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Abstract: In recent years, charge transport in metal-organic frameworks (MOFs) has shifted into the
focus of scientific research. In this context, systems with efficient through-space charge transport
pathways resulting from π-stacked conjugated linkers are of particular interest. In the current
manuscript, we use density functional theory-based simulations to provide a detailed understanding
of such MOFs, which, in the present case, are derived from the prototypical Zn2(TTFTB) system
(with TTFTB4− corresponding to tetrathiafulvalene tetrabenzoate). In particular, we show that factors
such as the relative arrangement of neighboring linkers and the details of the structural conformations
of the individual building blocks have a profound impact on bandwidths and charge transfer.
Considering the helical stacking of individual tetrathiafulvalene (TTF) molecules around a screw axis
as the dominant symmetry element in Zn2(TTFTB)-derived materials, the focus, here, is primarily on
the impact of the relative rotation of neighboring molecules. Not unexpectedly, changing the stacking
distance in the helix also plays a distinct role, especially for structures which display large electronic
couplings to start with. The presented results provide guidelines for achieving structures with
improved electronic couplings. It is, however, also shown that structural defects (especially missing
linkers) provide major obstacles to charge transport in the studied, essentially one-dimensional
systems. This suggests that especially the sample quality is a decisive factor for ensuring efficient
through-space charge transport in MOFs comprising stacked π-systems.
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1. Introduction

Metal-organic frameworks (MOFs) are porous, highly crystalline solids consisting of inorganic
nodes connected by organic linkers [1–3]. They have been investigated extensively for various
applications in fields such as gas storage, [4–6] catalysis, [7–9], and gas separation [10,11]. Until recently,
comparably little attention has been paid to the electronic properties of MOFs, [12] although electrically
conductive MOFs can be relevant as active materials for several applications, such as electrocatalysis, [13–17]
chemiresistive sensing, [18–23] and energy storage [24–26]. Therefore, in recent years, interest in controlling
and modifying the electronic properties of MOFs has gained considerable attention [12,27,28].

On more fundamental grounds, the electronic (and also the optical) properties of a solid are
determined (in a first approximation) by its electronic band structure, where MOFs usually show
rather flat bands [27]. This is a consequence of the commonly observed weak hybridization between
states localized on the organic linkers and states localized on the inorganic secondary building units.
A second reason is the small overlap of the π-systems of neighboring organic linkers. This assessment
already comprises two strategies for changing the electronic properties of MOFs: one can either focus
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on improving the bonding between the metal and the ligands (through-bond coupling), or one can try
to improve the overlap of the π-systems in neighboring linkers (through-space coupling) [12,27,29].
In the present contribution, we will focus on the latter approach, where a large overlap of neighboring
π-electron systems can result in the formation of bands displaying a large dispersion and generating
through-space charge transport pathways.

The impact of the packing motif of organic π-systems on intermolecular electronic couplings
(expressed via transfer integrals and band dispersions) has been thoroughly studied for organic
semiconductors, OSCs. Crucial factors identified for these materials are the stacking distance of
neighboring molecules (i.e., neighboring π-systems) and the arrangement of neighboring molecules in
terms of relative displacements and rotations [30–37]. All these structural changes lead to changes in
the orbital overlap between consecutive molecules, which, in turn, change the intermolecular electronic
couplings. For example, considering dimers of acenes (or quinacridone) and shifting the molecules
relative to each other along their long molecular axis, one finds that the transfer integrals oscillate as
a function of the displacement [30–34,36,38]. The influence of relative rotations of molecular dimers
has been investigated primarily in the context of discotic liquid crystals. There, it has been found that
the transfer integral varies as a function of the rotation angle [35,37,39–42]. Importantly, independent
of whether neighboring molecules are shifted or rotated relative to each other, what counts for the
intermolecular electronic coupling (transfer integral) is the overlap of the frontier orbitals. This overlap
is determined by the orbitals’ shape and symmetry. In this context, it has been suggested that when
organic semiconductors can assemble without pronounced sterical constraints, exchange repulsion
acts as an intrinsic driving force, favoring molecular arrangements with particularly small electronic
couplings [32,33]. Therefore, developing design strategies “extrinsically” enforcing favorable molecular
arrangements have shifted into the focus of current research [32,33,43–46]. Here, MOFs are of particular
appeal, as the framework structure offers an additional level of control over the stacking sequence of
neighboring molecules, which goes far beyond what is typically achievable in organic semiconductors.
Similar to OSCs, it has been predicted also for layered MOFs that their electronic band structure
depends on the proximity [47] of the layers as well as on interlayer displacements [48–50]. For MOFs
comprising 3D networks, such structure-to-property relations for charge transport are, however,
hardly developed.

Material-wise, particularly promising MOFs showing through-space charge-transport pathways
are frameworks consisting of ligands based on tetrathiafulvalene (TTF) [12]. Especially for a subgroup
of these MOFs in which the TTF units form helical stacks with comparably close π-stacking one
observes relatively large electrical conductivities [12,51]. For such systems, it has also been shown
that reducing the S . . . S stacking distance within the TTF stacks results in significantly increased
conductivities [52–54].

In this work, we will apply dispersion-corrected density functional theory (DFT) calculations to
show, how the electronic coupling in such TTF-based MOFs can be controlled by additional structural
parameters, such as the relative rotation or slip of neighboring TTF units. The goal of these calculations is
to identify stacking motives that maximize through-space charge-carrier mobilities. Moreover, we will
address the impact of defects such as missing linkers, pair formation, and shifted molecules.

1.1. Systems of Interest

The starting point for this study is the stacking of the TTF cores of Zn2(TTFTB) [51], shown in
Figure 1. The linkers (TTFTB4− = tetrathiafulvalene tetrabenzoate) and the metal nodes (forming
Zn2(TTFTB)) crystallize in the P65 space group with a hexagonal unit cell (a = b= 19.293 Å and
c = 20.838 Å). This results in helical TTF stacks (six TTF molecules per unit cell), where neighboring
TTF molecules are rotated by 60◦ relative to each other and translated by 3.473 Å in stacking direction
(see Figure 1). The stacks themselves are arranged in a hexagonal pattern and connected by the nodes,
as illustrated in Figure 1a. Notably, the 65 screw axis is offset from the central ethylene unit of the TTF
cores (see Figure 1b,c). This induces an additional shift of neighboring molecules relative to each other,
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which is perpendicular to the screw axis [51]. As a consequence, the centers of the TTF molecules
are arranged on a helix, whose projection onto the x,y-plane (the plane perpendicular to the stacking
direction, z) becomes a circle with a radius r of ~1.6 Å. This stacking motif of the TTF cores is determined
by the arrangement of the Zn nodes and the carboxylic acid groups. The MOF structure discussed in the
main manuscript contains neither solvent molecules nor water molecules (i.e., the MOF is desolvated
and dehydrated). For comparison, a MOF with water molecules coordinating to the Zn atoms was also
calculated. The water molecules cause only very minor changes in the atomic coordinates and the
electronic structure (see Supplementary Materials).

For analyzing the impact of structural changes on the electronic properties of the TTF stacks,
we first constructed helical model TTF and TTFTB stacks consisting of molecules exhibiting the same
geometry and stacking motif as in the MOF. These stacks were then arranged in the same pattern as in
the MOF, as shown in Figure 1a.

For generating TTF stacks with different numbers of molecules in the unit cell, N, we replicated
individual molecules (in the geometries adopted in the stacks), rotated them around the central screw
axis by angles of 360◦/N, and arranged them at distances of 3.473 Å. Laterally, these stacks were
then, again, arranged consistent with the experimental structure of Zn2(TTFTB), while the unit cell
in the stacking direction was set to N*3.473 Å. To verify the construction procedure, we compared
the electronic structure of the N = 6 TTF model stack to the system extracted directly from the MOF
structure, observing only negligible differences (see Table 1 in Section 3.2). A detailed description of
the construction of the parent TTF stacks and the model systems with modified rotation angles can be
found in the Supplementary Materials.
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Figure 1. Structure of Zn2(TTFTB) and the constructed tetrathiafulvalene (TTF) model system.
Panel (a) shows the connectivity between linkers (blue hexagons) and nodes (green triangles) within
the Zn2(TTFTB) metal-organic framework (MOF). Panels (b,c) contain a more detailed illustration
structure of the Zn2(TTFTB) MOF (top and side view). The linker is highlighted in (b), and in panel (c),
the carboxyl groups of neighboring linkers are colored in green to indicate how linkers and metal nodes
are connected on an atomistic level. The unit cell of the MOF is represented by thick black lines. Panel
(d) contain the top and side views of the model system used for describing the one-dimensional charge
transport in these materials. The top TTF molecule in the model system is marked in blue, and the
rotation axis is indicated by the black dot in the center of the top structure in panel (d). The dashed black
line in the model system indicates the rotation of the molecules around the screw axis. The periodic
boundary conditions are indicated by the frame around the repeat unit of the TTF model system.
C—grey, H—white, S—yellow, Zn—purple, O—red.
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Table 1. Valence bandwidths (VBW) and effective masses at the valence band maxima for transport in
(001) direction for all considered MOFs (i.e., the parent MOF Zn2(TTFTB), the MOF with Zn replaced
by Cd, and the MOF with S replaced by Se) and for model TTF stacks with 1, 6, and 12 TTF molecules
per unit cell (i.e., with rotation angles of 0◦, 60◦, and 30◦). The systems TTF and TTFTB listed under
MOFs are the stacks extracted from the Zn2(TTFTB) structure. For the model stacks, we compare
systems generated with different geometries of the individual molecules. Here, (MOF) refers to TTF
conformations extracted from the MOF structure, (relaxed) to geometries relaxed in the stack, (boat) to
gas-phase relaxed TTF geometries in boat conformation, and (planar) to planar TTF molecules for
which only the x- and y-coordinates have been relaxed in the gas phase.

MOFs

VBW/meV m*/me

Zn2(TTFTB) 371 2.05
Zn2(TSFTB) 641 1.05
Cd2(TTFTB) 333 2.21

TTFTB 373 2.10
TTF 303 2.40

Model Stacks

VBW/meV m*/me

N = 1 N = 6 N = 12 N = 1 N = 6 N = 12
TTF (MOF) 1337 298 650 0.93 2.48 1.84

TTF (relaxed) 1047 207 609 1.89 3.02 1.86
TTF (boat) 1269 72 348 1.23 7.29 4.35

TTF (planar) 1804 117 666 0.51 4.33 1.75

Additionally, molecular dimers were designed in analogy to the construction described in the
previous paragraph. As these dimers were simulated using open boundary conditions, any value
could be chosen for the rotation angle around the off-center screw axis, allowing us to generate smooth
evolutions of the dimer electronic couplings with rotation angle.

To investigate the impact of chemical modifications, we also considered Cd2(TTFTB), which has
been reported to be isostructural to Zn2(TTFTB) but shows a higher electrical conductivity [53].
Moreover, we replaced TTF with tetraselenafulvalene (TSF, C6H4Se4, yielding Zn2(TSFTB)) to test the
extent to which the increased pz-orbital overlap for Se would result in a larger valence bandwidth.

1.2. Describing Through-Space Charge Transport in Pristine MOFs

Before considering the electronic band structure of Zn2(TTFTB) and how it is affected by
changes in the structure of the TTF stack, it is useful to realize that through-space charge
transport in porous materials is strongly reminiscent of the situation in (one-dimensional) organic
semiconductors, [31,55–57] for which various models for describing charge transport have been
proposed over the past few decades. These models comprise fully coherent band transport and
incoherent hopping transport as limiting cases and also include more recent developments, such as the
highly successful dynamic disorder model [58–62]. For all these models, the intermolecular electronic
couplings between neighboring molecules are essential parameters [31,55–57]. These electronic
couplings are typically expressed via transfer integrals t, which enter linearly (quadratically) into the
expressions for band (hopping) mobilities [31,57]. Such transfer integrals can, for example, be extracted
from studying suitably arranged dimers [31,34–37,63] or from fitting tight-binding models to electronic
band structures [64]. In fact, within a tight-binding picture, the magnitudes of the transfer integrals
can be intimately related to the widths of the frontier bands. This suggests that general trends for
the dependence of charge-carrier mobilities on structural parameters can be gained from calculating
electronic band structures, even in cases in which band transport is not the dominant mechanism.
Therefore, in the following, we will primarily analyze such band structures calculated by dispersion
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corrected density functional theory (with the discussion primarily based on band widths and the
derived transfer integrals). We acknowledge that in this way, the role of the material’s phonon properties
(such as the occurrence of “killer phonon” modes) [65] is not revealed. Nevertheless, the analysis
provides crucial insights into the structure-to-property relationships for the electronic MOF properties
which determine through-space charge transport.

2. Methods

For investigating the structural and electronic properties of the MOFs, the periodic model systems,
and the molecular dimers, we employed the dispersion-corrected density functional theory, DFT,
which, in a recent review, was highlighted as a viable method for gaining an in-depth understanding
of the electronic structure of MOFs [66]. The simulations were performed with the FHI-aims
code (version 190906, Berlin, Germany) [67]. Exchange and correlation were treated by the PBE
functional [68,69], and the Tkatchenko–Scheffler [70] scheme was used as an a posteriori van der
Waals correction. We employed the default tight basis sets of FHI-aims for periodic and molecular
simulations. Further details on the employed basis functions are provided in the Supplementary
Materials. For Zn2(TTFTB), the electronic band structure was also calculated with the hybrid functional
HSE06 [71,72] to ensure that the introduction of Hartree–Fock exchange has a negligible influence on
the valence bandwidth as the primary quantity of interest for the present study.

During the geometry optimizations, all atomic positions were relaxed until the largest remaining
force component on any atom was smaller than 0.01 eV/Å. For all MOF systems, a 3 × 3 × 3 k-point grid
was used for sampling reciprocal space during the geometry relaxations. During the electronic structure
calculations, a 4 × 4 × 4 k-point grid was employed. For both grids, the total energy was converged
to within less than 1 meV. The smaller grid in the more time-consuming geometry relaxations was
used to speed up the calculations. For the periodic stacks, we used a 1 × 1 × 12 k-point grid, which is
already converged, even for the smallest system (with the largest reciprocal space vector along the
stacking direction). The effective masses were calculated from the (inverse) curvature of the band
structure at the top of the valence band in the (001) direction to describe transport in the TTF stacking
direction. Technically, the band curvature was determined by fitting a cosine function to the dispersion
relation E(k), including the 10 k-points closest to the valence band maximum, with a spacing between
neighboring k-points of 0.005 Å−1. A cosine function was chosen for the fit to be consistent with the
best-suited tight-binding band model for the systems studied here (see below). The structures of the
MOFs and the molecular systems were visualized using Ovito (version 3.2.1) [73] and the molecular
orbitals were rendered using Avogadro (version 1.2.0) [74].

3. Results and Discussion

3.1. Electronic Structure of Zn2(TTFTB) and the Extracted Model Stack

As a first step, we analyzed the electronic structure of Zn2(TTFTB), for which the frontier bands are
shown in Figure 2a. Figure 2b contains a zoom into the valence band region. In the following, we will
be primarily concerned with bands in the ΓA direction, as this corresponds to the stacking direction of
the TTF molecules. Moreover, the valence and conduction bands are flat in directions perpendicular to
ΓA (with bandwidths around 1 meV in AL and even less in ΓK directions). This indicates that there is
virtually no electronic coupling between individual TTF stacks within the MOF, resulting in essentially
one-dimensional charge transport in Zn2(TTFTB). This is supported by measurements by Sun et al.,
who observed that the electrical conductivity in the direction of the stacks is 2–3 orders of magnitude
larger than perpendicular to them [75].
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crystallographic unit cell (determining the shape and size of the first Brillouin zone). It contains six 
TTF-based linkers as translational repeat units, whose repetition yields the infinitely extended TTF 
stack. What counts from an electronic point of view is, however, not only the translational symmetry 
but also the screw axis in the middle of the TTF stack (see Figure 1). With respect to that screw axis, 
each TTF molecule has an identical electronic environment. Thus, one can view a single TTF molecule 
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Figure 2. Electronic structure of the Zn2(TTFTB) MOF and the corresponding TTF model stack:
(a) electronic band structure of Zn2(TTFTB) along the selected high-symmetry directions. The energy
scale is aligned to the valence band maximum. (b) Zoom into the valence band of Zn2(TTFTB) (solid
red line) and of the TTF model stack (dashed black line). The first Brillouin zone together with the
relevant directions in k-space are shown as an inset.

As far as the ΓA direction is concerned, one can identify a six-times backfolded band, which is
particularly well resolved for the valence band in Figure 2b. This backfolding is related to the
crystallographic unit cell (determining the shape and size of the first Brillouin zone). It contains six
TTF-based linkers as translational repeat units, whose repetition yields the infinitely extended TTF
stack. What counts from an electronic point of view is, however, not only the translational symmetry
but also the screw axis in the middle of the TTF stack (see Figure 1). With respect to that screw axis,
each TTF molecule has an identical electronic environment. Thus, one can view a single TTF molecule
as the “electronic” repeat unit of the TTF stack in Zn2(TTFTB). This is supported by the observation
that for the perfectly symmetric structure, no band gaps open for the backfolded bands at the Γ and
A points. In passing, we note that this situation changes when defects disturb the perfect symmetry,
as will be discussed in Section 3.4.

As a consequence of a single TTF molecule serving as an “electronic” repeat unit, the electronic
bands in the ΓA direction can be conveniently described by a tight-binding model with a single
molecule per unit cell. These considerations imply that for judging the electronic coupling between
neighboring TTF molecules, one needs to consider the width of the entire, six-times backfolded band,
as indicated by the arrows in Figure 2a. Based on the 1D nearest-neighbor tight-binding model
mentioned above, the total band width of the six-times backfolded band then corresponds to 4 × t
(with t representing the intermolecular transfer integral in stacking direction). This extraction of t from
the band structure is confirmed by the data shown in Figure 3, where the dimer-derived bandwidths
are compared to the results for the actual TTF stacks. Additional validation data are contained in the
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Supplementary Materials. Conversely, the width of the valence band between Γ and A is a measure for
the electronic coupling between adjacent groups of six TTF units (i.e., between the entirety of the TTF
molecules in adjacent unit cells).
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Figure 3. Evolution of the width of the valence band in the (001) direction and of the transfer integrals
between neighboring TTF molecules in the stacking direction as a function of the rotation angle
between neighboring molecules. Panel (a) shows the situation for stacks and dimers with molecular
geometries taken from Zn2(TTFTB) (purple diamonds and line) and for stacks with optimized
geometries (orange circles; for details, see main text). In panel (b), the results for fully gas-phase
optimized (dark yellow down-facing triangles and line) and for planar molecules (light magenta
up-facing triangles and line) are shown. Symbols denote data points calculated for infinitely extended
TTF stacks, where the rotation angles are set by varying the number of TTF molecules in each unit
cell (see numbers in panel (a)). The solid lines have been calculated for dimers with rotation angles
varied in steps of 5◦ (individual data points not shown). In panel (b), bandwidths are set to negative
values whenever the signs of the dimer-calculated transfer integrals are also negative. Points marked
with a black frame comprise band structures deviating from a simple 1D tight-binding system and are
discussed in the Supplementary Materials.

On more quantitative grounds, the valence bandwidth, VBW, for the backfolded band amounts
to 371 meV in the PBE calculations (400 meV when using the HSE06 functional), as indicated by the
arrows in Figure 2a. This is significantly larger than the width of the conduction band, which is
120 meV. This finding suggests that Zn2(TTFTB) is preferentially a hole conductor [53], which is in line
with the notion of organosulfur compounds, such as TTF, being good electron donors [76,77].
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An analysis of the contributions of the different parts of the MOF to the valence and conduction
bands suggests that especially hole transport (which is particularly relevant for TTF-based systems;
see above) should be described well by the model TTF stack. This notion is confirmed by the comparison
of the valence band structure of the actual Zn2(TTFTB) MOF (solid line) and the band structure of the
model TTF stack in Figure 2b; qualitatively, the two band structures are the same. The only apparent
difference is a somewhat smaller bandwidth of 303 meV in the model system (which amounts to
~82% of the bandwidth of the actual MOF). This leads to a comparably small change in the effective
mass at the valence band maximum (VBM) from 2.05 to 2.40 me (with me being the mass of a free
electron). We attribute this difference to the overlap of the π-orbitals of neighboring phenylenes in the
H4TTFTB linkers in the actual MOF, which is not captured by the model system (see systems TTF and
TTFTB in Table 1 and further details in the Supplementary Materials). These quantitative differences
are, however, rather small compared to the effects discussed below, rendering the TTF stack a useful
model system.

3.2. Dependence of Bandwidth and Transfer Integral on the Relative Rotation of Consecutive TTF Units

With a reliable model system at hand, we can now turn to studying the impact of changes in the
structure of the TTF stacks on the electronic coupling. It has been shown, for a variety of molecular
dimers, that the relative rotation of neighboring molecules has a tremendous effect on intermolecular
electronic couplings [35,37,39–42]. As this effect is a consequence of changes in the orbital overlap
upon rotation, one can expect similar effects for the TTF stacks considered in this work. Following the
construction procedure for TTF stacks described in Section 1.1 and in the Supplementary Materials,
it is apparent that the number of stacked molecules in the unit cell determines their relative rotation.
Thus, we consider unit cells containing 1, 2, 3, 4, 5, 6, 8, and 12 molecules (corresponding to rotations
of 0◦, 180◦, 120◦, 90◦, 72◦, 60◦, 45◦, and 30◦, respectively).

The resulting band structures are shown in the Supplementary Materials. They reveal that
the cofacial arrangement with one repeat unit exhibits the largest valence band width of 1337 meV,
corresponding to a transfer integral between neighboring molecules of 334 meV (see data points in
Figure 3a and values in Table 1). The bandwidth decreases by a factor of nearly three to 447 meV
when considering the system with two molecules per unit cell (N = 2, or a relative rotation between
consecutive TTF molecules of 180◦). The bandwidth further decreases for three TTF molecules
(120◦ rotation) and reaches a minimum of 180 meV (a transfer integral of 45 meV) for the system
containing four molecules in the unit cell (see Figure 3a). Upon further increasing the number of
repeat units, the bandwidth again increases slightly (to between 235 and 337 meV for N = 5, 6, and 8).
A steep increase is then observed for 12 molecules per unit cell (i.e., for a relative rotation angle of 30◦).
Here, a valence bandwidth of 650 meV means a doubling compared to the reference system with N
= 6, which mimics the situation in the actual Zn2(TTFTB) MOF. Concomitantly, the effective mass of
the holes increases from 0.93 me for N = 1 to 2.48 me for the reference system with N = 6 and then
drops again to 1.84 me for N = 12. These considerations show that changing the relative twist between
consecutive molecules, indeed, has a profound impact on the electronic coupling in the TTF stack and
that the situation in Zn2(TTFTB) is far from ideal for hole transport.

For obtaining values at intermediate rotation angles we considered model dimers, extracting
transfer integrals via the fragment orbital method [78]. The valence bandwidth for one molecule as
“electronic repeat unit” is then obtained as W = 4 × t employing a 1D tight-binding model. At rotation
angles at which data for actual stacks and from dimers are available, one typically observes an excellent
agreement. This suggests that dimer calculations can, indeed, be used as an efficient tool for predicting
and explaining general trends.

As a next step, we discuss the role of the conformation of the molecules within the stack.
First, we fully relaxed the geometries of the molecules in the stacks, fixing only the positions of the
central C=C atoms to maintain the overall structure. This yields an evolution of the valence bandwidths
comparable to that of the TTF stacks with molecules in MOF geometry (see above), although the



Nanomaterials 2020, 10, 2372 10 of 22

bandwidths are consistently smaller in the relaxed case (with the exception of the N = 8 system;
see Figure 3a). The reduction in the bandwidth is particularly pronounced for N between 2 and 5,
such that the overall variation between the largest and the smallest bandwidths amounts to a factor of
almost 14.

For the relaxed stacks, it is also sensible to compare the total energies of the systems. Interestingly,
for N between 3 and 12 these are within 35 meV per molecule (i.e., only somewhat larger than kBT;
see Supplementary Materials). This occurs despite variations in the bandwidths (transfer integrals)
by a factor of 8. Only for N = 1 and 2, the total energy increases by 232 and 121 meV, respectively.
This suggests that from a TTF-stacking point of view, there is no strong driving force preventing
structures with comparably large bandwidths (such as for N = 12), which is in sharp contrast to
observations for various molecular crystals [32,33].

Notably, in the stacks discussed so far (fully optimized or built from molecules in MOF
conformation), the TTF molecules are slightly tilted around their long and short molecular axes.
To assess the role of those tilts, we also studied two model systems in which such tilts do not occur,
starting from a gas-phase optimized TTF molecule either in boat conformation (actual minimum
structure) or forced to be planar. In the stacks, these molecules are then aligned such that all S atoms
of each molecule are in a plane perpendicular to the screw axis. The infinitely extended stacks are
then constructed following the procedure described in Section 1.1 and in the Supplementary Materials.
The results for these stacks are complemented by calculations for corresponding molecular dimers.
As shown in Figure 3b, the obtained data, at first glance, appear to directly correlate to the data for
the MOF-derived structure (purple diamonds and line in Figure 3a). A closer inspection, however,
reveals that there is a fundamental difference: the signs of the dimer transfer integrals come out
negative for rotation angles Θ between ~65◦ and ~125◦ (where, for the sake of consistency, we also plot
the bandwidths with a negative sign in that range of rotation angles). The zero-crossing of transfer
integrals and bandwidths has a profound impact on charge transport properties. As for systems like
the present one primarily the absolute value of the bandwidth counts, for the cases shown in Figure 3b
the carrier mobility in stacking direction is expected to be close to a local maximum for the N = 4
system (rather than close to the global minimum, as for the systems shown in Figure 3a). Conversely,
the valence bands become completely flat for rotation angles around ~65◦ and ~125◦, implying a
vanishingly small carrier mobility in for these angles.

The evolution of the transfer integrals with rotation angle (including the zero-crossing) can be
explained by the shapes of the involved molecular orbitals. This is most straightforwardly seen for the
bonding and antibonding linear combinations of the highest occupied molecular orbitals (HOMOs) of
the two TTF molecules in the dimer calculations. They can be derived from linear combinations of the
HOMOs of individual TTF molecules, and (for centrosymmetric systems) their splitting determines
the magnitude of the transfer integral [31]. The evolutions of the orbital shapes and orbital energies
with rotation angle are exemplarily shown in Figure 4 for the dimers consisting of planar molecules.

For the cofacial arrangement of the molecules, the antisymmetric linear combination of the TTF
HOMOs is lowest in energy and the symmetric linear combination is highest (Figure 4b, 0◦). This is
exactly what one would expect considering the fully bonding nature of the hybrid orbital in the
antisymmetric case (non-zero value of the wavefunction between molecules or even a local maximum)
and its fully antibonding nature in the symmetric case (vanishing wavefunction between the molecules).
Upon increasing the rotation angle, the HOMO-1 becomes increasingly destabilized and the HOMO
gets stabilized, which reduces their energetic splitting and, concomitantly the associated transfer
integral. This can be understood by the appearance of antibonding contributions for the antisymmetric
and bonding contributions for the symmetric linear combinations. At a rotation angle of 65◦, both linear
combinations display nearly equal amounts of bonding and antibonding regions. Consequently,
the two orbitals are essentially isoenergetic, resulting in a vanishing transfer integral. Upon further
increasing the rotation angle, the nature of the HOMO and HOMO-1 is switched, resulting in a change
of the sign of the transfer integral. The stabilization of the originally antisymmetric linear combination



Nanomaterials 2020, 10, 2372 11 of 22

of the molecular orbitals is maximized at a rotation angle of 95◦ and the trend is reversed for systems
with larger rotations. In passing, we note that the reason for the much smaller HOMO-to-HOMO-1
splitting at 180◦ compared to the cofacial situation (i.e., 0◦) is the reduced spatial overlap of the
molecules following from the screw axis not coinciding with the center of the TTF molecules (see
Figure 1).Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 21 
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Similar trends are observed for the other three molecular conformations. The lack of a zero-crossing of
the bandwidths and transfer integrals for the MOF-derived and optimized geometries (i.e., the systems
shown in Figure 3a) arises from the fact that due to the twisting of the molecules around the long and
short molecular axes, certain regions of neighboring molecules get particularly close. This strongly
amplifies the contributions of these regions to the orbital energies, such that the cancellation effects
discussed above do not occur any more.
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To conclude this section, it should be noted that, of course, also the location of the screw axis
relative to the center of the TTF molecules impacts the wavefunction overlap, as discussed in detail
in the Supplementary Materials. In short, the resulting overall situation is similar to the cases
discussed above, although in that case, there is no zero-crossing of the transfer integral for the planar
molecular conformation.

3.3. Impact of the Intermolecular Distance and of Chemical Modifications on the Bandwidth

Another structural parameter that is expected to change the intermolecular electronic coupling is
the distance between neighboring TTF molecules. In fact, for layered MOFs, a profound impact of the
layer proximity on the electronic band structure has been predicted [47]. For periodic stacks, such as
the ones studied here, the distance between neighboring TTF molecules can simply be changed by
modifying the unit cell length in the stacking direction. The impact of changing the stacking distance
by ±0.1 Å per molecule is shown in Figure 5a for molecules adopting the same conformation as in the
MOF and in Figure 5b for planar molecules. Not unexpectedly, the bandwidth typically increases upon
decreasing the inter-molecular distance and vice versa. The data in Figure 5 also show that, typically,
the absolute change in bandwidths and transfer integrals with stacking distance is more pronounced for
situations in which these quantities are already large to start with. This can be rationalized based on the
discussion of Figure 4 in the previous section; in cases in which bonding and antibonding contributions
for certain hybrid orbitals largely cancel, the situation is not fundamentally modified upon changing
the stacking distance. Conversely, when hybrid orbitals are either fully antibonding or fully bonding
(as in the case of the cofacial dimer), changing the stacking distance has a maximal impact.

Notably, for the N = 6 stack, which directly mimics the stacking of the TTF molecules in the actual
Zn2(TTFTB) MOF, the increase in the valence bandwidth for a reduction in the stacking distance by
0.1 Å amounts to only 33 meV (~11%). This is, insofar, relevant, as it has been reported that changing
the stacking distance for TTFTB-based MOFs results in massive changes in the measured electrical
conductivities [53]. Especially when replacing the Zn2+ cations in the synthesis with Cd2+, an increase
in the electrical conductivity by two orders of magnitude has been observed. Originally, this was
attributed to the lowered S . . . S distances for neighboring TTF units, which decreased by 0.103 Å [53].
Such a massive change in conductivities, however, cannot be explained by the trends discussed above.
This raises the question of whether there are relevant structural changes between the Zn2(TTFTB)
and Cd2(TTFTB) MOFs beyond a change in the stacking distance. Therefore, we compared the full
electronic band structures of Zn2(TTFTB) and Cd2(TTFTB) (see Supplementary Materials), but also,
in this case, the changes in bandwidths and effective masses for the valence band are comparably
minor, as summarized in Table 1. In fact, the valence bandwidth is even smaller in Cd2(TTFTB) than in
Zn2(TTFTB).

A different approach for increasing the valence bandwidth could be to increase the orbital overlap
by exchanging TTF with tetraselenafulvalene (C6H4Se4). In our calculations, this results in an increase
in the valence bandwidth by a factor of almost two (from 371 to 641 meV). Considering that we
observe only minor structural changes between the S-based Zn2(TTFTB) and the Se-based Zn2(TSFTB),
we attribute that to the larger spatial extent of the pz-orbitals of Se, which result in an increased
wavefunction overlap. Nevertheless, such chemical modifications also do not change hole mobilities
by orders of magnitude.

An additional factor that would influence the mobility of holes would be changes in the vibrational
properties of the MOF, which impact charge transport through dynamic disorder effects [57,58,65].
Such effects are not explicitly considered here, but it is hard to imagine that they could be responsible
for the orders of magnitude changes in transport properties between Zn2(TTFTB) and Cd2(TTFTB).
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There could, however, be several other explanations for the above-mentioned differences. First,
one has to keep in mind that in [53], the authors did not report carrier mobilities but electrical
conductivities (which, to date, is still common for metal-organic frameworks [75]). These are crucially
impacted not only by carrier mobilities but also by the densities of mobile carriers. As far as the latter
are concerned, it has been argued in the past that they can be massively impacted by the nature of the
metal ions in the nodes [12,79]. Another factor massively changing free carrier concentrations in any
type of semiconductor is the presence of extrinsic impurities (i.e., dopants) [12,27,80–83].

Besides chemical imperfections influencing the carrier concentration, structural imperfections can
also have a tremendous impact—in this case, also on the carrier mobilities. The impact of some of
these imperfections on the electronic coupling in Zn2(TTFTB) type systems is, therefore, discussed in
the following section.

3.4. Role of Defects

A consequence of the flat electronic bands along reciprocal space directions perpendicular to the
TTF stacks (see Section 3.1) is that charge transport is essentially one-dimensional. It is well established
for molecular semiconductors that transport in 1D systems is severely affected by either static or
dynamic disorder [58]. This is not surprising, considering that an “obstacle” along a 1D transport path
cannot be simply bypassed via neighboring sites. In the context of MOFs, it has, actually, been found
that defects can lead to bands with almost no dispersion [49]. For the present systems, we considered
several types of static defects. As mentioned above, dynamic disorder caused by vibrations of the
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MOF lattice is not considered here, although the defects discussed in the following, in some sense,
also mimic what could happen as a function of the thermal motion of the MOF constituents.

The static defect with the most dramatic consequences is a missing linker defect. We realized such
a defect by removing one TTF linker from either the Zn2(TTFTB) unit cell or from the corresponding
model stack (see Figure 6a). To describe pair formation as another type of defect, we displaced one
molecule in the unit cell, such that it moved towards one of its neighbors by −∆d and away from the
other neighbor by +∆d (see Figure 6b). A “displaced molecule” defect is characterized by one of the
molecules in the unit cell being shifted from its equilibrium position along a vector parallel to the
xy-plane (Figure 6c). In fact, it has been predicted for layered MOFs that interlayer displacements
significantly affect the materials’ band structures [48–50]. For OSCs, it is also well known that
changes in the intermolecular interactions induced upon variations of the involved molecule’s relative
displacements depend on the actual shift direction [33–36,38]. In the present contribution, we focused
on displacements along the x-direction (Figure 6b) as a representative example, highlighting the
potential impact of such defects. For the final defect that is explicitly considered, the “misrotated”
molecule case, the rotation angle of one of the molecules in the unit cell is changed by a value of ∆Θ
(Figure 6d). Considering the structure of the MOF and identifying the degrees of freedom of each TTF
moiety, one could actually identify several more structural defects. Examples are tilts of the molecules
around the long and short molecular axes, changes in the bending of the molecules, or torsions around
the central C=C bonds, to name a few. Therefore, a missing linker, pair formation, a “displaced
molecule”, and misrotation of a molecule primarily serve as instructive examples for the possible impact
of such structural defects on the electronic structure of the systems. Notably, the qualitative impact of
all of the considered defects on the electronic structure of the model stacks is similar. They cause a
loss of symmetry around the 65 screw axis in the center of the stack. Consequently, the notion of a
single TTF molecule as the “electronic” repeat unit of the stack no longer applies. In the band structure,
this results in an opening of gaps at the Brillouin zone boundary and at the Γ point (see Figure 7 for the
missing linker, pair formation, and misrotated molecule defects). Thus, for the defective structures,
it is not sensible to report the width of the six-times backfolded valence band and we will instead focus
on the effective masses at the valence band maximum. Additionally, in the spirit of hopping transport,
we will report the smallest transfer integrals between neighboring molecules found in all inequivalent
dimers extracted from each of the defective TTF stacks.
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Nanomaterials 2020, 10, 2372 15 of 22

Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 21 

 

defects). Thus, for the defective structures, it is not sensible to report the width of the six-times 
backfolded valence band and we will instead focus on the effective masses at the valence band 
maximum. Additionally, in the spirit of hopping transport, we will report the smallest transfer 
integrals between neighboring molecules found in all inequivalent dimers extracted from each of the 
defective TTF stacks. 

 
Figure 6. Instructive examples for possible structural defects in TTFTB-based MOFs. (a) Ideal model 
stack plus system with a missing TTF molecule; (b) structure of the system upon pair formation 
between neighboring TTFs; (c) displaced molecule defect realized by displacing one molecule along 
x; (d) structure of a misrotated molecule defect. It should be noted that for infinitely extended stacks, 
due to the employed periodic boundary conditions, a defect occurs in every unit cell. 

 
Figure 7. Electronic structure of the defective systems. (a) Electronic band structure in the stacking
direction for Zn2(TTFTB) with a missing linker defect (red solid line). The results for the corresponding
TTF stack are shown as dashed black lines. (b) Electronic band structure for the model TTF stack with a
pair formation defect with a displacement of ∆d = 0.4 Å. (c) Electronic band structure for the model
TTF stack with a misrotated molecule defect of ∆Θ = 15◦.

The missing linker defect has the most dramatic impact. It results in essentially flat bands
(see Figure 7a), the minimum transfer integral drops to 1 meV, and the effective mass skyrockets
to 22 me. This shows that such a defect nearly stops charge transport along the affected TTF stack.
As shown in Figure 8, also pair formation and displaced molecule defects result in an increased
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effective mass and a decreased transfer integral (with the exception of a minor decrease in m* for a very
small dimerization of ∆d = 0.05 Å, which is in the range of the uncertainty of the fitting procedure).
The magnitude of the change increases with increasing displacement. Additional data on the impact of
the other defects can be found in the Supplementary Materials. As a consequence, charge transport is
hindered within defective TTF stacks. Interestingly, for pair formation as well as for the displaced
molecule defect, the minimum transfer integral decreases almost linearly with the displacement,
while the effective mass experiences a roughly quadratic increase. The latter is more pronounced
in the displaced molecule case. The overall impact of these defects is, however, rather moderate
(especially compared to the missing-linker case). For example, a lateral displacement of a TTF molecule
by a rather sizable distance of ∆x = 0.3 Å leads to an increase in m* by a moderate 0.42 me (or 17%).

Nanomaterials 2020, 10, x FOR PEER REVIEW 15 of 21 

 

Figure 7. Electronic structure of the defective systems. (a) Electronic band structure in the stacking 
direction for Zn2(TTFTB) with a missing linker defect (red solid line). The results for the 
corresponding TTF stack are shown as dashed black lines. (b) Electronic band structure for the model 
TTF stack with a pair formation defect with a displacement of Δd = 0.4 Å. (c) Electronic band structure 
for the model TTF stack with a misrotated molecule defect of ΔΘ = 15°. 

The missing linker defect has the most dramatic impact. It results in essentially flat bands (see 
Figure 7a), the minimum transfer integral drops to 1 meV, and the effective mass skyrockets to 22 me. 
This shows that such a defect nearly stops charge transport along the affected TTF stack. As shown 
in Figure 8, also pair formation and displaced molecule defects result in an increased effective mass 
and a decreased transfer integral (with the exception of a minor decrease in m* for a very small 
dimerization of Δd = 0.05 Å, which is in the range of the uncertainty of the fitting procedure). The 
magnitude of the change increases with increasing displacement. Additional data on the impact of 
the other defects can be found in the Supplementary Materials. As a consequence, charge transport 
is hindered within defective TTF stacks. Interestingly, for pair formation as well as for the displaced 
molecule defect, the minimum transfer integral decreases almost linearly with the displacement, 
while the effective mass experiences a roughly quadratic increase. The latter is more pronounced in 
the displaced molecule case. The overall impact of these defects is, however, rather moderate 
(especially compared to the missing-linker case). For example, a lateral displacement of a TTF 
molecule by a rather sizable distance of Δx = 0.3 Å leads to an increase in m* by a moderate 0.42 me 
(or 17%). 

 
Figure 8. Evolution of the effective mass and the smallest transfer integral of the model TTF stack as 
a function of the dimerization displacement Δd and displacement Δx. 

In this context it, however, has to be considered that our test of defective structures is not 
exhaustive. Additionally, several defects might occur simultaneously, further worsening the 
situation. Nevertheless, the above considerations suggest that for changing the carrier mobilities by 
orders of magnitude, mere displacements of molecules might not be sufficient and more serious 
defects, such as missing linkers, are required. To the best of our knowledge, no systematic 
experimental study on the interplay between defect densities and (through-space) charge transport 
properties of MODs has been carried out to date. However, especially for Zr-based MOFs (in 
particular for UiO-66) it is well known how to control the defect density, and extensive experimental 
and computational studies on the influence of the defect density on energy gaps, the redox 
conductivity, and the (photo-)catalytic activity have been carried out [84–88]. Therefore, such systems 
appear as prime candidates for also studying the impact of defects on charge-transport properties. 

Figure 8. Evolution of the effective mass and the smallest transfer integral of the model TTF stack as a
function of the dimerization displacement ∆d and displacement ∆x.

In this context it, however, has to be considered that our test of defective structures is not
exhaustive. Additionally, several defects might occur simultaneously, further worsening the situation.
Nevertheless, the above considerations suggest that for changing the carrier mobilities by orders of
magnitude, mere displacements of molecules might not be sufficient and more serious defects, such as
missing linkers, are required. To the best of our knowledge, no systematic experimental study on
the interplay between defect densities and (through-space) charge transport properties of MOFs has
been carried out to date. However, especially for Zr-based MOFs (in particular for UiO-66) it is well
known how to control the defect density, and extensive experimental and computational studies on
the influence of the defect density on energy gaps, the redox conductivity, and the (photo-)catalytic
activity have been carried out [84–88]. Therefore, such systems appear as prime candidates for also
studying the impact of defects on charge-transport properties.

4. Conclusions

The present paper describes a variety of aspects concerning through-space charge transport in
metal-organic frameworks in general and tetrathiafulvalene-based MOFs in particular. First, it is shown
that the electronic band structure of the helical TTF stack contained in Zn2(TTFTB) largely determines
the valence band structure of the entire MOF. In fact, we find that the electronic bands perpendicular
to the TTF stacking direction are essentially flat. This highlights the negligible electronic coupling
between neighboring stacks and establishes that Zn2(TTFTB) is a truly one-dimensional conductor.
In the perfectly periodic MOF with six molecules in the crystallographic unit cell, the valence band is
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backfolded six times (without any gaps at the Γ-point or at the Brillouin zone boundary). This suggests
that the symmetry element relevant for the electronic structure of the MOF is the six-fold screw axis
parallel to the stacking direction. Therefore, a single TTF molecule acts as an “electronic” repeat
unit of the MOF, with the consequence that the electronic parameter determining charge transport in
Zn2(TTFTB) is the transfer integral between two neighboring TTF molecules.

This permits the use of stacks with varying numbers of molecules in the crystallographic unit
cell to study the impact of the relative rotation of the TTF molecules. It turns out that decreasing the
rotation angle of neighboring TTF molecules compared to the parent Zn2(TTFTB) system significantly
increases the valence bandwidth, while increasing the rotation in a four-TTFs-per-unit-cell stack
yields a significantly reduced electronic coupling. These results are corroborated by simulations on
TTF dimers, which also allow us to trace the observations back to the shapes of the hybrid orbitals
determining the valence band. Additionally, we found that the actual value of the transfer integral
is extremely sensitive to the specific conformation of the TTF molecules. For example, for stacks of
flat TTF molecules, the electronic coupling essentially disappears for the 60◦ rotation angles found in
Zn2(TTFTB) and the associated transfer integral even changes sign at larger angles.

Interestingly, changes in the relative rotation and molecular conformation of the TTF molecules
have a more pronounced impact on the observed bandwidth than “moderate” modifications in the
stacking distance, which have been realized experimentally by replacing Zn with Cd atoms in the
metal nodes of the MOFs. Thus, we hypothesize that the two-orders of magnitude increase in the
electrical conductivity of Cd2(TTFTB) compared to Zn2(TTFTB) [53] must either be the consequence of
significantly modified concentrations of mobile carriers or must be due to different defect densities in
the two systems.

As far as static defects are concerned, we have, thus, investigated several scenarios,
including displaced molecules, molecular pairing along the stack, or misrotations of specific molecules.
The impact of these defects turned out to be rather moderate. This, however, changes when also
considering missing linker defects, where we find that due to the 1D nature of the TTF stacks, such a
missing linker is a massive obstacle for charge transport. This is manifested, e.g., in an increase in the
effective mass by a factor of ~10 compared to the perfectly ordered parent MOF.

Overall, these results show that on the one hand, there is still considerable room for improvement
for through-space charge transport in MOFs through clever structural design. On the other hand, the 1D
nature of systems, such as the ones discussed here, makes their expected charge-transport properties
particularly sensitive to structural imperfections and, thus, extremely dependent on sample quality.

Supplementary Materials: Additional data on the electronic structures of the considered systems as well as a
description of the basis employed during the DFT calculations, details on the construction of the model systems,
and validation of the simple tight-binding model are available online at http://www.mdpi.com/2079-4991/10/12/
2372/s1. All calculations are available from the NOMAD database under https://dx.doi.org/10.17172/NOMAD/
2020.11.25-1.
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17. Miner, E.M.; Wang, L.; Dincǎ, M. Modular O2 electroreduction activity in triphenylene-based metal-organic
frameworks. Chem. Sci. 2018, 9, 6286–6291. [CrossRef]

18. Campbell, M.G.; Liu, S.F.; Swager, T.M.; Dinc

Nanomaterials 2020, 10, x FOR PEER REVIEW 17 of 21 

 

Acknowledgments: The work was financially supported by the TU Graz Lead Project “Porous Materials at 
Work” (LP-03). The computational results have been achieved in part using the Vienna Scientific Cluster (VSC3). 
Open Access Funding by the Graz University of Technology is acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. James, S.L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288, doi:10.1039/b200393g. 
2. Rowsell, J.L.C.; Yaghi, O.M. Metal-organic frameworks: A new class of porous materials. Microporous 

Mesoporous Mater. 2004, 73, 3–14. 
3. Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic 

frameworks. Science 2013, 341, 1230444. 
4. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore 

size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–
472, doi:10.1126/science.1067208. 

5. Murray, L.J.; Dinc, M.; Long, J.R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 
1294–1314, doi:10.1039/b802256a. 

6. Rowsell, J.L.C.; Yaghi, O.M. Effects of functionalization, catenation, and variation of the metal oxide and 
organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. 
Am. Chem. Soc. 2006, 128, 1304–1315, doi:10.1021/ja056639q. 

7. Pascanu, V.; González Miera, G.; Inge, A.K.; Martín-Matute, B. Metal-Organic Frameworks as Catalysts for 
Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. 

8. Zhu, L.; Liu, X.Q.; Jiang, H.L.; Sun, L.B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis. 
Chem. Rev. 2017, 117, 8129–8176. 

9. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.Y. Applications of metal-organic frameworks in 
heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. 

10. Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Hydrocarbon separations in 
a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610, 
doi:10.1126/science.1217544. 

11. Chen, B.; Liang, C.; Yang, J.; Contreras, D.S.; Clancy, Y.L.; Lobkovsky, E.B.; Yaghi, O.M.; Dai, S. A 
microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem.-Int. 
Ed. 2006, 45, 1390–1393, doi:10.1002/anie.200502844. 

12. Xie, L.S.; Skorupskii, G.; Dincǎ, M. Electrically Conductive Metal-Organic Frameworks. Chem. Rev. 2020, 
120, 8536–8580, doi: 10.1021/acs.chemrev.9b00766. 

13. Clough, A.J.; Yoo, J.W.; Mecklenburg, M.H.; Marinescu, S.C. Two-dimensional metal-organic surfaces for 
efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118–121, doi:10.1021/ja5116937. 

14. Miner, E.M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincə, M. Electrochemical oxygen 
reduction catalysed by Ni3 (hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942, 
doi:10.1038/ncomms10942. 

15. Dong, R.; Zheng, Z.; Tranca, D.C.; Zhang, J.; Chandrasekhar, N.; Liu, S.; Zhuang, X.; Seifert, G.; Feng, X. 
Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal-Organic Frameworks for 
Electrocatalytic H2Production. Chem.-A Eur. J. 2017, 23, 2255–2260, doi:10.1002/chem.201605337. 

16. Downes, C.A.; Clough, A.J.; Chen, K.; Yoo, J.W.; Marinescu, S.C. Evaluation of the H2 Evolving Activity of 
Benzenehexathiolate Coordination Frameworks and the Effect of Film Thickness on H2 Production. ACS 
Appl. Mater. Interfaces 2018, 10, 1719–1727, doi:10.1021/acsami.7b15969. 

17. Miner, E.M.; Wang, L.; Dincǎ, M. Modular O2 electroreduction activity in triphenylene-based metal-
organic frameworks. Chem. Sci. 2018, 9, 6286–6291, doi:10.1039/c8sc02049c. 

18. Campbell, M.G.; Liu, S.F.; Swager, T.M.; Dincə, M. Chemiresistive Sensor Arrays from Conductive 2D 
Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783, doi:10.1021/jacs.5b09600. 

19. Campbell, M.G.; Sheberla, D.; Liu, S.F.; Swager, T.M.; Dincə, M. Cu3(hexaiminotriphenylene)2: An 
electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem.-Int. Ed. 2015, 
54, 4349–4352, doi:10.1002/anie.201411854. 

20. Meng, Z.; Aykanat, A.; Mirica, K.A. Welding Metallophthalocyanines into Bimetallic Molecular Meshes for 
Ultrasensitive, Low-Power Chemiresistive Detection of Gases. J. Am. Chem. Soc. 2019, 141, 2046–2053, 
doi:10.1021/jacs.8b11257. 

, M. Chemiresistive Sensor Arrays from Conductive 2D
Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783. [CrossRef]

19. Campbell, M.G.; Sheberla, D.; Liu, S.F.; Swager, T.M.; Dinc

Nanomaterials 2020, 10, x FOR PEER REVIEW 17 of 21 

 

Acknowledgments: The work was financially supported by the TU Graz Lead Project “Porous Materials at 
Work” (LP-03). The computational results have been achieved in part using the Vienna Scientific Cluster (VSC3). 
Open Access Funding by the Graz University of Technology is acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. James, S.L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288, doi:10.1039/b200393g. 
2. Rowsell, J.L.C.; Yaghi, O.M. Metal-organic frameworks: A new class of porous materials. Microporous 

Mesoporous Mater. 2004, 73, 3–14. 
3. Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic 

frameworks. Science 2013, 341, 1230444. 
4. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore 

size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–
472, doi:10.1126/science.1067208. 

5. Murray, L.J.; Dinc, M.; Long, J.R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 
1294–1314, doi:10.1039/b802256a. 

6. Rowsell, J.L.C.; Yaghi, O.M. Effects of functionalization, catenation, and variation of the metal oxide and 
organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. 
Am. Chem. Soc. 2006, 128, 1304–1315, doi:10.1021/ja056639q. 

7. Pascanu, V.; González Miera, G.; Inge, A.K.; Martín-Matute, B. Metal-Organic Frameworks as Catalysts for 
Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. 

8. Zhu, L.; Liu, X.Q.; Jiang, H.L.; Sun, L.B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis. 
Chem. Rev. 2017, 117, 8129–8176. 

9. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.Y. Applications of metal-organic frameworks in 
heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. 

10. Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Hydrocarbon separations in 
a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610, 
doi:10.1126/science.1217544. 

11. Chen, B.; Liang, C.; Yang, J.; Contreras, D.S.; Clancy, Y.L.; Lobkovsky, E.B.; Yaghi, O.M.; Dai, S. A 
microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem.-Int. 
Ed. 2006, 45, 1390–1393, doi:10.1002/anie.200502844. 

12. Xie, L.S.; Skorupskii, G.; Dincǎ, M. Electrically Conductive Metal-Organic Frameworks. Chem. Rev. 2020, 
120, 8536–8580, doi: 10.1021/acs.chemrev.9b00766. 

13. Clough, A.J.; Yoo, J.W.; Mecklenburg, M.H.; Marinescu, S.C. Two-dimensional metal-organic surfaces for 
efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118–121, doi:10.1021/ja5116937. 

14. Miner, E.M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincə, M. Electrochemical oxygen 
reduction catalysed by Ni3 (hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942, 
doi:10.1038/ncomms10942. 

15. Dong, R.; Zheng, Z.; Tranca, D.C.; Zhang, J.; Chandrasekhar, N.; Liu, S.; Zhuang, X.; Seifert, G.; Feng, X. 
Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal-Organic Frameworks for 
Electrocatalytic H2Production. Chem.-A Eur. J. 2017, 23, 2255–2260, doi:10.1002/chem.201605337. 

16. Downes, C.A.; Clough, A.J.; Chen, K.; Yoo, J.W.; Marinescu, S.C. Evaluation of the H2 Evolving Activity of 
Benzenehexathiolate Coordination Frameworks and the Effect of Film Thickness on H2 Production. ACS 
Appl. Mater. Interfaces 2018, 10, 1719–1727, doi:10.1021/acsami.7b15969. 

17. Miner, E.M.; Wang, L.; Dincǎ, M. Modular O2 electroreduction activity in triphenylene-based metal-
organic frameworks. Chem. Sci. 2018, 9, 6286–6291, doi:10.1039/c8sc02049c. 

18. Campbell, M.G.; Liu, S.F.; Swager, T.M.; Dincə, M. Chemiresistive Sensor Arrays from Conductive 2D 
Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783, doi:10.1021/jacs.5b09600. 

19. Campbell, M.G.; Sheberla, D.; Liu, S.F.; Swager, T.M.; Dincə, M. Cu3(hexaiminotriphenylene)2: An 
electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem.-Int. Ed. 2015, 
54, 4349–4352, doi:10.1002/anie.201411854. 

20. Meng, Z.; Aykanat, A.; Mirica, K.A. Welding Metallophthalocyanines into Bimetallic Molecular Meshes for 
Ultrasensitive, Low-Power Chemiresistive Detection of Gases. J. Am. Chem. Soc. 2019, 141, 2046–2053, 
doi:10.1021/jacs.8b11257. 

, M. Cu3(hexaiminotriphenylene)2: An electrically
conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem.-Int. Ed. 2015, 54, 4349–4352.
[CrossRef]

20. Meng, Z.; Aykanat, A.; Mirica, K.A. Welding Metallophthalocyanines into Bimetallic Molecular Meshes
for Ultrasensitive, Low-Power Chemiresistive Detection of Gases. J. Am. Chem. Soc. 2019, 141, 2046–2053.
[CrossRef]

21. Smith, M.K.; Mirica, K.A. Self-Organized Frameworks on Textiles (SOFT): Conductive Fabrics for
Simultaneous Sensing, Capture, and Filtration of Gases. J. Am. Chem. Soc. 2017, 139, 16759–16767.
[CrossRef] [PubMed]

http://dx.doi.org/10.1039/b200393g
http://dx.doi.org/10.1016/j.micromeso.2004.03.034
http://dx.doi.org/10.1126/science.1230444
http://www.ncbi.nlm.nih.gov/pubmed/23990564
http://dx.doi.org/10.1126/science.1067208
http://www.ncbi.nlm.nih.gov/pubmed/11799235
http://dx.doi.org/10.1039/b802256a
http://dx.doi.org/10.1021/ja056639q
http://dx.doi.org/10.1021/jacs.9b00733
http://dx.doi.org/10.1021/acs.chemrev.7b00091
http://dx.doi.org/10.1039/C4CS00094C
http://dx.doi.org/10.1126/science.1217544
http://dx.doi.org/10.1002/anie.200502844
http://www.ncbi.nlm.nih.gov/pubmed/16425335
http://dx.doi.org/10.1021/acs.chemrev.9b00766
http://www.ncbi.nlm.nih.gov/pubmed/32275412
http://dx.doi.org/10.1021/ja5116937
http://www.ncbi.nlm.nih.gov/pubmed/25525864
http://dx.doi.org/10.1038/ncomms10942
http://dx.doi.org/10.1002/chem.201605337
http://dx.doi.org/10.1021/acsami.7b15969
http://dx.doi.org/10.1039/C8SC02049C
http://dx.doi.org/10.1021/jacs.5b09600
http://dx.doi.org/10.1002/anie.201411854
http://dx.doi.org/10.1021/jacs.8b11257
http://dx.doi.org/10.1021/jacs.7b08840
http://www.ncbi.nlm.nih.gov/pubmed/29087700


Nanomaterials 2020, 10, 2372 19 of 22

22. Rubio-Giménez, V.; Almora-Barrios, N.; Escorcia-Ariza, G.; Galbiati, M.; Sessolo, M.; Tatay, S.;
Martí-Gastaldo, C. Origin of the Chemiresistive Response of Ultrathin Films of Conductive Metal-Organic
Frameworks. Angew. Chem.-Int. Ed. 2018, 57, 15086–15090. [CrossRef] [PubMed]

23. Aubrey, M.L.; Kapelewski, M.T.; Melville, J.F.; Oktawiec, J.; Presti, D.; Gagliardi, L.; Long, J.R.
Chemiresistive Detection of Gaseous Hydrocarbons and Interrogation of Charge Transport in
Cu[Ni(2,3-pyrazinedithiolate) 2] by Gas Adsorption. J. Am. Chem. Soc. 2019, 141, 5005–5013. [CrossRef]
[PubMed]

24. Sheberla, D.; Bachman, J.C.; Elias, J.S.; Sun, C.J.; Shao-Horn, Y.; Dincǎ, M. Conductive MOF electrodes for
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toward Record Electrical Conductivity in a Three-Dimensional Metal-Organic Framework. J. Am. Chem. Soc.
2018, 140, 7411–7414. [CrossRef] [PubMed]

83. Wentz, H.C.; Skorupskii, G.; Bonfim, A.B.; Mancuso, J.L.; Hendon, C.H.; Oriel, E.H.; Sazama, G.T.;
Campbell, M.G. Switchable electrical conductivity in a three-dimensional metal-organic framework:
Via reversible ligand n-doping. Chem. Sci. 2020, 11, 1342–1346. [CrossRef]

84. Shimoni, R.; He, W.; Liberman, I.; Hod, I. Tuning of Redox Conductivity and Electrocatalytic Activity in
Metal-Organic Framework Films Via Control of Defect Site Density. J. Phys. Chem. C 2019, 123, 5531–5539.
[CrossRef]

85. Svane, K.L.; Bristow, J.K.; Gale, J.D.; Walsh, A. Vacancy defect configurations in the metal–organic framework
UiO-66: Energetics and electronic structure. J. Mater. Chem. A 2018, 6, 8507–8513. [CrossRef]

http://dx.doi.org/10.1002/adts.201800204
http://dx.doi.org/10.1002/adma.201902407
http://www.ncbi.nlm.nih.gov/pubmed/31512304
http://dx.doi.org/10.1021/acs.chemrev.0c00148
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1186/1758-2946-4-17
http://www.ncbi.nlm.nih.gov/pubmed/22889332
http://dx.doi.org/10.1021/jacs.6b09345
http://www.ncbi.nlm.nih.gov/pubmed/27766856
http://dx.doi.org/10.1039/c29700001453
http://dx.doi.org/10.1021/ja00784a066
http://dx.doi.org/10.1063/1.1615476
http://dx.doi.org/10.1039/C7SC00647K
http://dx.doi.org/10.1021/cm101238m
http://dx.doi.org/10.1021/acsami.5b04771
http://www.ncbi.nlm.nih.gov/pubmed/26226050
http://dx.doi.org/10.1021/jacs.8b03604
http://www.ncbi.nlm.nih.gov/pubmed/29807428
http://dx.doi.org/10.1039/C9SC06150A
http://dx.doi.org/10.1021/acs.jpcc.8b12392
http://dx.doi.org/10.1039/C7TA11155J


Nanomaterials 2020, 10, 2372 22 of 22

86. De Vos, A.; Hendrickx, K.; Van Der Voort, P.; Van Speybroeck, V.; Lejaeghere, K. Missing Linkers: An
Alternative Pathway to UiO-66 Electronic Structure Engineering. Chem. Mater. 2017, 29, 3006–3019.
[CrossRef]

87. Xiang, W.; Zhang, Y.; Chen, Y.; Liu, C.J.; Tu, X. Synthesis, characterization and application of defective
metal-organic frameworks: Current status and perspectives. J. Mater. Chem. A 2020, 8, 21526–21546.
[CrossRef]

88. Taddei, M.; Schukraft, G.M.; Warwick, M.E.A.; Tiana, D.; McPherson, M.J.; Jones, D.R.; Petit, C. Band gap
modulation in zirconium-based metal-organic frameworks by defect engineering. J. Mater. Chem. A 2019,
7, 23781–23786. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acs.chemmater.6b05444
http://dx.doi.org/10.1039/D0TA08009H
http://dx.doi.org/10.1039/C9TA05216J
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Systems of Interest 
	Describing Through-Space Charge Transport in Pristine MOFs 

	Methods 
	Results and Discussion 
	Electronic Structure of Zn2(TTFTB) and the Extracted Model Stack 
	Dependence of Bandwidth and Transfer Integral on the Relative Rotation of Consecutive TTF Units 
	Impact of the Intermolecular Distance and of Chemical Modifications on the Bandwidth 
	Role of Defects 

	Conclusions 
	References

