substantial debate over the potential
mechanisms of long-range electron transport in e-pili (1, 6, 7). Although it has been
possible to determine the structure of some pili with cryo-electron microscopy (cryo-
EM) (8), an experimentally determined structure of G. sulfurreducens e-pili that could
help clarify electron transport mechanisms is not available. However, from the known
importance of aromatic amino acids for the conductivity of e-pili (1), synthetic electri-
cally conductive protein nanowires have been designed that are either microbially
produced (9) or assembled in vitro (10).

The finding that e-pili have independently evolved multiple times in Bacteria (3)
raised the question of whether conductive protein filaments have ever evolved in
Archaea. Diverse Archaea exchange electrons with their extracellular environment,
reducing extracellular electron acceptors or engaging in direct interspecies electron
transfer (DIET) with bacteria (2, 11). The alpha-helix filament structure of archaella, as
well as the mechanisms for assembly and export, resembles that of type IV pili (8, 12,
13). However, detailed analysis of the Methanospirillum hungatei archaellum also re-
vealed important differences from previously described structures of bacterial pili, such
as a lack of an inner channel and a distinct tertiary structure and subunit packing
arrangement (13).

The Methanospirillum hungatei archaellum is electrically conductive. We chose
the methanogen Methanospirillum hungatei for the initial search for an electrically
conductive archaellum (e-archaellum) because M. hungatei is capable of reducing
extracellular electron acceptors (14), archaellum expression is readily induced in M.
hungatei (15), and a cryo-EM (3.4-Å) structure of the archaellum is available (13).

Initial screening of the relative conductivity of diverse bacterial pili is typically
determined with conductive atomic force microscopy in which samples are deposited
on a conductive surface and a conductive tip serves as a translatable top electrode
(16–19). Therefore, 100 �l of a culture of M. hungatei grown in low-phosphate medium
to induce archaellum expression (15) was drop-cast onto highly oriented pyrolytic
graphite (HOPG), washed, dried, and then equilibrated at 40% relative humidity for
conductivity measurements. This process was designed to mimic physiologically rele-
vant conditions by avoiding chemical alteration of the archaellum structure and
determining conductivity of hydrated archaella.

Cells with a polar archaellum with the expected height of 10 nm (13) were readily
detected with topographic imaging in contact mode (Fig. 1a, b, and d). Conductive
imaging demonstrated that the archaellum was electrically conductive (Fig. 1c to e; see
also Fig. S1 and S2 in the supplemental material). Point-mode current-voltage (I-V)
spectroscopy revealed a linear-like response with currents that were higher than at the
same voltage with G. sulfurreducens e-pili prepared in the same manner (Fig. 1e). The
pili of G. sulfurreducens strain Aro-5, which produces pili specifically designed for low
conductivity (20, 21), exhibited very low currents at the same voltages (Fig. 1e).
Conductance estimated from the linear portion of the I-V curves yielded conductance
estimates of 16.9 � 3.9 nS (mean � standard deviation; n � 9; three independent
points on three separate archaella; 8,000 points of measurement taken for each
experimental I-V curve comprised of quadruplicate 0.6-V-bias sweeps) for the archaella,
4.5 � 0.3 nS for the wild-type G. sulfurreducens pili, and only 0.004 � 0.002 nS for the
Aro-5 pili. The estimated conductance of the wild-type G. sulfurreducens pili was similar
to the values found in previous studies that employed a comparable measurement
technique (16).

These results demonstrated that the M. hungatei archaellum is conductive and
suggest that a search for electrically conductive protein filaments in other Archaea as
well as the Eukarya is warranted. It has been proposed that electrically conductive
filaments of anaerobic methane-oxidizing archaea may be conduits for extracellular
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transfer to electron-accepting partners (22). Other possible benefits of archaellum
conductivity might include facilitating attachment by dissipating charge barriers be-
tween cells and surfaces or electrical signaling between cells. Expression of synthetic,
poorly conductive pili has played an important role in elucidating the function of e-pili
in Geobacter species (1). Similar functional studies of M. hungatei will require the
development of genetic tools for this microbe.

The M. hungatei archaellum contains a core of closely packed phenylalanines.
The cryo-EM structure of the M. hungatei e-archaellum (Fig. 2a), previously reported by
Poweleit et al. (13), provides a much needed first opportunity to directly evaluate
possible routes for long-range electron transport along a biologically produced protein
filament. Aromatic rings of phenylalanine, tyrosine, and tryptophan are grouped into
three well-separated regions: an outer sleeve (Fig. 2b and Fig. S5a), a middle sleeve
(Fig. 2b and Fig. S5b), and a core (Fig. 2c). It was previously noted that the N-terminal
phenylalanine residues in the archaellin subunits (Phe1) interact to “create a spokes
effect via a �-stacking sandwich” that plays a key role in stabilizing the structure (13).
Additional analysis of the distribution of aromatic amino acids (Fig. 2b and c and

FIG 1 Electrical conductivity of the Methanospirillum hungatei archaellum determined with atomic force microscopy. (a) Contact topographic imaging of M.
hungatei showing the polar archaellum protruding from the cell. The white box designates the region chosen for additional analysis. (b) Higher-resolution
topographic image of the archaellum from the region shown in a white box in panel a. The red line indicates the position for the topographic height and current
cross-sectional line profile analysis. (c) Local current image of the individual archaellum with an applied bias of 300 mV. (d) Topographic height and current
response from the cross-section designated in panel b. (e) Point-mode current response (I-V) spectroscopy of the individual archaellum (blue). The applied force
was 1 nN (see Fig. S3 in the supplemental material). Similar I-V analyses of the wild-type e-pili of G. sulfurreducens (black) and the poorly conductive pili of G.
sulfurreducens strain Aro-5 (green) are shown for comparison. A HOPG control is shown in Fig. S4. The M. hungatei archaellum conductivity measurement shown
is representative of three independent measurements on three archaella (see Fig. S1 and S2 for additional examples).
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Fig. S5) further revealed that the aromatic rings of Phe1 and Phe13 in the core of the
structure are packed almost as close as is physically possible (distances between ring
centers of Phe1 and Phe13 of 4.5 and 5.1 Å), with angled T-shaped geometric orienta-
tions, which previous studies have suggested may enable �-� interactions (23). Fur-
thermore, recent experimental evidence has indicated that, even in the absence of �-�
stacking, phenylalanines within the hydrophobic core of an amino acid �-helical
structure can facilitate long-range electron transport (10, 24). Therefore, our working
hypothesis is that the Phe1-Phe13 core is at least one of the features contributing to the
e-archaellum conductivity. Other aromatic amino acids of note include Phe20 (Fig. 2b),
which is positioned close to the Phe1-Phe13 core, as well as outer and middle sleeves
of aromatics that are well separated from each other and from the Phe1,13,20 core
(Fig. 2b). Unlike the core, the outer and middle aromatic sleeves lack any closely spaced
continuous chain of aromatics extending the length of the filament (Fig. S5).

Analogous to recent studies of G. sulfurreducens e-pili (20, 21, 25, 26), genetic
manipulations to alter the positions of aromatic amino acids or other amino acids that
may promote conductivity within the M. hungatei archaellum could lead to a better
understanding of the structural features contributing to conductivity. The added
benefit of such studies with the M. hungatei e-archaellum is that it will be possible to
directly examine structural modifications to electron conductance pathways with cryo-
EM. In the absence of genetic tools for M. hungatei, it will be necessary to heterolo-
gously express the gene for the M. hungatei archaellin in a genetically tractable archaeal
host, similar to the expression of heterologous e-pili in G. sulfurreducens (3) or to
identify a similar e-archaellum in a genetically tractable archaeon.

Microbially produced protein nanowires show substantial promise as a sustainable
“green” electronic material with possibilities for functionalization and biocompatibility
not available with other nanowire materials (1, 5–7). e-Archaella offer a unique oppor-
tunity to directly examine how synthetic designs to tune conductivity and/or add
functionality influences protein nanowire structure, enabling a less empirical approach
to the design of protein nanowire electronics.

FIG 2 A core chain of tightly packed aromatic rings is evident in the distribution of aromatic amino acids
in the structure of the M. hungatei archaellum determined previously by Poweleit et al. (PDB accession
no. or code 5TFY and EMDB code 8405 [13]). (a) The atomic model 5TFY is an assembly of 26 archaellin
protein chains (all atoms shown space filling at van der Waals radii, each chain a distinct color, axis
vertical). The cryo-EM map (EMDB code 8405), not shown, spans a larger number of chains, and a
complete archaellum consists of �61,500 archaellin chains (13). (b) In cross section (axis perpendicular
to the image), aromatic rings form three well-separated groups: a core (Phe1 blue, Phe13 cyan, Phe20
dim yellow), a middle sleeve, and an outer sleeve (Phe and Tyr yellow; Trp orange). (c) Tightly packed core
of alternating Phe1 (blue) and Phe13 (cyan) rings (axis horizontal). Ring center distances are 4.5 and 5.1 Å.
Phe20, shown in dim yellow in panel b, is not shown in panel c due to wider spacing and positioning
peripheral to the core chain of Phe1 and Phe13. Protein main chain traces are shown in green in panels
b and c. Images and measurements were made with Jmol.Org.
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Methods. M. hungatei was grown as previously described (1) in low-phosphate
medium to induce archaellum expression. An aliquot (100 �l) of the culture was
drop-cast onto highly oriented pyrolytic graphite (HOPG). Cells were allowed to attach
to the HOPG for 10 min, and then the liquid was removed with a pipette tip. The surface
was washed twice with 100 �l of deionized water, the surface was blotted dry at the
edge with a Kimwipe, and the sample was placed in a desiccator overnight. All samples
were equilibrated with atmospheric humidity (40%) inside the atomic force microscope
(AFM) chamber for at least 2 h at 26.1°C at 1.1 mbarg. Conductive atomic force
microscopy was performed using an Oxford Instruments/Asylum Research Cypher ES
atomic force microscope. All topographic and current imaging was performed with a
Pt/Ir-coated Arrow-ContPT tip with a 0.36701-N/m spring constant (NanoWorld AG,
Neuchâtel, Switzerland). Topographic imaging was performed at a force of 0.1 nN. The
conductive tip was attached to an ORCA dual-gain transimpedance amplifier and held
at ground to serve as a translatable top electrode. A 300-mV bias was applied to the
HOPG, and the locally detected current response of the archaellum was identified.
Point-mode current-voltage (I-V) spectroscopy was performed by applying the con-
ducting AFM tip at a force of 1 nN to the top of the archaellum and performing a
voltage sweep at a frequency of 0.99 Hz. Continual force and current responses were
collected for each I-V curve (Fig. S3) to ensure good consistent contact with the sample
and avoid archaellum damage. The HOPG was periodically touched between samples
to ensure the correct I-V response and tip quality (Fig. S4). Conductance was calculated
from the linear portion of each I-V curve (�0.2 V to 0.2 V) as previously described (2).
Average conductance and standard deviation were calculated for each of the three
independent points on the three independent archaella.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00579-19.
FIG S1, PDF file, 1.2 MB.
FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 0.8 MB.
FIG S4, PDF file, 0.8 MB.
FIG S5, PDF file, 0.7 MB.
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