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ABSTRACT
CD4+CD25+ regulatory T cells (Tregs) play a critical role in maintaining immune
tolerance. They are essential for the initiation and progression of autoimmune diseases
affecting the nervous system. Recently, the correlation between Tregs and neurological
autoimmune diseases, as well as their therapeutic potential, has become a central focus
of research. Currently, various methods for in vivo or in vitro generation and expansion
of CD4+CD25+ Tregs are under investigation; however, their application in cellular
therapy is anticipated to face additional challenges. This article primarily delves into
the development and function of CD4+CD25+ Tregs, the role of Tregs in neurological
autoimmune disease pathology, basic methods for enhancing therapies, and recent
advancements and challenges in cellular therapy for neurological autoimmune diseases.

Subjects Bioengineering, Neuroscience, Immunology, Neurology
Keywords Regulatory T cell, Autoimmune diseases, Nervous system, Neurological autoimmune
diseases, Cell therapy

INTRODUCTION
Neurological autoimmune diseases (NADs) are a heterogeneous group of conditions
affecting the central or peripheral nervous system and are characterized by an
inappropriate immune response that mistakenly targets the nervous system (Iranzo,
2020; Sweeney, 2018). NAD mainly affects the central nervous system (CNS), including
autoimmune encephalitis, multiple sclerosis (MS), and neuromyelitis optica spectrum
disorders (NMOSD), and the peripheral nervous system (PNS), including Guillain-
Barré syndrome (GBS), neuromuscular junctions such as myasthenia gravis (MG), and
muscles such as polymyositis. Treatment of NAD is composed mostly of broad-acting
immunomodulators (i.e., intravenous immunoglobulin, interferon-β (IFN-β), anti-CD20
monoclonal antibodies, etc.) and immunosuppressants (i.e., corticosteroids, tacrolimus,
and azathioprine) to restore normal immune function. Because most of NADs are not
curative, lifelong administration are required and may cause various side effects, including
alopecia, bone marrow suppression, and neuropsychiatric manifestations (Biolato et al.,
2021; Briani & Visentin, 2022; Goeb et al., 2006;Minami et al., 2011).
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Regulatory T cells (Tregs) play a crucial role in the maintenance of peripheral
immune tolerance and homeostasis, prevention of autoimmunity, and control of chronic
inflammatory diseases (Pisetsky, 2023). This T-lymphocyte subpopulation develops in the
thymus and peripheral tissues of the immune system (Savage, Klawon & Miller, 2020). In
addition to CD4+CD25+ Tregs, these types of immunosuppressive T cells include T helper
type 3 (Th3) cells (characterized by CD4+CD25−phenotype), T-regulatory 1 (Tr1) cells
(characterized by CD4+CD25low phenotype), CD8+ Tregs, natural killer T cells (NKTs),
regulatory γδ T cells and other various subtypes (Bozward et al., 2021; Catalán et al., 2021;
Ferreira et al., 2019;Mishra et al., 2021; Peters, Kabelitz & Wesch, 2018). Although different
subtypes have unique features, Tregs is indispensable for inducing immune tolerance via
two main mechanisms: bystander suppression and infection tolerance (Ferreira et al., 2019;
Pascual et al., 2014).

To date, numerous studies have been conducted on CD4+CD25+ Tregs, which are
characterized by low proliferative capacity and high expression of an epigenetically
stabilized transcription factor, forkhead box protein 3 (Foxp3) (Sakaguchi et al., 2008).
Foxp3 is a key transcription factor critical for maintaining the immunosuppressive
function of Tregs (Golzari-Sorkheh & Zúñiga-Pflücker , 2023). Compared to other Treg
subsets, CD4+CD25+ Tregs exhibit higher Foxp3 expression levels, thereby demonstrating
enhanced therapeutic efficacy in autoimmune diseases. This type of CD4+CD25+Foxp3+

Tregs has been extensively studied (Amini et al., 2022; Jeyamogan et al., 2023; Wu et al.,
2019; Zhao, Liao & Kang, 2017). Tregs mediate their tolerogenic effects through multiple
modes of action, including production of inhibitory cytokines, cytokine starvation of
effector T cells (Teffs) (e.g., interleukin [IL]-2), Teff suppression by metabolic disruption,
and modulation of antigen-presenting cells (APCs) maturation or function (Kanamori
et al., 2016; Shevach, 2018). Together, these activities result in broad control of various
immune cell subsets, leading to the suppression of cell activation/expansion and effector
functions. Moreover, these cells can facilitate tissue repair to complement their suppressive
effects (Delacher et al., 2021; Moon et al., 2023). In recent years, there has been an effort
to use CD4+CD25+ Tregs as a new therapeutic approach to treat autoimmune and other
immunological diseases (Amini et al., 2022; Bluestone et al., 2023; Grover, Goel & Greene,
2021; Zhao, Liao & Kang, 2017).

Currently, cultivation of CD4+CD25+ Tregs with robust proliferation and sustained
functionality is a major concern. Polyclonal and antigen-specific Tregs are generally
produced either in vivo or ex vivo induction (Eggenhuizen, Ng & Ooi, 2020;Masteller, Tang
& Bluestone, 2006; Selck & Dominguez-Villar, 2021). The methodology for generating
polyclonal Tregs has reached a relatively advanced stage of development. However,
the potential treatment efficacy of polyclonal Tregs infusion is related to bystander
immunosuppression and may compromise normal defense functions, with increased risks
of general immunosuppression and associated adverse reactions (Balcerek et al., 2021; Pilat
& Sprent, 2020). Mounting evidence from animal studies proves higher efficacy of antigen-
specific Tregs in regulating pathological immune responses in a disease-specific fashion,
probably because the infused Tregs migrate into tissues expressing the cognate antigen,
contributing to the stronger localized regulation of inflammation (LaMothe et al., 2018;
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Sun et al., 2018). Consequently, antigen-specific Tregs infusion is becoming a promising
strategy for prevention or management of chronic inflammation that underlies various
autoimmune disorders (Sakaguchi, Kawakami & Mikami, 2023; Selck & Dominguez-Villar,
2021).

In this review, we summarize the development and function of Tregs, the role of
Tregs in NAD pathology, basic methods of Treg therapy, and recent advancements and
challenges in cellular therapy for neurological autoimmune diseases. This review aims to
elucidate the current state of Treg therapy for neuroscientists or bioengineers, to highlight
additional challenges, and to offer innovative perspectives for neurologists in the treatment
of neurological autoimmune diseases. It posits that, in the future, more refined Treg
therapy techniques could be applied in this field, thereby benefiting patients.

SURVEY METHODOLOGY
We selected 194 articles through an exhaustive search of the PubMed online database
using these subject terms including Treg (or CD4+CD25+ Treg) and/or neurological
autoimmune diseases (MS, MG, GBS and NMOSD) and/or therapy, simultaneously
excluding publications of inferior quality or redundant content. Furthermore, we
conducted a careful synthesis and analysis of all sourced literature, ensuring that this
review maintains a high level of comprehensiveness, accuracy and timeliness.

DEVELOPMENT, MIGRATION AND RESIDENCY OF
CD4+CD25+ TREGS
Development of CD4+CD25+ Tregs
A population of thymus-derived suppressor T lymphocytes were discovered more than
50 years ago (Gershon & Kondo, 1971; Nishizuka & Sakakura, 1969). Subsequently, an
increasing number of studies have been conducted on this cell population (Chen et al., 1994;
Sakaguchi et al., 1985). Sakaguchi et al. (1995) first identified the specific surface expression
of CD25 (IL-2 receptor [IL-2R] alpha-chain) molecules on CD4+ T cells in the peripheral
blood of mice. Upon elimination of CD4+CD25+ cells, the general immunosuppression
is relieved, thereby accelerating immune responses to non-self-antigens, and causing
autoimmune responses to certain self-antigens. Decades of research have extensively
explored the phenotypes and regulation of Tregs (Fig. 1).

Based on their developmental origin, Tregs can be further classified into thymus-
derived Tregs (tTregs) and peripherally derived Tregs (pTregs) (Martin-Moreno, Tripathi
& Chandraker, 2018;Robertson et al., 2019). Others divide Tregs into natural Tregs (nTregs)
and induced Tregs (iTregs) based on the characteristic of natural occurrence (Edinger, 2009;
Schmitt & Williams, 2013). However, others argue that there are three subgroups of Tregs:
nTregs, pTregs, and iTregs (Göschl, Scheinecker & Bonelli, 2019; Zhang, Guo & Jia, 2021).
nTregs and tTregs are fundamentally the same CD4+ T cells subpopulations, undergoing
natural development and maturation within the thymus. Mature CD4+CD25+ Tregs can
also be induced from naïve T cells by TGF-β and IL-2 stimulation; the resulting cells are
termed iTregs or pTregs when generated in vitro or in vivo. Unlike nTregs, iTregs have
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Figure 1 Timeline diagram depicting essential discoveries in the research field of CD4+CD25+ Treg.
Full-size DOI: 10.7717/peerj.19450/fig-1

been demonstrated to be unstable, and approaches to generate stable iTregs have been
developed for clinical utility (Fig. 2) (Kanamori et al., 2016; Pacholczyk, Kraj & Ignatowicz,
2002).

Differentiation and functional expression of Tregs are regulated by a multitude of
cytokines. T helper type 17 (Th17) cells originate from the same subset of CD4+ T cells.
Initially, precursor Th (Th0) cells differentiate into intermediate cells. The subsequent
differentiation trajectory primarily depends on the type of cytokines present in the
microenvironment of the organism. Th17 cells and Tregs play opposing roles. The former
hinders immune tolerance, whereas the latter induces it. A dynamic imbalance between
them is pivotal for the onset of autoimmune disorders (Astier & Kofler, 2023; Lee, 2018;
Yasuda, Takeuchi & Hirota, 2019).

IL-6 plays a significant role in modulating the equilibrium between Th17 cells and
Tregs. It collaboratively induces the differentiation of naïve CD4+ T cells into Th17 cells
with TGF-β, while suppressing the differentiation of TGF-β-induced Tregs (Kimura &
Kishimoto, 2010).

Foxp3, presently the most discerning molecular marker of Tregs, participates in the
differentiation and functional regulation of Tregs. Foxp3 is expressed in the thymic
development of nTregs, or highly expressed in iTregs induced by TGF-β and retinoic
acid (Ilnicka et al., 2019; Schmidt et al., 2016; Sun, Yi & O’Connell, 2010). In the absence of
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Figure 2 The process of development and differentiation of CD4+CD25+ Tregs. nTregs originate from
the thymus. Their development and maturation depend on the synergistic stimulation of TCR and CD28.
Foxp3 is induced to be highly expressed during the thymic development of nTregs. iTregs are mainly di-
vided into Foxp3+ and Foxp3− Tregs. The former are generated from naïve T cells under the stimulation
of cytokines. When induced in vitro, they are referred to as iTregs, whereas when generated in vivo (out-
side the thymus, such as in the gut or peripheral blood), they are known as pTregs. The latter are primarily
categorized as Th3 cells and Tr1 cells.IL-2, in conjunction with TGF-β, can induce naïve CD4+CD25− T
cells to transform into CD4+CD25+ T cells and express Foxp3. However, when naïve CD4+ T cells receive
signals from IL-6, the functionality of Foxp3 is suppressed, inducing differentiation towards Th17 cells.
Tregs, regulatory T cells; nTregs, natural Tregs; iTregs, induced Tregs; pTregs, peripherally induced Tregs;
TCR, T cell receptor; Foxp3, forkhead box protein 3; Th, helper T cell; Tr, T-regulatory; IL, interleukin;
TGF-β, transforming growth factor-β (created with BioRender.com).

Full-size DOI: 10.7717/peerj.19450/fig-2

cytokines, Foxp3 can suppress the function of the retinoic acid receptor-related orphan
receptor (ROR) γt and promote Treg differentiation. However, when naïve T cells receive
signals from cytokines such as IL-6, the function of Foxp3 is inhibited, inducing the
differentiation of Th17 cells (Deng et al., 2019; Zeng et al., 2023; Ziegler & Buckner, 2009).
Therefore, the expression and regulatory levels of Foxp3 and RORγt determine the
differentiation direction of Th17 cells/Tregs, resulting in the development of autoimmune
diseases (Lee, 2018; Zeng et al., 2023). Additionally, in orchestrating the differentiation
and function of Tregs, Foxp3 is influenced by various protein complexes with which it
interacts. Prior to initiating Foxp3 transcription, Tregs have already been identified with
homologous antigens and received T cell receptor (TCR) signals, triggered by TCR-induced
transcription factors (NFAT, AP-1, and NF-κB), inducing the interaction between Foxp3
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and AML1/Runx1 and NFAT, thereby exerting regulatory effects (Grover, Goel & Greene,
2021; Long, Luo & Zhu, 2022; Ono, 2020).

Signal transducer and activator of transcription 5 (STAT5) is another pivotal factor
involved in Treg differentiation and activation. Mounting evidence indicates that IL-2
binds to the IL-2R on the surface of CD4+CD25+ Tregs, thereby activating STAT5. This,
in turn, leads to the binding of STAT5 to the Foxp3 promoter, ultimately facilitating
Treg cell generation (Jones, Read & Oestreich, 2020; Li & Park, 2020; Mao et al., 2019;
Paradowska-Gorycka et al., 2020). Consequently, IL-2 regulates the differentiation of
CD4+CD25+Foxp3+ Tregs via the STAT5 pathway, concurrently suppressing Th1 and
Th17 cells as well as their secretion of IFN-γ and IL-17. This may be crucial for the onset
and progression of autoimmune diseases (Mao et al., 2019; Paradowska-Gorycka et al.,
2020; Xie et al., 2023).

Thymic development of nTregs is contingent upon the synergistic stimulation of TCR
and CD28. CD28 is indispensable for the peripheral homeostasis, expansion, and survival
of nTregs (Kitazawa et al., 2009). The maturation of iTregs necessitates the production of
IL-2 and TGF-β, rather than the cooperative stimulation with CD28 (Cassis, Aiello & Noris,
2005). Additionally, IL-2, in conjunction with TGF-β, has the capacity to jointly induce
the conversion of initial CD4+CD25−T cells into CD4+CD25+ T cells, thereby expressing
Foxp3 (Zheng et al., 2007). Figure 2 illustrates the specific Treg differentiation process.

Migration and residency of CD4+CD25+ Tregs
Upon maturation in the thymus, CD4+CD25+ Tregs enter systemic circulation or
lymphatic tissues, with a subset further migrating to various non-lymphoid tissues,
where they form transiently resident tissue Tregs in small numbers (Burton et al., 2024).
In contrast to lymphoid tissue Tregs, these non-lymphoid tissue Tregs typically exhibit
commonmolecular phenotypes, includingCD69, CD103, programmed cell death protein-1
(PD-1), and so on, which facilitate their short-term residence in tissues and enable them to
perform specific function (Burton et al., 2024; Shou et al., 2021; Evrard et al., 2023; Pasciuto
et al., 2020).

Unlike Tregs in other tissues, brain Tregs undergo a distinct migration and residence
process. Under physiological conditions, only a small subset of Tregs can cross the
blood-cerebrospinal fluid barrier (not the intact blood–brain barrier) to enter the brain
parenchyma (Korin et al., 2017; Hrastelj et al., 2021). The low IL-2 microenvironment
within the CNS further limits their long-term residence, typically resulting in their renewal
after approximately three weeks (Burton et al., 2024). During inflammation, Tregs are
activated in lymphoid organs and are directed by chemokine C-C motif ligands (CCL)
such as CCL2 and CCL5. These cells upregulate chemokine C-C motif receptors (CCR)
like CCR2 and CCR5, which allow them to recognize self-antigens within the blood–brain
barrier (Liston et al., 2024; Ben-Yehuda et al., 2021). Consequently, Tregs migrate through
capillary endothelial cells, the basal lamina, and other barriers, entering the perivascular
space. Once within this space, Tregs express high levels of specific TCRs, which interact
with major histocompatibility complex II (MHC II) molecules on CNS target cells (Liston
et al., 2024; Liston, Dooley & Yshii, 2022). This interaction drives their passage through
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the astrocyte limitans, allowing them to enter the brain parenchyma and target the
corresponding inflammatory regions within the CNS.

Moreover, compared to other non-brain tissue Tregs, brain Tregs exhibit distinct gene
expression and protein secretion patterns, which are associated with their unique role in
neural repair (as discussed in the next section).

FUNCTION OF CD4+CD25+ TREGS
Treg therapy in NADs not only relies on its immunosuppressive function to eliminate
inflammation but is also dependent on its neuroprotective and neural repair capacity,
which is quite different from immunomodulation.

Tregs exert their immunosuppressive effects mainly through direct cellular interactions
and the secretion of inhibitory cytokines. Additionally, they mediate immunosuppression
through cell lysis, extracellular vesicles (EVs) release, and disruption of metabolic
dysregulation (Figs. 3A–3E).

As critical T-cell costimulatory molecules constitutively expressed on the surface of
Tregs, cytotoxic T lymphocyte-associated protein 4 (CTLA-4) competes with CD28,
for CD80/CD86 on APCs and consequently leads to the suppression of conventional T
cells (Tconv) cells (Lax et al., 2023;Qureshi et al., 2011). Furthermore, CTLA-4 upregulates
indoleamine 2,3-dioxygenase (IDO), contributing to cell cycle arrest and elevated sensitivity
to apoptosis in Teffs and dysregulated APCs (Cribbs et al., 2014; Massalska et al., 2022).
Similar to CTLA-4, lymphocyte activation gene 3 (LAG-3) is also expressed on Tregs, and
suppresses the function of dendritic cells (DCs) through binding to MHC-II molecules
(Gagliani et al., 2013; Li et al., 2023). Certain chemotactic factors lead to the aggregation of
Tregs around immune cells, exerting their effects through cell–cell contact (Müller et al.,
2007; Xu et al., 2023).

Tregs primarily achieve immunomodulation by secreting inhibitory cytokines such
as IL-10, IL-35, and TGF-β. TGF-β, beyond inducing Foxp3 expression and negatively
regulating immune cells, also collaborates with IL-2 in the induction of CD4+ T cells
transitioning into Tregs (Gu et al., 2022; Zheng et al., 2007). IL-35, which belongs to the
IL-12 family of inhibitory cytokines, effectively suppresses T-cell proliferation and induces
the generation of Tregs to dampen inflammatory responses (Collison et al., 2007; Ye et al.,
2021). As a well-known immunosuppressive factor, the molecular mechanism underlying
the immunomodulatory activity of IL-10 on APCs and T cells remains controversial
(Bergmann et al., 2007; Moaaz et al., 2019).

Tregs can directly induce apoptosis of target cells via cell–cell contact, which is attributed
to the release of cytotoxic factors (e.g., granzymes) (Cao et al., 2007; Gondek et al., 2005).
Tregs exert inhibition on target cells through a mechanism involving granzyme-mediated
cytolysis, utilizing granzyme/perforin-mediated cytotoxicity carried out by NKs and
CD8+ cytotoxic T cells to eliminate viral infections, tumor cells, and foreign antigens,
among others (Kim, 2010; Lieberman, 2003; Sanders et al., 2022). The EVs generated by
Tregs represent a finely tuned intercellular exchange mechanism. Through the release of
EVs, intercellular communication is facilitated, thereby orchestrating immune responses
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Figure 3 The mechanism of CD4+CD25+ Tregs exerting their immunosuppressive function. (A) Tregs
inhibit immune cell proliferation by directly binding to corresponding receptors (CD80/CD86 molecules,
MHC-II molecules) on target cells through CTLA-4 and LAG3; (B) Tregs primarily achieve immunoreg-
ulation with a negative impact on DCs, Th1, Th17 cells, and others through the secretion of inhibitory
cytokines, such as IL-10, IL-35, and TGF-β; (C) Tregs employ granzyme/perforin-mediated cytotoxic T
cells for cellular lysis; (D) Tregs establish intercellular communication by releasing EVs, thereby modulat-
ing immune responses; (E) Tregs exhibit elevated affinity for IL-2 due to the expression of CD25 (IL-2 re-
ceptor), outcompeting other immune cells, ultimately leading to cellular apoptosis. Alternatively, Tregs,
by expressing CD39 and CD73, facilitate the conversion of ATP to cAMP, subsequently transformed into
adenosine. This adenosine binds to adenosine receptors on the surface of effector T cells, exerting im-
munosuppressive effects. Tregs, regulatory T cells; Teff, effector T cell; DCs, dendritic cells; MHC, major
histocompatibility complex; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; LAG3, lymphocyte-
activation gene 3; Th, helper T cell; TGF-β, transforming growth factor-β; IL, interleukin; EVs, extra-
cellular vesicles; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate (created with
BioRender.com).

Full-size DOI: 10.7717/peerj.19450/fig-3
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and establishing an environment conducive to immune tolerance (Lin, Guo & Jia, 2022;
Rojas et al., 2020). Tregs barely secrete IL-2, but promote IL-2 starvation from their
surroundings via their high-affinity IL-2 receptor (CD25), leading to cytokine deprivation-
induced apoptosis of Teff cells (Barthlott et al., 2005; Pandiyan et al., 2007). Thus, Tregs can
impede Teff activation via the IL-2/STAT5 pathway, inducing metabolic perturbations that
ultimately lead to apoptosis (Jones, Read & Oestreich, 2020; Li & Park, 2020; Pandiyan et al.,
2007). Treg cells express CD39 and CD73 and produce adenosine and cyclic adenosine
monophosphate (cAMP); the former can upregulate the intracellular cAMP of Teff via
adenosine receptor 2A, and thus disrupt their metabolism (Horenstein et al., 2013; Park
et al., 2012; Xia et al., 2023).

Tregs within the CNS include brain-resident Tregs and brain Tregs recruited from
peripheral circulation, accompanied by the occurrence of inflammation. Tregs have recently
been proved to indirectly and directly regulate tissue repair, but their mechanisms remain
unclear (Ali et al., 2017; Burzyn et al., 2013; Castiglioni et al., 2015). In many tissues, Treg
are recruited to the injury site to prompt inflammation resolution and to control immunity
after injury (Murphy et al., 2005). For example, Tregs can indirectly control regeneration
by modulating neutrophils and helper T cells (Carbone et al., 2013; D’Alessio et al., 2009;
Dombrowski et al., 2017;Weirather et al., 2014), inducing macrophage polarization (Aurora
et al., 2014; Lavine et al., 2014). Moreover, Tregs have been found to directly facilitate
regeneration by locally activating progenitor cells (Ali et al., 2017; Castiglioni et al., 2015).

The most prominent role of Tregs in the CNS is to induce myelin regeneration
(Dela Vega Gallardo et al., 2019). Tregs act on oligodendrocyte progenitor cells (OPCs)
by secreting cellular communication network-3 (CCN3) protein, accelerating their
differentiation into oligodendrocytes, and promoting myelination (Dombrowski et al.,
2017). In addition, brain Tregs express specific genes such as serotonin receptor 7 (Htr7),
which encodes the serotonin receptor 5-HT7 and exerts a neuroprotective effect (Lenglet
et al., 2002). Tregs inhibit the proliferation of neurotoxic astrocytes and mediate tissue
repair by secreting amphiregulin (AREG), a ligand of the epidermal growth factor receptor
(EGFR) (Ito et al., 2019). These Tregs alter the phenotype of microglia into neuroprotective
and neurorepaired states by regulating brain-derived neurotrophic factor (BDNF) and
osteopontin (OPN) (Liston, Dooley & Yshii, 2022; Shi et al., 2021). A recent study byWang
et al. (2023) revealed that Tregs regulated neuroinflammation and microglia pyroptosis,
reducing demyelination, as well as promoting regeneration through TLR4/MyD88/NF-κB
pathway. Further research is warranted to determine the potential functions of Tregs in
CNS.

THE ROLE OF CD4+CD25+ TREGS IN NAD PATHOLOGY
Multiple sclerosis
MS is an inflammatory demyelinating disease occurring within the CNS. There are concerns
that CD4+CD25+ Tregs may participate in the pathogenic process of MS through the
induction or modulation of immune responses within the CNS (Dendrou, Fugger & Friese,
2015; Bhise & Dhib-Jalbut, 2016). Previous studies have revealed a significant decrease in
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the effector function of CD4+CD25+ Tregs in peripheral blood of MS patients compared
to normal controls (Tarighi et al., 2023; Haas et al., 2005). Following immunotherapies
such as IFN-β or anti-CD52 monoclonal antibodies, there is a marked increase in both
the quantity and functionality of these cells (Chiarini et al., 2020; Kiapour et al., 2022),
indicating an immunological deficiency of Tregs in MS. The dysfunction and reduced
quantity of Tregs in MS attenuate the inhibition against other pro-inflammatory immune
cells (such as CD4+ effector T cells, CD8+ T cells, Th1, Th17 cells, B cells, etc.), and the
neural repair function of myelin slacken off, which further leads to the progression of
neuroinflammation and demyelination. In addition, Tregs expressed certain chemokines
or their receptors (such as CCL17 or C-X-C motif chemokine receptor 3 (CXCR3))
are recruited into neuroinflammatory sites of brain, inhibiting inflammatory response
(Yang et al., 2015; Moreno Ayala et al., 2023). However, due to the migratory receptor
dysregulation of Tregs in MS patients, migration to the brain is restricted and Tregs cannot
serves various purposes in alleviating MS pathology (Danikowski, Jayaraman & Prabhakar,
2017).

Myasthenia gravis
MG is an organ-specific autoimmune disease, primarily elicited by highly specific
autoantibodies directed against skeletal muscle acetylcholine receptors (AChR). Currently,
the thymus is believed to play a pivotal role in its pathogenesis (Thapa & Farber, 2019).
Within the thymus, a substantial population of activated autoreactive CD4+ T cells exists,
particularly AChR-reactive CD4+ Tregs. However, abnormalities in the thymus of MG
patients may lead to a deficiency or impairment in Treg function, subsequently resulting in
an immunodynamic imbalance (Niu et al., 2020; Dong, 2021). A prior study indicated that
the mRNA and protein expression of Foxp3 in peripheral blood CD4+CD25+CD127low

Tregs of MG patients exhibit a decline compared with the healthy control group, resulting
in impairment of their mediated inhibition on AChR-reactive T cells (Thiruppathi et al.,
2012). This suggests that the functional deficiency of Tregs in MG patients may be
correlated with a diminished expression of critical functional molecules such as Foxp3
(Kohler et al., 2017). Few studies have demonstrated that Tregs express dysfunctional
migratory receptors in MG (Danikowski, Jayaraman & Prabhakar, 2017; Wei, Kryczek &
Zou, 2006).Most research indicate that CD4+ follicular helper T cells expressing chemokine
receptors CXCR5 involved in Tregs migration into germinal centers (Saito et al., 2005;Wen
et al., 2016). However, the intensive mechanism of Tregs migration dysfunction is not yet
fully clarified.

Guillain-Barré syndrome
GBS, characterized by demyelination of peripheral nerves and nerve roots along
with vasculitic cellular infiltration, stands as an autoimmune peripheral neuropathy.
Studies indicate a significant reduction in both the quantity and proportion of
CD4+CD25+CD127− Tregs in the peripheral blood of GBS patients compared to
the normal control group, suggesting immunological dysfunction (Wang et al., 2015;
Súkeníková et al., 2024). Similarly, in comparison to the healthy control group, GBS patients
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(especially during the progressive or relapsing phases) exhibit amarked decrease in both the
quantity and suppressive function of Tregs, along with reducedmRNA expression of Foxp3
in Tregs (Chi, Wang & Wang, 2008). In addition, GBS patients who receive intravenous
immunoglobulin therapy experience a significant decrease in the frequency of Th1 and
Th17 cells, along with an increase in the quantity of Tregs and enhanced suppression of
effector T cell function (Maddur et al., 2014). This suggests the involvement of Th17/Treg
cells in the pathogenesis of GBS. The functional deficiency of Tregs eventuate in an obvious
abatement in the immunosuppressive function of effector T cells or B cells, which attack
the self-myelin antigen of PNS, thereby promoting peripheral nerve inflammation. At
present, there is no consensus on whether Tregs has the ability to promote peripheral nerve
myelin regeneration, and more research is needed to explore.

Neuromyelitis optica spectrum disorders
NMOSD is an autoimmune, inflammatory, demyelinating disorder of the CNS. The
pathogenic mechanisms of NMOSD are primarily influenced by B cell-mediated humoral
immune regulation, with cellular immunity also playing a role (Murtagh et al., 2022). Only
a few studies have shown that the percentage of CD4+CD25+Foxp3+ Tregs in peripheral
blood T cells of acute phase of NMOSD patients is significantly lower than healthy
controls. At the same time, animal experiments have found that the consumption of Tregs
significantly enhances the loss of astrocytes and demyelination in themice (Ma et al., 2021).
The implications of these researches may herald an important role of Tregs abnormality
in NMOSD pathogenesis. Paradoxically, Tregs primarily exert their immunomodulatory
effects by influencing B cell humoral immunity, rather than directly participating in this
process (Brill, Lavon & Vaknin-Dembinsky, 2019; Cao et al., 2023). Further researches will
be needed on the specific role of Tregs in NMOSD.

CD4+CD25+ TREGS ENHANCING THERAPIES
Expanding of CD4+CD25+ Tregs in vivo
Tregs can be selectively expanded in vivo using different methods, allowing for the
polyclonal expansion of Tregs to mediate non-specific immune suppression. This in
vivo expansion method is generally more straightforward than the adoptive Treg therapy.
However, these methodologies often lack durability, specificity, and targeting precision,
making it challenging to control the potential toxic side effects (Balcerek et al., 2021).

Several methodologies have been proposed for in vivo induction of Tregs (Fig. 4A).
Initially, in the treatment of autoimmune diseases with anti-CD3 antibodies, CD4+ Treg
expansion is induced, concomitant with the selective depletion of T-effector cells (Notley
et al., 2010). Another approach to induce Tregs involves in vivo inhibition of mammalian
target of rapamycin (mTOR) function. Administration of rapamycin, anmTOR antagonist,
selectively augments the population of endogenous Tregs (Bagherpour et al., 2018; Zhao
et al., 2022), concurrently demonstrating heightened immunosuppressive capabilities
(Chen et al., 2010). Furthermore, a variety of studies have revealed that those expressing
IL-2Rαβγ exhibit a higher affinity and sensitivity to IL-2 compared to conventional T cells
expressing IL-2Rβγ (Jones, Read & Oestreich, 2020), thus low doses of IL-2 can stimulate
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the proliferation of Tregs (Dong et al., 2021; Graßhoff et al., 2021; Harris, Berdugo & Tree,
2023). Consequently, low-dose IL-2 therapy has been utilized as a new practical method
to induce Treg expansion in vivo (Harris, Berdugo & Tree, 2023; Qiao et al., 2023; Zhou,
2022). However, implementing this approach is challenging. Given the small size of IL-2,
it is quickly excreted in the urine, resulting in a relatively short half-life and diminished
therapeutic sustainability. Moreover, as CD25 expression is not exclusive to Tregs and also
at lower levels in activated T cells, low-dose IL-2 could stimulate the proliferation and
activation of effector T cells (Harris, Berdugo & Tree, 2023; Qiao et al., 2023).

Current approaches for inducing antigen-specific Tregs in vivo rely primarily on the
introduction of exogenous antigens into the body to stimulate and induce initial T cell
responses. However, the safety of this method requires significant scrutiny. In recent
years, microbial vaccines have garnered attention as granulocyte-macrophage colony-
stimulating factor (GM-CSF)-neuronal antigen T-cell source vaccines, relying on the
recognition of low-affinity T-cell antigen receptors, inducing the expansion and activation
of CD4+CD25highFoxp3+ Tregs in myelin-specific TCR transgenic mice (Moorman et al.,
2018). Furthermore, biomedical engineering for in vivo induction of Tregs has emerged as
a prominent area of research. Rhodes et al. (2023) recently developed a novel method for
inducing the expansion and activation of Tregs in vivo. They achieved this by designing
new types of biodegradable bioengineered particle-biodegradable microparticles (MP) to
induce immune tolerance. A schematic of this process is shown in Fig. 4B.

Adoptive transfer therapy of CD4+CD25+ Tregs
To date, ongoing clinical/preclinical trials for Treg therapies have been conducted, with the
majority of treatment protocols using intravenous infusion of ex vivo-expanded autologous
Tregs.

Methods for the ex vivo expansion of polyclonal Tregs have now reached a relatively
mature and stable stage. This protocol began with the isolation of CD4+CD25highCD127low

Tregs from the peripheral blood, followed by stimulation with CD3/CD28 magnetic beads
in the presence of IL-2, collectively activating and proliferating Tregs (Fig. 4C) (Balcerek
et al., 2021). This approach has successfully yielded a sufficient number of well-functioning
Tregs in graft-versus-host and autoimmune disease patients, with some trials showing signs
of disease amelioration (Brunstein et al., 2011; Chwojnicki et al., 2021; Marek-Trzonkowska
et al., 2016).

Although the adoptive transfer of polyclonal Tregs to induce immune tolerance has
been proven safe and effective, the current research emphasis lies in the development of
antigen-specific Tregs. Various studies suggest that, in comparison to polyclonal Tregs,
antigen-specific Tregs hold distinct advantages over polyclonal Tregs in more efficiently
suppressing effector T cells and promoting immune tolerance (Sagoo et al., 2011; Selck
& Dominguez-Villar, 2021). In the context of cell therapy through adoptive transfer,
antigen-specific Tregs require fewer cells to induce immune tolerance and simultaneously
reduce the side effects associated with broad immunosuppression.

Several studies have demonstrated that co-culturing sorted Tregs with APCs or B cells in
vitro can induce the expansion of antigen-specific CD4+CD25highCD127low Tregs (Putnam

Yuan et al. (2025), PeerJ, DOI 10.7717/peerj.19450 12/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.19450


Figure 4 Different pathways of CD4+CD25+ Treg cell-based therapies. (A) Administering anti-CD3
antibodies, rapamycin, and low-dose IL-2 can instigate in vivo expansion of CD4+CD25+ Tregs. (B) The
GM-CSF-neuronal antigen T cell source vaccines along with biodegradable microparticle (MPs) can elicit
the proliferation of antigen-specific Tregs in mice. (C) The human CD4+CD25+CD127low Tregs, iso-
lated through flow cytometry, are induced and cultured ex vivo using CD3/CD28 beads and a low dose
of IL-2 to yield functionally robust, polyclonal Tregs for adoptive transfer therapy. (D) Isolated human
CD4+ T cells, when co-cultured with activated B cells and peptide segments, can be ex vivo induced to ex-
pend, yielding antigen-specific Tregs suitable for therapy; mice-derived antigen-specific Tregs engineered
through TCR and CARs technologies can be manufactured for adoptive transfer therapy. Tregs, regula-
tory T cells; Ab, antibody; IL, interleukin; GM-CSF, granulocyte-macrophage colony stimulating factor;
MPs, biodegradable microparticle; TCR, T cell receptor; CARs, chimeric antigen receptors (created with
BioRender.com).

Full-size DOI: 10.7717/peerj.19450/fig-4
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et al., 2013). Previous studies have shown that naïve CD4+ T cells can be induced and
expanded from the peripheral blood of patients with MS to yield myelin basic protein
85–99 (MBP85−99) specific CD4+CD25+ Tregs (Fig. 4D) (Xiang et al., 2016). Another
method for generating antigen-specific Tregs in vitro involves the use of synthetic receptors,
including engineered TCRs and chimeric antigen receptors (CARs), to alter the specificity
of polyclonal Tregs. A variety of studies have revealed that the adoptive transfer of Tregs
engineeredwithMBP-specific TCRs can effectively alleviate symptoms (Fig. 4D) (Kim et al.,
2018). However, the clinical translation of Tregs manufactured using TCR engineering is,
to some extent, constrained by MHC limitations. The development of CARs enables Tregs
to recognize their antigens directly in a non-MHC-restricted fashion (Arjomandnejad,
Kopec & Keeler, 2022; Sadelain, Brentjens & Rivière, 2013). A recent study demonstrated
that myelin oligodendrocyte glycoprotein (MOG)-specific CAR-Tregs can, by binding to
Foxp3 in effector T cells, enable MOG-specific Tregs to breach the blood–brain barrier and
exert immunosuppressive effects within the CNS, thereby ameliorating disease symptoms
(Fig. 4D) (Fransson et al., 2012).

CD4+CD25+ TREGS THERAPY IN NADS
Multiple sclerosis
Based on the pathogenesis and therapeutic principles of Tregs in MS, various studies
have favored Treg-enhancing therapies. Current therapeutic strategies for MS encompass
indirect Treg expansion and functional augmentation. A phase II randomized controlled
trial (RCT) revealed that low-dose IL-2 therapy selectively activates Tregs, mitigates
symptoms of relapsing-remitting MS (RRMS), and markedly decreases radiologically
detectable gadolinium-enhancing lesions (Louapre et al., 2023). Pharmacologicmodulation
of Treg activity via small-molecule inhibitors or biologic agents represents a promising
avenue for MS therapeutics. Nevertheless, such interventions carry substantial adverse
effects, rendering the adoptive transfer therapy a critical focus for future MS research.

As is well known, the experimental autoimmune encephalomyelitis (EAE) models
produce various phenotypes of human MS, universally accepted as the quintessential
animal model for MS (Procaccini et al., 2015). Currently, the literature on adoptive transfer
of polyclonal Tregs in the EAE model of MS is extensive. Kohm et al. (2002) reported
that mouse CD4+CD25+ polyclonal Tregs reduced inflammatory cell infiltration in the
spinal cord of EAE mice and inhibited the progression of EAE. Subsequent studies have
confirmed the efficacy of polyclonal Tregs in improving EAE symptoms (McGeachy,
Stephens & Anderton, 2005; Zhang et al., 2004). However, only a few clinical trials have
been conducted on polyclonal Tregs in patients with MS. Only one Phase I clinical trial
indicated that intravenous or intrathecal injections of ex vivo-expanded polyclonal Tregs
led to symptom improvement, lesion reduction, and no significant adverse reactions in
relapsing-remitting patients with MS (Chwojnicki et al., 2021).

Given the limitations of polyclonal Tregs, the preparation of antigen-specific Tregs
and autologous transplantation for MS treatment have become current research hotspots.
Several recent studies have shown that antigen-specific Tregs induced by intraventricular
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inoculation with microbe-based vaccines or engineered carrier particles can significantly
improve EAE symptoms in mice. Moreover, histopathological examination showed a
marked reduction in inflammatory infiltration compared with that in the control group
(Moorman et al., 2018; Rhodes et al., 2023). To date, limited data are available regarding
the cultivation of antigen-specific Tregs through in vitro induction (co-culture with APCs
and specific peptide segments, TCR, and CAR engineering) for the treatment of EAE.
Previous studies have indicated that, compared to polyclonal Tregs, ex vivo-induced mouse
antigen-specific Tregs by MBP demonstrated significant efficacy in preventing symptom
recurrence of EAE (Stephens, Malpass & Anderton, 2009). Furthermore, various studies
have shown that functional and stable MBP antigen-specific Tregs can be cultured ex vivo
from the peripheral blood of mice or patients with MS using TCR and CAR-T engineering
techniques. When intravenously administered to EAE mice, these cells suppress the
autoimmune pathology of EAE and significantly improve neurological function scores
of EAE mice (DePaula Pohl et al., 2020; Fransson et al., 2012; Kim et al., 2018). However,
no clinical trials of antigen-specific Tregs have been reported for the treatment of MS.
Moreover, these animal experiments lack effective humanized models and produce less
compelling experimental results, thus making it challenging to conduct further clinical
trials in humans. Animal and clinical trials on adoptive Treg transfer therapy for MS are
presented in Table 1.

Myasthenia gravis
Presently, the treatment options forMGprimarily include the use of immunomodulators to
indirectly enhance the biological activity of Tregs or regulate the dynamic balance between
Th17 cells and Tregs. Administering of GM-CSF can augment the inhibitory function
of Tregs, elevate Foxp3 expression, thereby exerting a negative regulatory effect (Sheng
et al., 2006; Thiruppathi et al., 2012). In a rat model of MG, experimental autoimmune
myasthenia gravis (EAMG), crosstalk occurs between the JAK2/STAT3 and AKT/mTOR
pathways. JAK2 inhibitors can regulate the Th17 cells/Treg balance by inhibiting both
signaling pathways, consequently contributing to the amelioration of EAMG symptoms
(Lu et al., 2023). Furthermore, IFN-γ possesses the capacity to promote an increased
proportion of CD4+CD25+ Tregs, enhance Foxp3 expression (Huang, Wang & Chi,
2015). Additionally, MG-related animal experiments have indicated that currently used
immunosuppressive drugs, such as fingolimod (Luo et al., 2020) and certain traditional
Chinese medicines (i.e., astilbin and artesunate) (Meng et al., 2018; Meng et al., 2016),
primarily regulate the balance between Th17 cells and Treg for therapeutic efficacy,
providing new potential therapeutic targets for MG immunotherapy.

Regarding the adoptive transfer therapy of Tregs, numerous animal experiments
have consistently confirmed their outstanding therapeutic potential (Aricha et al., 2008;
Aricha et al., 2016; Souroujon et al., 2012). Intraperitoneal injection of ex vivo-induced and
cultured CD4+CD25+ Tregs from healthy rats into the EAMG significantly ameliorated the
clinical symptoms, reduced acetylcholine receptor (AChR) antibody titers, and suppressed
the quantity and functionality of Th1 andTh2 cells.Moreover, an 8-week follow-up revealed
a markedly higher survival rate than that of controls (Souroujon et al., 2012). Intravenous
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Table 1 Preclinical and clinical studies demonstrating increased efficacy of adoptive Tregs therapies in neurological autoimmune diseases.

Pre-clinial studies

Disease Model Treg population Evidence of functional
manifestation

Ref.

MS C57BL/6 mice CD4+CD25+CD62Lhigh T
cells from peripheral LN
of mice

Significant protection
from the clinical
development of
MOG35−55induced EAE
compared to non-Treg
(CD25-)

Kohm et al. (2002)

MS SJL/J, C57BL/6J
and IL-10-
deficient mice
on a C57BL/6J
background

CD4+CD25+ T cells from
spleen and LN of mice

CD4+CD25+ Tregs sup-
press the immune re-
sponses of pathogenic
T cells of PLP peptide-
immunized EAE mice
through secreting IL-10

Zhang et al. (2004)

MS C57BL/6 (Ly5.2+

and Ly5.1+) mice
CD4+CD25+ T cells from
the peripheral LN of mice
by co-culturing with ir-
radiated splenic APC and
anti-CD3

CNS-derived
CD4+CD25+ T cells
suppress induction of
EAE

McGeachy, Stephens & Anderton (2005)

MS HLA-DR15
transgenic mice

Engineered TCR MBP-
specific Tregs in vitro
from MS patients

Amelioration of EAE
symtoms in MOG-
immunized DR15
transgenic mice
and suppression of
autoimmune pathology in
EAE

Kim et al. (2018)

MS C57BL/6 mice GFP/CARαMOG-Foxp3-
engineered CD4+ T cells
in vitro from the mice

Prominent inhibiton ca-
pacity in vitro and myelin
recovery in mice treated
with engineered Tregs
compared to controls

Fransson et al. (2012)

MS B10.PL,
B10.PL×SJL,
transgenic mice

CD4+CD25+ T cells in
vitro culture with anti-
CD3/CD28 beads from
TCR-transgenic mice

Tregs prevent disease re-
lapse when given after
the onset of clinical EAE
(no effect with polyclonal
Tregs)

Stephens, Malpass & Anderton (2009)

MS HLA-DR15
transgenic mice
on a C57Bl/6
background

Human Tregs expressing
functional single-chain
chimeric antigen recep-
tors (scFv CAR), targeting
either MBP or MOG

Potent suppression ability
of autoimmune pathol-
ogy in EAE compared to
OB2F3-TCR Tregs

DePaula Pohl et al. (2020)

MG Lewis rats 6–7
weeks of age

Ex vivo generated CD4+

Tregs with anti-CD3/
CD28 beads and IL-2
from spleens of naive rats

Inhibition the progres-
sion of EAMG and down-
regulation of humoral
AChR-specific responses

Aricha et al. (2008)

MG Rats CD4+CD25+ Tregs in
vitro culture with anti-
CD3/ CD28 beads, TGF-β
and IL-2 from healthy rats

Significant inhibitory ef-
fect on EAMG

Souroujon et al. (2012)

(continued on next page)
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Table 1 (continued)

Pre-clinial studies

MG Lewis rats aged
8–10 weeks

CD4+CD25+ Tregs sorted
by co-culturing with DCs
from spleens of rats

Significant suppressive ef-
fect of EAMG by autolo-
gous Tregs

Aricha et al. (2016)

GBS Lewis rats CD4+CD25+ Tregs
with anti-CD3/CD28
beads, IL-2, TGF-β and
rapamycin

Reducction of inflamma-
tory cells infiltration in
the sciatic nerve, as well as
myelin and axonal dam-
age of EAN

Wang, Cui & Qian (2018)

GBS Lewis rats Alloantigen specific
CD4+CD25+ Tregs by ex
vivo activation of PNM
and rIL-2

Strong inhibition effect
on EAN

Tran et al. (2020)

NMOSD C57BL/6 mice CD4+CD25+ Tregs from
spleens of mice

Suppression of inflamma-
tory response and promo-
tion of neuroprotection
and regeneration

Ma et al. (2021)

Clinical studies
Disease Methods Phases NCT number and status Ref.
MS autologous poly-

clonal expanded
Treg

Phase 1 EudraCT: 2014-004320-
22; Recruiting

Chwojnicki et al. (2021)

Notes.
Abbreviations: Treg, regulatory T cell; MS, multiple sclerosis; MG, myasthenia gravis; GBS, Guillain-Barré syndrome; NMOSD, neuromyelitis optica spectrum disor-
ders; LN, lymph nodes; MOG, myelin oligodendrocyte glycoprotein; EAE, experimental autoimmune encephalomyelitis; IL, interleukin; PLP, proteolipid protein; APC,
antigen-presenting cell; CNS, central nervous system; HLA, human leukoyte antigen; TCR, T cell receptor; MBP, myelin basic protein; GFP, green fluorescent protein;
CAR, chimeric antigen receptor; Foxp3, forkhead box protein 3; EAMG, experimental autoimmune myasthenia gravis; AChR, acetylcholine receptor; TGF-β, transforming
growth factor-β; DCs, dendritic cells; PNM, peripheral nerve myelin; EAN, experimental autoimmune neuritis; NCT, national clinical trial.

injection of ex vivo-induced and expanded autologous polyclonal CD4+CD25+Foxp3+

Tregs into EAMG rats showed inhibitory effects on Teff cells proliferation and improved
myasthenic symptoms. In parallel with this finding, patients with MG showed decreased
AChR-specific antibody levels in the peripheral blood (Aricha et al., 2016). Since numerical
animal experiments were initially employed to investigate polyclonal Tregs, the next step
should be taken to determine the efficacy and safety of antigen-specific Treg therapies for
EAMG. This will shed light on the fundamental basis for conducting clinical trials related
to Treg therapy for MG. Preclinical studies on MG are presented in Table 1.

Guillain-Barré syndrome
To date, the modulation of Treg bioactivity in patients with GBS is primarily achieved
through immunomodulators or pharmaceutical agents. In vitro, through the activation of
anti-CD3 and anti-CD28 antibodies, IFN-γ induced CD4+CD25− T cells from patients
with GBS to generate CD4+CD25+ Tregs with heightened functional activity (Huang
et al., 2009). Experimental autoimmune neuritis (EAN) is the most effective animal model
of GBS. Some studies have indicated that atorvastatin, dexamethasone, and triptolide
augment the quantity and function of CD4+CD25+Foxp3+ Tregs, thereby ameliorating
EAN symptoms (Fagone et al., 2018; Shao, Fan & Tang, 2023; Xu et al., 2014). In several
studies on adoptive transfer therapy using Tregs for animal experiments of GBS, ex
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vivo-induced and expanded rat polyclonal CD4+CD25+ Tregs were intravenously infused
into the EAN model, leading to a significant reduction in sciatic nerve inflammatory cell
infiltration and marked alleviation of myelin sheath and axonal damage (Wang, Cui &
Qian, 2018). Building upon this research, Tran et al. (2020) reported that induced and
cultured activated rat antigen-specific Tregs from the peripheral nerve myelin sheath and
recombinant IL-2 were injected into the EAN, and demonstrated a notable reduction
in clinical paralysis symptoms and degree of weight loss, along with accelerated disease
recovery. Various animal experiments have provided a robust foundation for subsequent
clinical trials (Table 1).

Neuromyelitis optica spectrum disorders
Currently, studies on Tregs therapy for NMOSD are scarce. In an animal experiment,
adoptive transfer of Tregs attenuated brain damage in a mouse NMOSD model; reduced
macrophage, neutrophil, and T-cell infiltration; and suppressed inflammatory responses
by regulating the functional status of macrophages/microglia and reducing chemokines
and proinflammatory factors (Table 1) (Ma et al., 2021). The clinical potential of Treg
therapy for NMOSD is worth investigating.

SIDE EFFECTS AND CHALLENGES
The therapeutic potential of CD4+CD25+ Tregs in NADs is substantial; however,
several critical challenges must be addressed, including stability, safety and target
specificity. Notably, while certain clinical trials have demonstrated the favorable safety
profile of allogeneic Treg therapy, concerns regarding immune-mediated rejection and
limited cell survival necessitate the prioritization of autologous Treg therapy in current
clinical practice (Hennessy et al., 2023; Giganti et al., 2021). Furthermore, inducing Tregs
proliferation in vivo and administering adoptive transfers of polyclonal Tregs may result
in significant side effects. The antigenic heterogeneity of polyclonal Tregs can cause broad
and indiscriminate immunosuppression, heightening the risk of infections and tumor
progression (MacDonald, Piret & Levings, 2019). Additionally, during ex vivo expansion,
polyclonal Tregs are susceptible to contamination by other activated T cells, which
may provoke non-specific immune activation or inflammatory responses, ultimately
compromising therapeutic stability and increasing the likelihood of severe adverse effects
(Balcerek et al., 2021).

Compared to polyclonal Tregs, antigen-specific Treg adoptive transfer therapy selectively
targets disease-associated antigens, facilitating precise migration to inflammatory sites,
while mitigating systemic immunosuppressive adverse effects. However, this strategy
remains associated with several potential challenges and risks. The primary concern is
the functional instability of Tregs, as dysregulated epigenetic modifications—such as
diminished Foxp3 expression—during ex vivo expansion or within the inflammatory
microenvironment may result in the loss of immunosuppressive function or even their
conversion into pro-inflammatory effector T cells, thereby aggravating tissue damage (Ou
et al., 2021; Raffin, Vo & Bluestone, 2020; Bluestone et al., 2023). An additional challenge
lies in Treg cell homing and persistence. Following adoptive transfer, Tregs demonstrate
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limited migration to inflammatory sites, potentially due to inadequate chemokine receptor
expression. Moreover, their transient residency and survival in target tissues—possibly
attributable to insufficient levels of survival-dependent cytokines such as IL-2 and IL-7—
result in a rapid decline in Treg numbers and a concomitant loss of function (Ferreira
et al., 2019; Baron & Turnquist, 2023). Furthermore, gene-editing strategies for Tregs carry
inherent risks, as off-target effects associated with CRISPR/Cas9 or CAR-T technologies
may induce genetic mutations or unintended tumorigenesis (Selck & Dominguez-Villar,
2021; Asmamaw Mengstie et al., 2024). Finally, the clinical translation of Treg therapy
remains impeded by manufacturing complexities and scale-up challenges, including high
production costs, suboptimal purity, low expansion efficiency, inconsistent quality control
standards, and the necessity for contingency plans to address potential Treg dysregulation
(Bluestone et al., 2023; Ferreira et al., 2019; Baron & Turnquist, 2023; Mamo et al., 2022).
Given the unique characteristics of the CNS, the structural integrity of the blood–brain
barrier—characterized by tight junctions, low chemokine expression, and restricted
adhesion molecule availability—impedes the infiltration of Tregs into inflamed CNS
regions. Moreover, the impaired migratory capacity of Tregs, coupled with insufficient
support from the CNS microenvironment and limited targeting capabilities, further
constrains their clinical application in NADs (Verreycken, Baeten & Broux, 2022; Olson,
Mosley & Gendelman, 2023). In summary, CD4+CD25+ Treg-based therapies targeting
NADs continue to confront substantial implementation challenges. Nevertheless, through
advanced engineering strategies and precise modulation, the realization of highly efficient
and safe Treg therapy holds promise for advancing personalized immunotherapy.

CONCLUSIONS
In conclusion, naive CD4+ cells originating from the thymus or periphery undergo a series
of processes to differentiate into mature CD4+CD25+CD127lowFoxp3high Tregs, inducing
immunological tolerance. They exert negative immunomodulatory effects through various
pathways, including direct cell-to-cell contact and the secretion of inhibitory cytokines.
Simultaneously, they play a distinctive neuroprotective and reparative role in CNS related
diseases. Numerous studies have confirmed that the onset and progression of various NADs
associated with a decreased number or functional deficiency of Tregs; thus, in vivo or ex
vivo induced Tregs for adoptive transfer therapy in autoimmune neurological disorders
pave the way for a promising treatment against these disorders. To date, most studies on
Tregs therapy for NADs (i.e.,MS,MG, and GBS) have been conducted in preclinical animal
trials. The challenge of obtaining a sufficient number of antigen-specific Tregs with stable
functionality and prolonged persistence remains a significant obstacle to curing patients
with NADs; therefore, issues regarding the safety of Tregs therapy warrant further in-depth
investigation.
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