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Abstract

The systemic spread of tumor cells is the ultimate cause of the majority of deaths from cancer, yet 

few successful therapeutic strategies have emerged to specifically target metastasis. Here we 

discuss recent advances in our understanding of tumor-intrinsic pathways driving metastatic 

colonization and therapeutic resistance, as well as immune activating strategies to target metastatic 

disease. We focus on therapeutically exploitable mechanisms, promising strategies in preclinical 

and clinical development, and emerging areas with potential to become innovative treatments.

Introduction

Cancer metastasis, or the systemic spread and growth of tumor cells throughout the body, is 

the principal cause of cancer-related deaths1. Despite seventy years of drug development for 

cancer, survival rates for patients with metastatic disease remain abysmal, with five-year 

survival rates ranging from 5–30% across solid tumors2. This low survival rate has persisted 

because clinical results have consistently shown that preclinical therapeutic efficacy does not 

always translate to clinical benefit for patients suffering from metastatic disease3.
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The majority of approved cancer drugs, including tyrosine kinase inhibitors (TKIs), systemic 

cytotoxic therapies (chemotherapy), and antibody-drug conjugates (ADCs), do not have a 

durable impact in the setting of established metastatic disease - often due to acquired 

mechanisms of therapeutic resistance3. On the other hand, the possibility of durable 

remissions after treatment with immunotherapies has begun a paradigm shift in Stage IV 

patients who previously received terminal diagnoses. These advances in immunotherapy 

have ushered in a new era where advanced cancer patients can now hope for long term 

remissions or chronic management of metastases4, 5. Despite this momentous advance, the 

majority of metastatic cancers have yet to see therapies with similar efficacy in inducing 

long-term, durable remissions.

Given this era of rapid progress in novel therapeutic modalities, multiple opportunities are 

under investigation that may have a transformative impact on cancer death rates. Rather than 

following the conventional development pipeline of prioritizing therapeutic leads by in vitro 
cytotoxicity, focusing on the mechanisms of cell plasticity and stress resistance have become 

key areas of promise for therapies tackling metastasis6. While targeting these interconnected 

pathways may not show strong efficacy in vitro¸ they are critical to therapeutic resistance as 

well as overcoming metastatic bottlenecks in vivo. In the tumor-extrinsic context, therapies 

to relieve immune suppression via reprogramming the local immune milieu may open a new 

avenues of metastasis immunotherapy.

In this Review we aim to i) Rationalize why cancer metastasis should be a principal 

consideration in future cancer drug development, ii) Appraise the therapies that have and 

have not worked in metastatic settings, and iii) Discuss emerging strategies of promise in 

treating metastatic disease.

Justifying a shift in drug development

The survival of patients diagnosed with localized or regional cancers has increased 

dramatically in the last decades, yet metrics for metastatic disease have remained constant 

for many solid tumors7–9. Although cancer death rates have declined by 29% since the 

mid-1990 peak2, most of this reduction is related to preventative lifestyle changes (smoking 

cessation10, HPV vaccination11, and Hepatitis C treatment), early screening12 and advances 

in adjuvant therapy for high-risk patients without clinically detectable metastatic disease13. 

Whereas these interventions have reduced the prevalence of macro-metastasis, few of them 

significantly affect survival in patients with established metastases.

The death toll caused by metastatic cancer is difficult to quantify as it manifests across 

multiple organs and mortality reporting is inconsistent across healthcare systems and cancer 

types14. For example, in a case study of breast cancer patients, 45% of deaths were attributed 

directly to metastatic disease that manifested as pulmonary insufficiency, central nervous 

system failures, hepatic failure and hypercalcemia. An additional 24% of deaths were caused 

by pneumonia or sepsis subsequent to extensive pulmonary metastases. Only a small 

minority of the cancer-related deaths could be traced to the primary tumor or drug treatment, 

and the remainder of deaths were attributed to unrelated causes15. Similar patterns were 

found in lung cancer, with metastasis as the direct cause of 44% of deaths, and an additional 
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32% of deaths attributed to pneumonia, sepsis and hemorrhaging subsequent to extensive 

tumor spread16. Comparable mortality burdens due to metastasis are observed across solid 

tumors, indicating that preventative and therapeutic approaches to lessen the impact of 

metastatic cancer must be undertaken to ensure a meaningful change in cancer death rates17.

Two generalized models of metastatic progression have emerged: 1) cancers that metastasize 

as a function of time and/or tumor size and 2) those that metastasize due to the specific cell 

of origin and/or mutational lineage18. Cancers with time-dependent metastasis include basal 

cell carcinoma, which is the most common cancer, yet fewer than 0.55% of cases develop 

metastatic disease. The low rate of metastasis in basal cell carcinoma reflects the ease of 

diagnosis and effective surgical interventions19. Pancreatic cancer is thought to be slow-

growing and the formation of distant metastasis does not occur until advanced stages20, 

although cancer cell dissemination may also occur at earlier stages21. Unlike basal cell 

carcinoma, the difficulty of early diagnosis in pancreatic cancer means that the majority of 

clinical patients present with metastasis20. Population-wide measures for early detection of 

time-dependent cancers may present an ideal opportunity to reduce prevalence of metastasis. 

Common cancers such as breast, colorectal, renal, lung and prostate cancer belong to the 

early metastasizing group; while some cases might never spread, around 10–15% of breast 

cancers develop metastasis within three years, and genetic characterization reveals the 

existence of primary tumors that disseminate early22. This is supported by mouse studies 

showing that breast cancers can metastasize before the primary tumor is palpable18 or by 

prostate cancer patients showing molecular heterogeneity across bone metastases23. 

Mutational profiles of brain and liver metastases across cancer types also support a parallel 

progression model where metastasis can occur early and distinct metastatic clones 

convergently evolve24, 25. Organ transplants that later manifested donor-derived metastases 

in immune-suppressed recipients further suggest that these tumors metastasize early from 

undetectable primary cancers26. This is supported by the finding that 5–10% of tumor 

diagnoses are patients with unknown primary tumors presenting with systemic metastases27. 

For these parallel progression cancers, early detection may be less effective in preventing the 

development of metastasis or mortality, which has been witnessed by the controversies of 

implementing population-wide PSA and mammogram testing28, 29. Thus, while early 

screening and diagnosis may help to improve survival for some cancer types, effective 

therapies targeting metastatic disease will always be needed in the medical repertoire.

Limitations of targeted therapies

The 2020 NCI Surveillance, Epidemiology and End Results Program (SEER) report 

highlighted that some of the reduction in cancer mortality could be traced to key advances in 

targeted therapies and immunotherapies that are highly effective in treating metastatic 

melanoma and lung cancers (Figure 1)2. In contrast, the majority of the >200 drugs 

approved to treat cancer have done little to reduce mortality, revealing a glaring disconnect 

between approval and patient benefit. Improvements in cancer treatment, including surgery, 

radiation, chemotherapy and targeted therapy, contributed to only 4%−8% of the cancer 

mortality declines from 1991 to 201130, 31.
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Much of the mortality reductions derived from therapeutics owe to advances in adjuvant 

treatment, which prevents metastatic relapse by eliminating disseminated tumor cells. 

Numerous conventional treatments have shown the ability to extend survival in the adjuvant 

setting, such as trastuzumab (anti-HER2) and chemotherapy in breast cancer32, apalutamide 

in prostate cancer33, chemotherapy in lung34 and colon cancers35, and imatinib in 

gastrointestinal stromal tumors. Recent trials demonstrate adjuvant efficacy for abemaciclib 

(CDK4/6) in HR+/Her2- breast cancers, osimertinib (EGFR) in early stage EGFR-mutant 

lung cancer, dabrafenib/trametinib (BRAF/MEK) in BRAF-mutant melanoma, and 

pembrolizumab (PD-1) in high-risk melanoma36.

While adjuvant therapy to prevent recurrence is currently the most effective strategy to 

reduce post-diagnosis cancer mortality, approval in this setting requires exceptionally high-

powered clinical trials of long duration that are usually not feasible for studies attempting a 

first approval. A typical clinical development plan requires demonstration of efficacy 

according to RECIST.1 metrics in the advanced/metastatic tumor setting before justifying 

the expense of adjuvant trials, thus metastasis-preventing therapeutics are unlikely to ever 

reach the adjuvant testing space where they would be most effective. Moreover, identifying 

responsive sub-groups and predictive pharmacodynamics adds to these challenges. For 

example, adjuvant treatment with bone metastasis-specific resorption inhibitors is only 

effective in the post-menopausal subgroup of breast cancer patients37. Finally, long-term 

adjuvant treatment may be limited by chronic toxicity, such as cardiotoxicity from 

trastuzumab38. Thus, the current regulatory and financial framework for cancer drug 

development does not facilitate the development of metastasis-specific therapies.

Many treatment limitations in metastasis trace back to the shortcomings of the classical 

discovery of cancer therapeutics, which requires cytotoxicity in vitro, primary tumor 

shrinkage in preclinical models, and approval based on RECIST criteria39. This drug 

development strategy has worked for some exceptionally potent therapies showing dramatic 

responses in advanced or metastatic settings, such as cabozantinib (VEGFR, AXL, MET) in 

advanced/metastatic RCC40, endocrine therapies in HR+ breast cancers41 or vemurafenib 

(BRAF), inducing potent but short-lived responses in metastatic melanoma42. Newly 

emerging strategies targeting RET, NTRK and NRG1 have also recently demonstrated 

exceptional responses in NSCLC brain metastases harboring RET fusions (ORR >90%), 

leading to approval of selpercatinib43. Meanwhile, many other therapies targeting oncogenic 

drivers and dependencies, such as regorafenib (VEGFR)44 or cetuximab (anti-EGF)45 in 

metastatic CRC, show modest short-term responses but no impact on 5-year survival. 

Chemotherapy trials in metastatic breast cancer have similarly been futile; these cancers 

respond acutely to treatment, but >90% of metastatic cancers will develop resistance to 

cytotoxics, leading to death within 10 years46.

Antibody-drug conjugates (ADCs) have been enthusiastically pursued as potential one-two 

punch approaches. Examples of this class include ado-trastuzumab emtansine (anti-HER2), 

which extends 2-year survival in metastatic patients compared to lapatinib (HER2 inhibitor) 

and chemotherapy47. Alternately, ADCs targeting non-driver targets such as sacituzumab 

govitecan-hziy (anti-TROP2 linked SN-38) in metastatic TNBC yield only a modest 

response with short duration (5.5 months) and considerable toxicity48. Similarly, ADCs 
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against non-driver surface proteins such as folate receptor in ovarian cancer (mirvetuximab 

soravtansine), DLL3 in lung cancer (rovalpituzumab tesirine) and EpCAM in bladder cancer 

(oportuzumab monatox) have met varying degrees of failure in phase II/III trials (Table 1)49.

Perhaps the most notable shortfall for Stage IV patients are the numerous targeted therapies 

that have been approved despite showing only progression-free survival (PFS) benefits with 

no changes in overall survival50. Cancer patients receiving these therapies may have tumor 

shrinkage, but do not live longer or necessarily with a better quality of life. The 

discrepancies between PFS and OS are evident in two recent Phase III trials of nivolumab 

(anti PD-1) compared to everolimus (mTOR inhibitor) in advanced RCC or nivolumab 

compared to docetaxel in NSCLC: both trials showed compelling increases in overall 

survival for nivolumab with non-significant changes or even reverse trends in PFS51, 52.

Conversely, attempts to specifically target metastatic pathways have met with near-universal 

failure. At the forefront of this effort are the numerous trials targeting matrix 

metalloproteases (MMPs)53. Experimental models suggested MMPs were central to cancer 

metastasis by increasing motility and invasion. However, clinical trials of MMP inhibitors 

showed either no response or worse outcomes53. While failure has been chalked to an 

incomplete understanding of the specificity of the MMPs, inadequate clinical trial protocols 

and unintended effects on the immune system53, the fundamental reason is likely that 

therapeutics targeting invasion, migration and extravasation may not be effective in treating 

established metastatic disease. A myriad of evidence shows cancers non-specifically shed 

metastasis-competent cells54 and patients typically harbor metastasis-competent dormant 

cancer cells before diagnosis and treatment55, 56.

Targeting phenotypic plasticity and stress resistance

The concept of de-differentiation and phenotypic plasticity has been a central theme of 

metastasis research since pivotal early studies revealed that less differentiated cancers 

presented a higher risk of metastasis and therapeutic resistance57. This concept has fluidly 

evolved throughout time as tumor cell dedifferentiation, epithelial-mesenchymal transition 

(EMT)/mesenchymal-epithelial transition (MET), the cancer stem cell (CSC) hypothesis, 

and more recently, plasticity6, 58, 59. Controversies have surrounded these theories with 

studies claiming that EMT is either essential60 or dispensable for metastasis61, or that CSCs 

are only important to some cancer types62, are not present at all in others63, or are not yet 

defined well enough to be understood64.

Whereas plasticity has been recently linked to metastasis59, research has long established 

that cell state transitions toward stem-like states are central to therapeutic resistance65–70 and 

have been validated by discoveries of genes such as MTDH, which plays key roles in 

stemness, EMT-MET, metastasis, stress resistance and therapeutic resistance71, 72. It is 

therefore unsurprising that all these processes are intrinsically linked (Figure 2). These states 

describe the same underlying phenomenon of transcriptional and epigenetic plasticity, and 

while the phenotypic outputs are diverse, targeting the underlying regulators of plasticity has 

emerged as a critical therapeutic strategy.
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Developmental pathways in plasticity and therapy resistance

Several key developmental pathways driving metastasis, often through plasticity and stress 

resistance, are TGF-β, Wnt, Hedgehog and Notch signaling73. These pathways drive broad 

transcriptional changes and exhibit extensive cross-talk69, 73. Because of their central 

importance in human physiology, targeting these pathways has been limited by narrow 

therapeutic indices, but continued validation of pathway targets may yield success in treating 

metastatic disease.

Translational efforts have most extensively targeted the Notch signaling pathway due to its 

well characterized signaling cascade as well as its oncogenic role across tumor types. Notch 

signaling is initiated by Delta-like (DLL1–4) or Jagged ligands (JAG1–2) binding to the 

NOTCH1–4 receptors. This causes proteolytic cleavage and nuclear translocation of the 

Notch intracellular domain (NICD) where it can induce pleiotropic transcriptional 

activation73. Notch signaling plays a key role in development and its dysregulation is central 

to plasticity in cancer74. DLL1 is an important mammary stem cell marker75, and forced 

expression of NOTCH3 expands the CSC side population in pancreatic cancer76. Prostate 

cancer cells activate Notch to transdifferentiate into osteoblast-like cells that enhance bone 

metastasis77, and the interaction of Notch and Shh signaling drives docetaxel resistance in 

prostate cancer cells69. Notch is also critical for tumor-initiating properties downstream of 

p53- and RB1 deletion in HCC78. The JAG1-NOTCH interaction is a bona-fide driver in 

both bone and brain metastasis79, with both tumor and stromal cells expressing JAG1 and/or 

Notch receptors to sustain stemness and chemoresistance79, 80. Treatment of solid tumor 

PDXs with anti-NOTCH2/3 mAb plus chemotherapy depletes tumor-initiating cells and 

delays recurrence81. Gamma secretase inhibitors (GSI), which prevent Notch processing 

upon ligand binding, have similar effects in preventing HCC metastasis and MET82 or in 

sensitizing prostate CSCs to chemotherapy69. JAG1 is critical to the bone metastasis niche80 

and whose therapeutic inhibition synergizes with chemotherapy to slow bone metastasis83.

Two therapeutic approaches targeting the Notch pathway have progressed into the clinic – 

GSI and mAbs against Notch membrane proteins73. GSI exhibited activity in early trials yet 

broad gastrointestinal toxicity prevented further development84. Thus other targeted 

approaches were attempted, including anti-DLL4 (demcizumab), which showed 

considerable toxicity and low efficacy in pancreatic and lung cancers85, or the NOTCH2/3 

antibody tarextumab, which led to significantly worse survival outcomes compared to 

standard of care (Table 1)86. More recent development of an anti-DLL3 ADC, 

rovalpituzumab tesirine, was recently terminated in NSCLC due to a lack of survival 

benefit87. Interestingly, one oral GSI (nirogacestat) has progressed into Phase III trials for 

desmoid tumors after exhibiting moderate toxicity coupled with very promising results in 

multiple tumor types88 (Table 1).

The Wnt pathway has similarly been implicated in metastasis across tumor types89. APC 

mutations in colorectal cancers and amplification of multiple signaling proteins such as 

CTNNB1, FZD or LRP across solid tumors implicate Wnt signaling in tumor progression89. 

Wnt also drives the epithelial stem cell state; LGR5, a GPCR involved in Wnt signaling, has 

become a critical marker for colon crypt stem cells and has been similarly shown to enrich 

Esposito et al. Page 6

Nat Cancer. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for and functionally induce EpCAM+ colorectal CSCs90. Wnt also maintains plasticity via 

expression of OCT4 to induce dedifferentiation91.

Wnt signaling has time-dependent and organ-tropic effects during metastasis92. Wnt 

signaling is induced in the vascular bone metastasis niche by E-selectin, leading to the 

acquisition of dual epithelial and stem cell properties93. Conversely, the Wnt inhibitor 

DKK1 has pro-metastatic roles by suppressing Wnt activity in dormant bone metastasis cells 

in order to evade NK cell-mediated clearance94 or by enhancing osteolysis in late-stage bone 

metastasis95.

Targeting the Wnt pathway is difficult due to the complexity of the signaling cascade as well 

as its central role in bone homeostasis. Initial safety data with a decoy receptor sponge for 

WNT8 (ipafricept)96 or anti-FZD1, 2, 5, 7 (vantictumab) in metastatic cancers identified 

severe bone toxicities97. Moreover, research has suggested that targeting the canonical Wnt 

pathway may induce the pro-metastatic non-canonical pathway98. Thus, continued 

exploration of the Wnt pathway or its downstream effectors is required. One potentially 

interesting route is via LGR5-ADCs that have shown compelling data across multiple 

models of tumorigenesis and metastasis. However, LGR5-ADCs have not progressed into 

the clinic due to a lack of enthusiasm for CSC-targeted treatments and potential toxicity to 

normal adult stem cell pools87.

The TGF-β pathway comprises multiple ligands, including the bone morphogenic proteins 

(BMPs), activins, and TGF-β1–3, that, when bound to TGF-β receptors (TGFβRI-II, ALK 

and BMPR), drives a SMAD-mediated transcriptional program that is highly context-

dependent99. This ranges from acting as a tumor suppressor in early cancers100, a mediator 

of immune suppression across diseases, and a critical driver of mesenchymal traits, 

plasticity, and EMT in metastasis60, 99. TGF-β signaling is responsible for inducing and 

maintaining the mesenchymal de-differentiated state in metastatic cancers101, inducing pro-

metastatic Jagged1 in bone metastasis83, IL11 in liver metastasis102, ANGPTL4 in lung 

metastasis103, and suppressing Wnt signaling via DKK1 induction94. TGF-β has been shown 

to be a critical pro-malignant pathway in late-stage cancers104 or for the supportive stroma 

for metastasis initiation102.

Preclinical testing of TGF-β inhibitors resulted in compelling evidence supporting the 

development of this class of therapies. For instance, inhibition of TGF-β in xenograft models 

prevents bone and lung metastasis while primary tumor growth remains unchanged105. 

Treatment can further deplete metastasis-initiating cells via stromal targeting102 or slow the 

vicious cycle of bone metastasis106. In contrast to toxicity associated with Wnt and Notch 

targeting, TGF-β pathway ablation is tolerated, with cardiac toxicity as the major on-target 

concern107. However, the multi-faceted role of TGF-β signaling in both tumor promotion 

and tumor suppression presents problems with clinical advancement, as one notable side 

effect of TGF-β inhibition is the transient and reversible onset of various neoplasms, mostly 

keratoacanthomas108.

Finally, Hedgehog signaling (SHH) is also associated with stemness and metastasis109, 

stromal activation during tumorigenesis110, and therapeutic resistance69. The central 
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transcription factors of Shh signaling are GLI1/2, which show aberrantly high expression in 

bone metastatic tumor cells where it enhances PTHRP expression to induce osteolytic 

metastasis111. Multiple studies have explored the importance of SHH in metastasis. For 

instance, cyclopamine (SMO inhibitor) derivatives inhibited pancreatic cancer metastasis by 

depleting the ALDH-positive stem cell pool112. Importantly, long-term follow-up studies of 

vismodegib, an approved SMO inhibitor, yielded exceptional response rates in metastatic 

basal cell carcinoma, a cancer characterized by loss of function mutations in PTCH1. 

Vismodegib treatment results in durable responses exceeding one year and median survival 

nearing three years in metastatic patients113. However, SMO inhibitors resulted in worse 

patient outcomes across pancreatic cancer trials as SHH inhibition promoted progression via 

suppressing stromal populations114.

Epigenetic approaches to restrain tumor plasticity

Tumor cell plasticity often manifests as multiple hemi-states that do not co-exist in normal 

physiology. This is best illustrated by the gradient of epithelial-mesenchymal (E-M) states 

observed in circulating breast tumor cells that vary over time in response to PI3K targeting 

or systemic chemotherapy68. This gradient of E-M transitions has been observed across 

tumor types, and is ascribed to higher metastatic potential115 or increased therapeutic 

resistance116. Importantly, plasticity presents as phenotypic heterogeneity across the same 

tumor or metastases, and that this plasticity is controlled by the epigenome117. Large scale 

genomic studies further support the notion that metastasis is not driven by mutations distinct 

from the primary tumor118, while in vivo selection models suggest that metastasis may 

enrich for certain mutational combinations already present in the primary tumor without a 

requirement for de novo metastatic mutations119. Indeed, reversible switching between E-M 

states is dependent on concentrations of TGF-β ligand rather than genetic mutations101. This 

heterogeneity in cell transcription is functional to the metastatic process; epithelial to 

mesenchymal transition is observed from the core to the invasive edge of the primary tumor 

and then a reversion is observed in the metastatic site, with both phases deemed critical for 

metastatic progression93, 120–122.

Therapeutic targeting of the epigenome provides compelling evidence for the feasibility of 

altering the plastic, dedifferentiated state exhibited during the evolution of metastasis. Early 

efforts of drug development yielded the cytidine analogs (5-aza(deoxy)cytidine) initially 

developed as anti-neoplastic nucleoside analogs, however, studies revealed optimal 

biological activity at sub-cytotoxic doses through inhibition of DNA-methyltransferases123. 

Early trials in solid tumor metastasis revealed minor activity that was curtailed by 

myelosuppression. This limitation proved to be a clinical asset as these drugs were 

eventually approved to treat Myelodysplastic Syndromes123.

Owing to the toxicological limitations of hypomethylating therapies, yet stimulated by 

promising signs of efficacy, epigenetic therapies have slowly progressed through clinical 

trials. A key promising therapy is tazemetostat, an inhibitor of EZH2, the H3K27 

methyltransferase that defines PRC2 complex activity. EZH2 activity is responsible for 

maintaining the dedifferentiated state in Ewing tumors124 and is an essential driver of 

melanoma metastasis through suppression of various tumor suppressors125. EZH2 activity 
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leads to RB1 and p53 suppression in prostate cancers, this results in plasticity and metastasis 

while EZH2 inhibitors restore sensitivity to anti-androgens126. Tazemetostat was recently 

approved as the first targeted therapy for metastatic epitheloid sarcoma after demonstrating 

activity in INI1-negative solid tumors and follicular lymphoma127.

Another promising epigenetic strategy is targeting histone deacetylases (HDAC), as loss of 

H4K16 acetylation is a common hallmark of cancer128. Pan-HDAC inhibitors such as 

romidepsin, vorinostat and belinostat are approved for the treatment of cutaneous T-cell 

lymphomas128. Class-specific HDAC-inhibitors such as entinostat and tucidinostat have 

demonstrated modest efficacy in endocrine therapy-resistant breast cancer patients by 

increasing PFS129, 130, and class I HDAC inhibition suppresses cancer stem cell activity and 

metastasis initiating properties in TNBC131.

Fitness genes and stress resistance

At the simplest reduction, two types of pathways are responsible for cancer progression: 1) 

Driver genes that cause the cells to proliferate unchecked, and 2) Fitness genes that allow the 

cells to survive intrinsic and exogenous stressors. Alterations of driver genes are responsible 

for the competitive advantage of premalignant cells, including activating mutations in 

oncogenes such as BRAF, or loss-of-function mutations in tumor suppressors such as 

APC118. Stepwise accumulation of driver mutations leads to the linear progression of 

premalignant clones to clinically detectable tumors132. Only a small set of driver events are 

required for primary tumors to form, for example, APC deletion in colorectal cancer or 

BRAF and KRAS mutations in melanoma and pancreatic cancer, respectively118. TCGA 

analysis confirms that classic pathways such as PI3K signaling, MAPK signaling, cell cycle 

control and RTK signaling were some of the most highly mutated pathways133. Analyzing 

cancer genomes across patients suggests that most cancers are driven by only two to eight 

mutational events118 (Figure 3). Due to these oncogene-centric discoveries and the impact of 

these pathways in cancer initiation, most drug development efforts have focused on targeting 

driver genes despite limited their efficacy in the metastatic setting.

Conversely, metastasis is theorized as a discrete step in tumor evolution that may be 

independent of specific oncogene pathways or mutations, and instead co-opts cellular traits 

that mitigate immunologic, genotoxic and therapeutic stressors accreted during 

tumorigenesis. These adaptations enable a discontinuous jump to metastatic competence and 

survival in the early metastatic niche132 (Figure 3). The chromosomal instability response is 

a classic fitness program – metastatic cells exhibiting chromosomal instability activate a 

noncanonical NF-κB response rather than a lethal interferon response to circumvent 

cytotoxicity134. Supporting this discovery, screening for molecules that disassemble the 

tumor-specific perinucleolar compartment yielded Metarrestin, a molecule in early clinical 

testing to prevent or reverse metastasis135.

It has long been appreciated that oncogenes are not sufficient for metastasis, and 

furthermore, the genotoxic and metabolic stresses resulting from unchecked proliferation 

require specific compensatory pathways136. This idea parallels the synthetic lethality space; 

driver pathways such as ERK inhibition can be compensated via PI3K/mTOR signaling137, 

whereas BRCA-mutant cancers have few compensatory mechanisms to resist genotoxicity 
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and PARP inhibition results in synthetic lethality. Unfortunately, PARP inhibitors only 

exhibited incremental improvements in PFS for advanced BRCA1/2-mutant ovarian 

cancers138 with resistance arising in most patients. Targeting survival adaptations in the 

metastatic niche could lead to effective treatments that are independent of specific genomic 

alterations in the cancer. For example, PD-L1 expression on tumor cells is not a driver 

mutation, but rather a stress resistance mechanism, and its therapeutic inhibition resulted in 

some of the most durable remissions seen to date (Table 1).

Whereas driver mutations offer an experimentally tractable approach for drug discovery, 

targeting cancer fitness genes requires the addition of an additional element – stress. By 

developing multiple stress resistance mechanisms, metastatic cells are able to overcome the 

oxidative and shear stresses of circulation, immune surveillance in the early metastatic 

niche, metabolic stresses of advanced metastatic lesions, and therapeutic challenge139 

(Figure 3). Importantly, the metastatic process is incredibly inefficient132, suggesting that 

exploiting any survival liabilities utilized by these cells may have outsized effects on the 

early metastatic process.

Oxidative stress has emerged as a ubiquitous challenge to metastasizing cells. Whereas early 

studies assumed that oxidative stress led to cancer development, multiple clinical studies 

have shown that patients treated with antioxidants fare worse, particularly when treated 

concurrently with chemotherapy and/or radiotherapy140–142. Mouse studies have shown that 

antioxidant supplementation, often with N-acetylcysteine (NAC), is responsible for the 

initiation143, progression, and reduced survival from lung cancers by a mechanism that 

limits p53 induction144.

A landmark study demonstrated that patient-derived melanomas experience higher levels of 

oxidative stress during metastasis, that NAC supplementation was sufficient for inducing 

metastasis, and that NAPDH production via folate pathway enzymes ALDH1L2 or 

MTHFD2 was also necessary for metastasis145. Further studies have demonstrated that 

lactate utilization via the MCT1 transporter increases NADPH via the oxidative pentose 

phosphate pathway to enable melanoma metastasis146. Oxidative stress is also the main 

underlying cytotoxic mechanism of various chemo- and radiotherapies: NRF2-driven 

glutathione synthesis enables cisplatin resistance147 and antioxidant supplementation 

prevents the cytotoxic effects of paclitaxel148. Oxidative stress appears to be largely 

metastasis-specific; G6PD knockout to inhibit the oxidative pentose pathway does not affect 

primary tumor initiation or growth in breast, colorectal or lung cancers149. Cystine uptake 

via SLC7a11 provides cysteine for glutathione biosynthesis in an NADPH-dependent 

process, and some studies have identified this transporter as an essential component of redox 

homeostasis in tumors150.

This evidence suggests that oxidative stress is a critical node of synthetic lethality151 and 

that pro-oxidant therapy should be considered as a high priority drug development target141. 

Multiple enzymes have been validated as potential targets to induce oxidative stress such as 

superoxide dismutases, glutathione peroxidases, thioredoxins, catalases and others. These 

have shown some promise as cancer targets, yet are often redundant152. A key node in 

oxidative stress resistance is NRF2, the master redox transcriptional regulator whose 
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induction by mutations or oxidative stress increases BACH1-mediated metastasis153 and 

cisplatin resistance147. NRF2 gain-of-function is observed across many cancers and 

pharmacologic targeting is currently in proof-of-concept154. Importantly, NRF2 expression 

is positively correlated to the stage of many cancers, showing the greatest levels in 

metastatic disease, and is further responsible for enhancing chemoresistance155.

An alternate pro-oxidant therapy is via targeting of metabolic processes that eliminate 

oxidative stressors and concomitantly generate reduced NAD+ or NADP+; one such strategy 

is via Aldehyde dehydrogenase (ALDH) activity. ALDH activity predicts tumorigenicity and 

worse clinical outcomes156 and is broadly used as a marker for stemness, metastatic 

behavior, and chemoresistance157. Among the 19 ALDH enzymes, ALDH1a3 has been 

shown as the main driver of ALDH activity158, and subsequent metastatic or chemoresistant 

traits159 via its role in lipid peroxidation or direct drug detoxification160. Serine biosynthesis 

via the folate pathway is a potential metastatic target as the ALDH1L1/1L2 enzymes have 

shown importance in metastasis via the generation of NADPH145, yet the redundancy of 

cytosolic and mitochondrial serine biosynthesis makes this metabolism difficult to target in 

tumors161. However, development of drug-like inhibitors of specific ALDH enzymes has not 

succeeded despite extensive efforts.157

Fatty acid oxidation (FAO) has received comparatively little interest in cancer drug 

development despite the numerous therapeutics available from cardiometabolic research. 

Increased FAO is a direct response to the Warburg effect to sustain ATP and NADH levels, 

particularly in the metastatic setting162. Ablation of FAO via targeting CPT1a with etomoxir 

prevents CRC metastasis in preclinical models163. Exogenous lipid sourcing is also critical 

to survival in hypoxic tumors where mTOR activity and TSC2 deficiency creates a synthetic 

dependence on desaturated lipids in hypoxic environments164. The lipid receptor CD36 was 

demonstrated as a critical component of metastasis-initiating cells through exogenous 

palmitate catabolism, and neutralizing antibodies could prevent metastasis165.

In the ever-evolving continuum of stress resistance pathways, ER stress and autophagy have 

similarly emerged as promising targets in the face of metabolic, genotoxic, therapeutic, and 

immune stresses. This intrinsic stress response is activated by nutrient limitation or the 

unfolded protein response, and is dependent on IRE1α, GCN2 and PERK166. A partial state 

of unfolded protein response was responsible for loss of immune surveillance in pancreatic 

cancer DTCs, allowing long-term persistence of pre-metastatic cells167. PERK signaling is 

pro-metastatic across solid tumors, yet clinical application of PERK inhibitors is limited by 

on-target toxicity. Recent studies have shed light on potential downstream targets of PERK 

such as CREB3L1168. Desaturated lipids are also critical to survival in hypoxic conditions 

where their absence causes UPR-mediated apoptosis164. ER stress and autophagy are linked, 

yet autophagy is not a selective cancer pathway and reports of its directionality of impact as 

well as therapeutic potential are conflicting169.

Immune checkpoint blockade

Immune checkpoint blocking therapies, chiefly PD-1/PD-L1 and CTLA-4, have become the 

central platform for treating a wide variety of metastatic cancers from which new therapies 

will be combined with or compared against. Despite extraordinary responses in a minority of 
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patients, de novo or acquired resistance and non-responsiveness to the panoply of available 

PD-1 and CTLA4 therapies is the rule rather than exception170. In many carcinomas such as 

metastatic RCC and HCC, PD-1 inhibitors show only moderate activity, while 

immunologically suppressed cancers such as breast and pancreatic cancer have shown only 

marginal responses50. Where the combination of PD-1 inhibitors with various 

chemotherapies and TKIs has started to show compelling activity in various 

malignancies171, the discovery of next-generation immune activating therapies will be 

essential to expand the rate of durable remissions for metastatic patients (Figure 4).

The most notable second generation of immune checkpoint receptors include TIM3, LAG3, 

TIGIT, B7-H3, Siglec-15, and VISTA, all of which have shown promise as anti-metastatic 

targets in various stages of clinical testing (Table 1)171. Early results with Siglec-15 

therapies such as NC318 have shown little promise in expansion cohorts. On the other hand, 

therapeutics against LAG3, such as eftilagimod alpha, have shown promise in 1st-line 

NSCLC and metastatic HR+ breast cancer. Antibodies against TIGIT, whose blockade leads 

to dramatic anti-tumor responses and clearance of chronic viral infections172, have shown 

the most promise for clinical advancement. Recent results with anti-TIGIT tiragolumab 

demonstrate compelling efficacy in NSCLC patients, with Phase 3 trials currently underway. 

Therapies targeting TIM-3, VISTA and B7-H3 are also in early clinical testing (Table 1).

While immune checkpoint blocking therapies have demonstrated the most potent successes 

in metastatic tumors with high mutational burdens (melanoma, NSCLC) or harboring 

exogenous tumor viruses (Merkel cell carcinoma, EBV+ gastric cancer)173, less 

mutationally active tumors may develop alternate means to suppress the anti-tumor immune 

response. Chief targets under investigation have included immunometabolic targets such as 

indoleamine 2,3 dioxygenase (IDO1), glutaminase, arginase, and the ectonucleotidases 

CD39/73. IDO1, glutaminase, and arginase are each implicated in tumor 

immunosuppression via the depletion of their corresponding amino acid substrates (W, Q, R) 

on which cytotoxic T cells are thought to be dependent174. Generation of kynurenine via 

IDO1 or extracellular adenosine via the ectonucelotidases CD39/CD73 are further 

hypothesized as immune-suppressive factors174, 175. Despite considerable commercial 

activity in advancing these hypotheses, clinical data has not supported any of these immune-

metabolic targets. In retrospect, preclinical data may have amplified the reported specificity 

of these pathways while clinical experience has highlighted the broad activity of each target 

across adult physiology176. Other immunometabolic pathways under investigation include 

the balance between glycolysis and FAO in T cell subsets: Lipid accumulation and resultant 

lipotoxicity is associated with reduced CD8+ T cell activity177 and increased Treg survival or 

differentiation via CD36-mediated lipid scavenging178.

Additional mechanisms, including therapies targeting tumor cell phagocytosis by 

macrophages, antibody-dependent B cell attack, and natural killer cell-mediated destruction, 

have shown little activity in the clinic despite preclinical support. For example, the CD47-

SIRP1 complex is an important “don’t eat me signal” to prevent phagocytosis, yet early 

results in clinical trials do not support promising efficacy179. Chimeric antigen receptor T 

cell therapies (CAR-T) have similarly failed to translate from preclinical findings showing 

the elimination of metastases180 into a clinically viable solid tumor therapy, likely due to the 
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same immunosuppressive features of solid tumors that tamp the natural anti-tumor immune 

response181.

Depletion of immune-regulatory cells (MDSCs, TAMs, Tregs)

Broad evidence supports the dominance of suppressor cell populations in the tumor 

microenvironment. Thus, depletion of regulatory T cells (Treg), myeloid-derived suppressor 

cells (MDSCs) or tumor-associated macrophages (TAMs) may be central to success in 

harnessing the immune system against metastasis. For example, 11% of patients with 

metastatic melanoma achieved a complete remission in response to autologous TIL infusion, 

this doubled to 22% when combined with a lymphodepletion regimen182. In mouse models, 

experimental depletion of Tregs is sufficient to eliminate both primary tumors and distant 

metastases183–185, and Treg depletion is further required to enhance anti-tumor response 

during anti-CTLA-4 treatment186.

Despite the well-established significance of Tregs in cancer immune tolerance, clinically 

viable strategies to deplete Tregs from tumors or metastatic lesions remain scant. Tregs 

differentiate from naïve CD4+ T cells via paracrine signaling of immunoregulatory factors 

from dendritic cells (DCs). Signaling via IL-2, TGF-β and all-trans retinoic acid (ATRA) 

secreted from these DCs is required for Treg maturation187–189. However, the anti-TGF-β 
antibody fresolimumab showed no objective response when combined with radiotherapy in 

advanced breast cancer, and dysfunctional CD8+ T cell signaling was not affected by TGF-β 
blockade190. Moreover, small molecule inhibitors of TGF-β have shown only minor effects 

in HCC191. Given the role of TGF-β in suppressing T helper 2 cell-mediated cancer 

immunity, bifunctional approaches depleting TGF-β signaling toward T cells provided 

promising preclinical and clinical activity: a TGF-β trap linked to a non-depleting anti-CD4 

antibody has shown significant efficacy in mouse models192, and a ligand trap using the 

TGF-βII receptor domain fused to an anti-PD-1 antibody showed clinically meaningful 

responses in HPV+ cancers193.

Modulating IL-2 levels or the CD25 receptor on T cells has been broadly tested in both 

autoimmune disease and the metastatic setting. CD25-depleting antibodies show efficient 

depletion of Tregs
194, yet also target CD4+ Th1 cells and NK cells, thus causing undesired 

immune suppression. This dual activity led to early abandonment of anti-CD25 approaches 

in metastatic cancer, however, an alternative approach maximizing the immune-stimulating 

effects of IL-2 while avoiding its immunosuppressive activity is via synthetic amino acid 

incorporation to tune receptor affinity. Promising therapies such as Synthorin IL-2 are under 

investigation in multiple solid tumors195.

Retinoid signaling is largely restricted to immune signaling in adults, as compared to TGF-

β196. Retinoid signaling is dominant in inhibiting inflammatory Th17 maturation from naïve 

T cells while it is instructive in causing Tn maturation to FOXP3+, CTLA-4-expressing Treg 

cells197. In addition to its role in Treg differentiation, retinoic acid forces differentiation of 

monocyte populations into immune-suppressive TAMs in sarcoma198. Despite emerging 

support for inhibiting retinoid signaling to deplete immunosuppressive subsets, inhibitors of 

the RAR nuclear receptors exhibit broad toxicity and upstream targeting of the ALDH1 

enzymes that catalyze the oxidation of retinal into bioactive retinoic acid has not progressed 
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into viable therapies157. Given the ability of exogenous retinoids to suppress dysfunctions 

caused by T cell hyperactivation, such as atopic dermatitis199, therapeutic approaches to 

deplete this pathway may prove critical to future cancer immunotherapy.

TAM populations complement Tregs in establishing an immunosuppressive 

microenvironment that supports metastatic spread. Depletion of TAMs through anti-CSF1R 

in a p53−/− transgenic breast cancer model dramatically extends survival when combined 

with platinum therapies by restoring a type I interferon response200. Whereas numerous 

CSF1/CSF1R inhibitors and mAbs, such as pexidartinib, have failed as monotherapies, 

rational combinations based on new preclinical research may provide a powerful means to 

deplete regulatory immune populations and enhance responses to immune checkpoint 

blockade. Numerous studies have sought additional targetable molecules involved in TAM 

function, including those that deplete TAM populations or abrogate the downstream effects 

of TAMs. MARCO was identified as a pattern-recognition receptor whose targeting 

reprograms TAM populations to an inflammatory phenotype and could be combined with 

checkpoint inhibitors to block metastasis201. RON kinase was also recently described as a 

key immunomodulatory pathway via its role in TAM differentiation, and small molecule 

inhibitors of Ron prevented the outgrowth of micrometastatic colonies86. TAMs enhance 

regulatory T cell populations via TGF-β and IL-10 secretion, however recent studies show 

they can also promote the invasiveness of cancer cells via CCL8 stimulation of 

PITPNM3202. Altered lipid catabolism is furthermore important to TAM polarization via 

oleate-dependent respiration in myeloid cells203.

Future perspectives on treating metastatic disease

Cancer metastasis is a multifactorial process that relies both on intrinsic pathways that 

promote plasticity and stress responses as well as extrinsic pathways to establish the 

immunosuppressive stromal milieu. While this creates far more complex treatment demands 

compared to the driver-centric approaches to treating primary tumors, convergent evolution 

of distinct tumor types during the metastatic process offers compelling potential for tumor 

type-agnostic treatments. Despite the complexity and diversity in the pathways and 

mechanisms driving metastasis, some common themes emerge pointing to the importance of 

cellular plasticity and stress-relieving pathways for metastasis competency. Notably, a few 

candidate targets have been validated as key nodes of regulation and are shared across 

cancer types. Therefore, metastatic cancers should be approached through a biomarker-

driven strategy that validates single agent or combinatorial strategies dependent upon the 

molecular make-up of individual tumors. As evidenced by recent studies, dual depletion of 

immune suppressive factors and tumor-intrinsic targeting will be a central paradigm to 

improve overall survival. Combinational therapies with distinct mechanisms of action will 

also be critical to preventing metastasis-associated resistance and promoting long term 

responses.

Relatively little emphasis has been placed on discovery of therapeutics enforcing metastatic 

regression in the preclinical setting. While this is the most difficult threshold to achieve in 

preclinical models, these proof-of-concept measures should become a central measure of 

efficacy to inform early drug development. Additionally, regulatory flexibility will be 
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required to advance these novel classes of therapeutics in a resource-effective manner. For 

example, predictive pharmacodynamic markers may be used as key secondary outcome 

measures in addition to 1-year PFS/OS measures in high-need patients. This is particularly 

important as high-risk patients often cycle through multiple experimental regimens, making 

overall survival a difficult endpoint.

In the search for new therapeutics, the importance of lifestyle and diagnostic factors in 

reducing cancer mortality must also be prioritized. The greatest threat to our recent progress 

in cancer is the upswing in obesity rates becoming the greatest etiologic driver of cancer and 

metastasis initiation204. Other preventable risks meanwhile remain a major cause of cancer 

in much of the world. For those cancers with a slow onset of metastasis, improved diagnostic 

and early detection efforts will substantially improve survival. Ultimately, prevention, early 

diagnosis and treatment approaches must all be comprehensively optimized to further reduce 

cancer mortality.
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Figure 1. 5-Year survival rates of patients diagnosed with select cancer types over the time period 
from 2000–2017.
Patients were stratified into three groups according to the extent of invasion or metastasis 

upon the original diagnosis. The year in the x-axis indicates the year of diagnosis and the 

first year of the 5-year monitoring period with data last reported in 2017. Data adapted from 

the NIH-NCI SEER database2.
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Figure 2. Metastatic ability, therapeutic resistance and plasticity are intrinsically linked by 
genetic, epigenetic and metabolic pathways that offer promising therapeutic nodes for drug 
development.
Epigenetic modifications created by DNA methyltransferases (DNMT1–4), histone 

methyltransferases (EZH2), and histone deacetylases (HDAC) repress tumor suppressors 

while promoting dedifferentiation to enhance both plasticity and therapeutic resistance. 

Metastatic ability and therapeutic resistance are linked by metabolic adaptations that 

enhance the reductive capacity of tumor cells via NAD(P)H generating pathways, such as 

lipid catabolism and antioxidant pathways. Cellular plasticity, epithelial-mesenchymal 

transition (EMT), stemness and metastasis are commonly driven by aberrant activities of key 

developmental pathways (TGF-β, Wnt, Notch and SHH). Therapeutic strategies to target 

shared mechanisms between these three hallmark characteristics of metastatic cancers may 

yield durable remissions either as monotherapies or when combined with classic cytotoxic 

therapies.
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Figure 3. Development of metastasis competency requires additional malignant properties 
beyond primary tumorigenesis.
Distinct primary tumor types evolve in a stepwise fashion with each additional mutation in a 

tumor suppressor or oncogene leading to incremental increases in competitive advantage. 

Key oncogene and suppressor mutations driving common cancers are often distinct from 

other cancer types and relatively few mutations are required for tumor formation (estimated 

at 2–8 driver mutations). In comparison, mutations in common oncogenes are not sufficient 

for metastatic competence, which instead requires the acquisition of multiple cellular 

programs that must align in order for the cells to withstand the stresses imposed by the 

metastatic process. Distinct tumor types therefore convergently evolve to acquire these pro-

metastatic programs, which in turn offer the opportunity for biomarker-driven tumor type-

agnostic therapies in metastatic cancer patients. CIN: Chromosomal instability UPR: 

Unfolded protein response.
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Figure 4. Targeting the immune microenvironment of metastatic cancers.
Metastatic lesions enforce immune suppression through the stimulation of key 

immunoregulatory cell types, including tumor-associated macrophages (TAM), regulatory 

dendritic cells (DC), regulatory T cells (Treg) and other myeloid-derived suppressive cell 

populations, that prevent effector T cells (Teff) from recognizing and destroying tumor cells. 

PD-1/PD-L1 inhibitors have already shown strong efficacy in alleviating Treg-imposed 

immune suppression at the metastatic site of immunologically-active tumors and additional 

immune checkpoint blocking therapies are in development (TIGIT, LAG3, VISTA). For 

immunologically-cold tumors, depletion of immunosuppressive cells through antibody 

treatment (CSF1R, MARCO, CD25) or inhibition of various differentiation/growth 

pathways (retinoid and cytokine) may enforce durable remissions of metastatic disease.
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