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Macrophages have been reported to exert a crucial role in hepatocellular carcinoma
(HCC). This study aimed to explore the macrophage-related genes and establish a
macrophage-related signature (MRS) model to predict the overall survival (OS) of
patients with HCC based on these genes’ expression. We screened the macrophage-
related gene module by weighted gene coexpression network analysis (WGCNA), the
least absolute shrinkage and selection operator (LASSO) Cox regression analysis was
utilized for further selection, and the selected genes were entered into stepwise regression
to develop the MRS model, which was further validated in the Gene Expression Omnibus
(GEO) and International Cancer Genome Consortium (ICGC) datasets. We analyzed the
biological phenotypes associated with macrophages in terms of functional enrichment,
tumor immune signature, and tumor mutational signature. The patient’s response to
immunotherapy was inferred by the tumor immune dysfunction and exclusion (TIDE)
score, the immunophenotype score (IPS), and the IMvigor210 dataset. A novel MRS
model was established based on the LASSO regression coefficients of the genes PON1,
IL15RA, NEIL3,HILPDA, PFN2, HAVCR1, ANXA10, CDCA8, EPO, S100A9, TTK, KLRB1,
SPP1, STC2, CYP26B1, GPC1, G6PD, and CBX2. In either dataset, MRS was identified
as an independent risk factor for OS in HCC patients. Additionally, our research indicated
that a high-risk score in the MRS model was significantly correlated with tumor staging,
pathological grade, tumor–node–metastasis (TNM) stage, and survival. Several genes of
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the human leukocyte antigen (HLA) family and immune checkpoints were highly
expressed in the high-risk group. In addition, the frequency of tumor mutations was
also higher in the high-risk group. According to our analyses, a higher risk score in the
MRS model may predict a better response to immunotherapy.
Keywords: macrophage-related genes, hepatocellular carcinoma (HCC), immunity, prognosis, immune
drug response
INTRODUCTION

Liver cancer is a highly heterogeneous malignancy that is
considered the fourth most common cause of cancer-related
deaths worldwide, with more than half of all new cases and
deaths from liver cancer occurring in China each year (1–4).
Hepatocellular carcinoma (HCC), the most common histological
type of liver cancer, has a poor prognosis. With the progression
of modern medical science and technology, great strides have
been made in the treatment of HCC. However, because the
clinical symptoms of early HCC are not obvious, 70%–80% of
patients are in the advanced stage when they are diagnosed.
Currently, the overall survival (OS) of HCC treatment is still not
ideal. Therefore, it is urgent to clarify the molecular mechanism
of tumor progression and develop new therapeutic target agents
to prolong the survival time of HCC patients.

HCC is a typical immunogenic cancer that appears almost
exclusively in the presence of chronic inflammation (5). Immune
imbalance in the tumor microenvironment (TME) is one of the
important landscapes of HCC (6). The TME, which is the “soil” for
tumor growth and survival, is one of the important determinants
influencing the occurrence and progression of tumor cells (seeds) as
well as the response to various treatments. Macrophages, being an
important part of the immune microenvironment, play an
irreplaceable role in the body’s innate immunity and acquired
immunity (7). Tumor-associated macrophages (TAMs) are the
most abundant infiltrating immune cells in the tumor
microenvironment, where they perform a broad repertoire of
functions in HCC via their diverse phenotypes. TAMs are usually
divided into different subsets, including the M1 type (classical
activated macrophages) and the M2 type (replacement of
activated macrophages) (8, 9). In the early stage of tumor
development, TAMs mainly have an M1 pro-inflammatory
phenotype and mediate immune responses that inhibit tumor
growth. As the tumors develop, TAMs gradually transform to the
M2 type function phenotype, which in turn promotes their
participation in immunosuppression and tumor angiogenesis (10,
11). There is accumulating evidence that the tumorigenesis,
progression, and metastasis of tumors are influenced by dynamic
changes in macrophage phenotypes (12). In addition, previous
studies found that TAMs can attract immunosuppressive cells
(including Treg cells and myeloid-derived suppressor cells) to the
tumor site by producing a variety of chemokines and can induce
monocytes to express the costimulatory molecule programmed
death ligand (PD)-L1 to inhibit the cytotoxic T-cell response (13–
15). TAMs can also produce angiogenic factors and express matrix
metalloproteinases to induce tumor angiogenesis. In this regard,
org 2
elucidating the relevant genes and characteristics of TAMs and
identifying biomarkers related to macrophage infiltration are
essential for the treatment and prognosis of HCC, as they will
help us monitor the HCC immunotherapy response and further
explore the mechanism of immune infiltration. However, so far,
few studies have comprehensively and systematically described
the characteristics of the immune microenvironment and
the immune cell types of HCC, particularly its macrophages.
Thus, we performed this comprehensive systematic study to
identify macrophage-related genes and construct coexpression
networks of macrophages using the weighted gene coexpression
network analysis (WGCNA) approach, and then established a
macrophage-related risk signature (MRS) to test its prognostic
value in predicting the prognosis of HCC patients and their
response to chemotherapy and immunotherapy. The results of
this study will provide insights into the impact of macrophages
on HCC and help enhance the effectiveness of individualized
treatment for HCC patients.
MATERIALS AND METHODS

Datasets and Sample Extraction
We obtained HCC patients’ RNA sequencing (RNA-seq)
expression data, genomic mutation data, and accompanying
clinical data from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/repository). Similarly, the RNA-
seq expression data and matched clinicopathologic information
were also downloaded from the GSE14520 database (16) of the
Gene Expression Omnibus (GEO) repository (https://www.ncbi.
nlm.nih.gov/gds/) and from the International Cancer Genome
Consortium (ICGC) database (https://dcc.icgc.org/projects/
LIRI-JP). We utilized the transcriptome data and clinical data
of the IMvigor210 dataset of patients with metastatic urothelial
cancer treated with anti-PD-L1 drugs obtained from the
IMvigor210CoreBiologies R package to verify whether the risk
model we established could predict the effectiveness of
immunotherapy. The flowchart of the present study design is
shown in Figure 1.

Macrophage Coexpression
Network Construction
The TIMER algorithm was utilized to estimate the relative
proportion of infiltrating immune cells in HCC samples in
each cohort (17). We used WGCNA which can convert
coexpression correlation into connection weights or topological
overlap values (18), to identify coexpressed genes in
May 2022 | Volume 13 | Article 843408
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macrophages. Network type was set as the “unsigned” type. We
used standard deviation (SD > 50%) to screen highly variable
genes in the WGCNA expression data. The topological overlap
matrix was employed to determine the connectivity and
dissimilarity of the coexpression network established with the
appropriate soft thresholding parameter (Figure 1). The
dynamic hybrid cut method (a bottom-up algorithm) was used
to identify coexpressed gene modules. A hierarchical clustering
tree was established using dynamic hybrid cutting. Each leaf on
the tree represents a single gene, and genes with similar
expression data or similar functions are close together and
form a branch of the tree, representing a gene module. We
used Pearson’s test to calculate the correlation between module
eigengenes (MEs) and macrophages. When P <0.05, the module
was considered to be significantly related to macrophages. In this
way, a set of genes related to the proportion of macrophages with
similar functions was identified in the same module.
Subsequently, we took the intersection of the genes of the
modules most related to macrophages in the three cohort
datasets and displayed them in the form of a Venn diagram.
Frontiers in Immunology | www.frontiersin.org 3
Consensus Clustering Analysis
Based on the expression of macrophage-related intersection
genes, unsupervised hierarchical clustering was applied to
classify HCC patients into the optimal number of clusters
using the “ConsensusClusterPlus” package of R (19).

Calculation of Tumor Mutation Burden
Tumor mutational burden (TMB) in each tumor sample refers to
the number of mutated bases per million bases, which include
missense mutations, nonsense mutations, frameshift mutations,
and so on. We computed the TMB values from the number of
variants out of the total length of the human exons (38 million)
in each sample by using Perl scripts. Waterfall plots were
generated using the “maftools” R package to assess the number
of somatic point mutations in each HCC sample and to illustrate
the relationship between TMBs and risk groups (20). We
calculated the copy number variation (CNV) frequencies and
displayed the above results in a lollipop chart. The “RCircos”
package of R software was utilized to visualize the location of
these genes on the chromosomes.
FIGURE 1 | The flowchart of this study.
May 2022 | Volume 13 | Article 843408
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Functional Enrichment Analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were used to assess the biological roles of the
prognostic candidates by the “clusterProfiler” R package. Gene
set enrichment analysis (GSEA) software (version 4.1.0) was used
to compare the biological processes that were significantly
different between the low- and high-risk groups.

Immunogenomic Landscape Analysis
In order to investigate the difference in the TME among
macrophage-related clusters, the stromal score, immune score,
estimate score, and tumor purity were estimated using the
“ESTIMATE” R package based on the results of single-sample
gene set enrichment analysis (ssGSEA) (21). ssGSEA with the
“gsva” package was implemented to calculate the activity scores
of the activities of immune-related pathways (22). Immune
infiltration and functions were compared between the different
groups by using the two-sample Wilcoxon test. We further
compared the expression of common immune checkpoint
inhibitor (ICI) and human leukocyte antigen (HLA) genes
between different clusters. Additionally, we acquired an
overview of the immune subtypes of HCC patients from the
TGGA database from UCSC-Xena (https://xenabrowser.net/
datapages/) (23). We made comparisons of the immune
subtypes between different risk groups based on macrophage-
related clusters using the package “RColorBrewer.”

Prediction of Immunotherapy Response
The immunophenoscore (IPS) of HCC samples was obtained from
the LIHC project of The Cancer Immunome Atlas (TCIA, https://
tcia.at/), which can predict the response to immunotherapies
including CTLA4 and PD-1 blockers (24). The IPS score was
normalized to a range of 0 to 10, where a higher IPS score
represents higher immune reactivity. The tumor immune
dysfunction and exclusion (TIDE) was used to predict the
potential immune checkpoint blockade responses in HCC. A
lower TIDE score represents a better response to immunotherapy.
In addition, we utilized the IMvigor210 dataset to validate the links
between the risk signature and immunotherapy.

The TISMO (tismo.cistrome.org) database was used to compare
gene expression levels across groups of different responses to
immune checkpoint blockers (ICBs) in syngeneic mouse models.

Identification of a Prognostic
Macrophage-Related Score
Model for HCC
Based on the RNA-seq results, differentially expressed genes (DEGs)
between cluster 1 and cluster 2 were identified. Then, we used
univariate Cox regression analysis to identify the genes with good
predictive ability for prognosis. To further narrow down the
candidate prognosis-related genes and synthetically estimate the
significance values, the LASSOCox regression algorithm (R package
“glmnet”) was utilized to identify the variation in regression
coefficients of the prognostic genes and select the optimal and
minimal criteria of the penalization parameter (l) using 10-fold
cross-validation. Immunohistochemistry data from the Human
Protein Atlas (HPA) database confirmed the expression of these
Frontiers in Immunology | www.frontiersin.org 4
model genes in HCC. All HCC patients were grouped into high-
and low-risk groups by the median risk score value. The difference
in expression between the identified genes by the LASSO Cox
regression algorithm and the distribution pattern between
clinicopathological characteristics and risk groups are displayed in
the form of heatmaps using the R package “pheatmap.” Principal
component analysis (PCA) and t-distributed random neighborhood
embedding (t-SNE) analysis with the R package “Rtsne” were
applied to gauge the discriminative ability of the predictive model.
The area under the time-dependent receiver-operating
characteristic curve (AUROC) was used to appraise the predictive
ability of the risk groups identified above. A risk curve was drawn to
explore the difference in survival status between different risk groups
of patients. Then, the accuracy of the risk score model was validated
in the GSE14520 and ICGC datasets using the same method.

Construction and Validation of the Clinical
Prognostic Model
To evaluate whether risk score is an independent risk factor
affecting the survival of HCC patients, univariate and multivariate
analyses were conducted on the TCGA, GSE14520, and ICGC
datasets. Similarly, decision curve analysis (DCA) was carried out
to determine the clinical application value of the risk score model
by calculating the net benefits at each risk threshold (25). A
nomogram integrating sex, grade, age, stage, and risk signature for
survival prediction was then established using the “regplot”
package. The calibration curve was drawn to evaluate the
predictive accuracy of the nomogram.

Analysis of Chemotherapeutic Drug
Sensitivity Between Different MRS Groups
In view of the lack of biomarkers that can accurately predict
chemotherapeutic drug sensitivity in HCC patients, we conducted
drug susceptibility analyses through the “pRRophetic” and
“ggplot2” packages to compare the half-maximal inhibitory
concentration (IC50) of various chemotherapeutic drugs for
HCC between the high- and low-risk groups using the Wilcoxon
signed-rank test (26).

Statistical Analysis
All statistical analyses in our study were executed by R software
(version 4.1.0, https://www.r-project.org/). For comparison of
continuous variables between two groups, the independent
Student’s t-test was performed, and the Wilcoxon rank-sum test
was utilized to compare non-normally distributed variables. The
chi-squared test was used for the comparison of categorical variable
data between two groups. The P-value for statistically significant
differences was set to 0.05, unless otherwise stated in themanuscript.
RESULTS

Identification of Hub Modules Associated
With Macrophage Infiltration in HCC and
Enrichment Analysis
In the TCGA-LIHC cohort dataset, among the 10 modules,
the yellow module was highly correlated with macrophages
May 2022 | Volume 13 | Article 843408
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(R2 = 0.51, P = 1e−26). In the GSE14520 cohort dataset, among
the eight modules, the yellow module was highly correlated with
macrophages (R2 = 0.51, P = 3e−26). In the ICGC cohort dataset,
among the nine modules, the turquoise module was highly
correlated with macrophages (R2 = 0.58, P = 1e−22). Given
that our study focused on macrophages, the yellow module from
the TCGA-LIHC dataset and the GSE14520 dataset and the
turquoise module from the ICGC dataset were identified as the
hub module, as shown in Figure 2A.

Subsequently, 174 macrophage coexpressed genes were
identified from the intersection of the above modules (Figure 2).
We compared the expression levels of all 174 macrophage
coexpressed genes between tumor tissues and normal samples,
and we identified 69 differentially expressed macrophage
coexpressed genes (|log2 FC| ≥ 0.585, all P < 0.05), as shown in
Supplementary Figure S1. Then, the potential interactions among
these differentially expressed macrophage coexpressed genes were
analyzed by the PPI network (Supplementary Figure S1). The
correlation network containing all differentially expressed
macrophage coexpressed genes is presented in Supplementary
Figure S1. GO enrichment analysis and KEGG pathway analysis
were then applied to the genes lying in the intersection of the above
three cohort datasets (Figure 2K).

The Biological Characteristics of Each
Macrophage-Related Cluster
To further explore the heterogeneity of macrophages between
tumors in HCC, based on the expression level of 174 macrophage
coexpresssed genes, unsupervised consensus analysis was
employed to divide these 174 macrophage coexpression genes
in TCGA-LIHC into two different subtypes with different
molecular and clinical characteristics, including 226 samples in
macrophage-related cluster 1 and 144 samples in macrophage-
related cluster 2 (Figures 3A–C). 3D PCA showed that the two
clusters could be well-distinguished by the macrophage-related
coexpressed genes (Figure 3D). The heatmap indicated the
distribution of clinicopathological characteristics in cluster 1
and cluster 2. We found significant differences in tumor stage
status and pathological grade in the two clusters (Figure 3E).
Furthermore, we found that patients in cluster 1 had significantly
better OS than those in cluster 2 (Figure 3F). GSVA enrichment
analysis showed that there were differences in the enriched
pathways between cluster 1 and cluster 2 (Figure 3G). In total,
2,216 DEGs between the different clusters were identified. GO
enrichment and KEGG pathway analyses were then run on the
above DEGs, as shown in Figures 3H–K.

To verify the reliability of the above cluster scheme and
compare the tumor immune microenvironment and activities
of immune-related pathways between the two groups, we
calculated the immune score, estimate score, stromal score,
and tumor purity based on the gene expression profile of each
HCC sample using the ESTIMATE algorithm. The immune
score, stromal score, and estimate score in cluster 1 were
significantly lower than those in cluster 2 (Figure 4), while
tumor purity in cluster 1 was significantly higher than that in
cluster 2 (Figure 4). These results suggested that the above two
clusters had completely different TME infiltration characteristics.
Frontiers in Immunology | www.frontiersin.org 5
There were marked differences in immune cell-related functions
between the two clusters. The type II IFN response was enriched
in cluster 1, but others were enriched in cluster 2. Finally, we
compared the expression of ICI genes and HLA genes between
clusters. Immune checkpoint genes (HAVCR2, VSIR, PDCD1,
CTLA4, CD276, CD274, LAG3, NRP1, TIGHT, BTNL2, IDO1,
TNFRSF14, and VTCN1) were highly expressed in cluster 2,
while the HLA-related genes were highly expressed in cluster 2
(Figure 4D). To further test the ability of the macrophage-
associated clusters to predict the ICI response, IPS analysis was
carried out to determine the immunotherapeutic sensitivity
of HCC patients, respectively. As shown in Figure 4F, the
IPS–PD1 blocker score, the IPS–CTLA4 score, and the PD1
blocker score in cluster 2 were significantly higher than those
in cluster 1, which indicated a more immunogenic phenotype
in cluster 2, so HCC patients in cluster 2 might benefit
from immunotherapy.

TMB, also known as non-synonymous variation, is strongly
associated with immune cell infiltration and immune response
(27). Somatic mutation data of HCC patients were obtained and
TMB scores were computed. The waterfall plot showed
mutations of the macrophage-related DEGs (Figure 4). We
divided the HCC patients into the low-TMB and high-TMB
groups around the optimal cutoff value. The Kaplan–Meier curve
indicated that the prognosis of patients with high TMB was
poorer than that of patients with low TMB. In addition, given the
presence of a potential correlation between macrophage-related
clusters and TMB, we performed the stratification analysis and
found that the cluster combined with the TMB risk group can
better predict the prognosis of HCC patients (Figure 4K).

Development and Validation of the
MRS Models
To better apply these subtypes to the clinical treatment of HCC
and calculate the specific risk score of each HCC patient,
subsequently, we compared the DEGs between the two clusters
and established a specific risk scoring model based on
macrophage-related clusters (Figure 5). Subsequently, based on
the obtained gene expression profiles, an 18-gene risk score
model based on macrophage-related clusters was established
for each patient based on the personalized gene level using
LASSO Cox regression analyses (Supplementary Figure S2),
named the macrophage-related risk score signature (MRS)
(Figures 5B, C). We utilized the Kaplan–Meier curve analysis
to compare the effects of high and low expression of the above-
selected genes on long-term survival (Supplementary Figure
S3). Kaplan–Meier analysis revealed that patients in the high-risk
group had significantly poorer OS than those in the low-risk
group, as shown in Figures 5D–G. PCA and t-SNE analysis
indicated that the MRS model showed good discrimination
(Figures 5H–M). Risk curve analysis indicated that the high-
risk group had higher mortality and shorter survival time (on the
right side of the dotted line). The number of patients in the high-
risk group grew and death events increased with increasing risk
score (Figures 5N–P). The AUCs for 1-, 3-, and 5-year OS were
0.808, 0.749, and 0.746, respectively, in the TCGA cohort
(Figure 5Q). Consistent with the results in the TCGA cohort,
May 2022 | Volume 13 | Article 843408
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FIGURE 2 | The coexpression network established using weighted gene coexpression network analysis methods based on the (A) LIHC RNA-seq profiles from the
TCGA-LIHC database, (B) GSE14520 dataset, and (C) the International Cancer Genome Consortium portal database. Heatmap demonstrating the correlation
between module eigengenes and macrophages in the (D) TCGA-LIHC dataset, (E) GSE14520 dataset, and (F) International Cancer Genome Consortium portal
dataset. (G) The yellow module had the strongest correlation with macrophage cell proportions in the TCGA-LIHC dataset (Cor = 0.69, P = 8.8e−91). (H) The yellow
module had the strongest correlation with macrophage cell proportions in the GSE14520 cohort (Cor = 0.57, P = 2.2e−34). (I) The turquoise module had the
strongest correlation with macrophage cell proportions in the ICGC (Cor = 0.77, P < 1e−200). (J) Venn diagram displaying the macrophage-related selected
intersection genes from different datasets. (K, L) Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of macrophage-related
intersecting genes.
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the AUC values for 1-, 3-, and 5-year OS were 0.661, 0.681, and
0.667, in the GSE14520 cohort, respectively (Figure 5R). The
AUC values for 1-, 3-, and 5-year OS were 0.791, 0.780, and 0.591
in the ICGC cohort, respectively (Figure 5S). Furthermore, the
AUC value for MRS based on macrophage-related clusters was
Frontiers in Immunology | www.frontiersin.org 8
significantly higher than those for age, sex, tumor stage, and
pathological stage in the TCGA-LIHC cohort. Meanwhile, the
MRS model revealed a good predictive ability that was not
inferior to the predictive ability of other clinicopathological
factors in the GSE14520 and ICGC cohorts (Figures 5T–V).
A B

D E

F G IH

J

K L

C

FIGURE 4 | (A) The comparisons of stromal score, immune score, and estimate score between different clusters. (B) The comparisons of tumor purity between different
clusters. (C) The boxplot illustrating the difference in immune-related functions between different clusters. (D) The boxplot displaying the difference in immune checkpoint
genes between different clusters. (E) The boxplot displaying the difference in HLA expression between different cluster groups. (F) CTLA4−_PD1−, (G) CTLA4−_PD1+,
(H) CTLA4+_PD1−, and (I) CTLA4+_PD1+. The comparison of immunophenoscore (IPS) between different cluster groups. (J) Somatic mutation landscape of macrophage-
related differentially expressed genes was presented by a waterfall map. (K) The Kaplan–Meier curve survival analysis between the high- and low-TMB groups. (L) The
Kaplan–Meier curve survival analysis for HCC patients stratified by both TMB groups and clusters. ns, not significant; **P < 0.01; ***P < 0.001.
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FIGURE 5 | Development and validation of the macrophage-related signature (MRS) signature based on macrophage-related clusters. (A) The forest plot
displaying the HR (95% CI) and P-values for selected differentially expressed genes between different clusters using the univariate Cox regression analysis (top
30, according to P-value). (B) Eighteen gene expression signatures based on macrophage-related clusters were selected by the LASSO Cox models. (C) Cross-
validation for tuning parameter selection in the LASSO model. (D) The Kaplan–Meier curve survival analysis for HCC patients stratified by MRS signature groups
in the three cohort datasets (TCGA-LIHC, GSE14520, ICGC). (E) The Kaplan–Meier curve survival analysis for HCC patients stratified by MRS signature groups
in the TCGA-LIHC dataset. (F) The Kaplan–Meier curve survival analysis for HCC patients stratified by MRS signature groups in the GSE14520 dataset. (G) The
Kaplan–Meier curve survival analysis for HCC patients stratified by MRS signature groups in the ICGC dataset. (H–K) Principal component analysis (PCA)
between the high- and low-risk groups in the TCGA-LIHC, GSE14520, and ICGC datasets. (K–M) t-distributed stochastic neighbor embedding (t-SNE) analysis
between the high- and low-risk groups in the TCGA-LIHC, GSE14520, and ICGC datasets. (N–P) The risk score distribution and survival status distribution of
HCC patients in the two risk groups from the TCGA-LIHC, GSE14520, and ICGC datasets. (Q–S) ROC analysis for OS prediction including 1, 3, and 5 years of
HCC patients in the TCGA-LIHC, GSE14520, and ICGC datasets. (T–V) ROC curve analysis compares the predictive power of the MRS signature and other
clinicopathological indicators in the TCGA-LIHC, GSE14520, and ICGC datasets.
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Immunohistochemical results from the HPA database were
utilized to further assess the expression of genes from the MRS
model in HCC. Compared with adjacent normal liver tissues, the
protein expression levels of genes (PON1, KLRB1, ANXA10) in
HCC tissues decreased significantly, while the protein expression
levels of IL15RA, HILPDA, HAVCR1, G6PD, CDCA8, and CBX2
in HCC tissues increased. In addition, these data showed
significant differences in PON1, KLRB1, ANXA10, IL15RA,
HILPDA, HAVCR1, G6PD, CDCA8, and CBX2 between HCC
and normal liver tissues, and this trend was the same as in the
model (Supplementary Figure S4).

Independent Prognostic Value of the MRS
Model and Construction of the Nomogram
We found that there were significant correlations between risk score
and pathologic grade, T status, and tumor stage in the TCGA-LIHC
cohort (Figure 6, P < 0.05). There were positive correlations
between risk score and AFP level, cirrhosis, tumor size, and
tumor stage in the GSE14520 cohort (Supplementary
Figures S5A–G). The risk score in stage IV was significantly
higher than that in stages I and II, and the risk score in the death
group was significantly higher than that in the alive group in the
ICGC cohort (Supplementary Figures S5H–J). In addition,
univariate and multivariate Cox regression analyses indicated that
the MRS was an independent factor predicting survival, as shown in
Figures 7A–F. The decision curve analysis indicated that the MRS
had a higher clinical net benefit than other clinicopathological
characteristics in the TCGA-LIHC cohort (Figure 7G).
Subsequently, based on the results of the stepwise Cox regression
model, we further constructed a clinically adaptable nomogramwith
the MRS and other clinicopathological characteristics to provide a
visual way to predict the 1-, 3-, and 5-year survival with HCC
(Figure 7H). Our nomogram exhibited better accuracy in predicting
both short- and long-term survival. The calibration plot of the
nomogram showed excellent concordance between the prediction
by the nomogram and the actual observation probabilities
(Figures 7I–K). The above findings suggest that the nomogram
we established has good prognostic value for patients with HCC.

Functional Analyses Based on the
MRS Model
To further analyze the differences in the gene functions and
involved pathways between the subgroups classified by MRS, 220
DEGs between the low- and high-risk groups were identified. GO
Frontiers in Immunology | www.frontiersin.org 10
enrichment analysis and KEGG pathway analysis were then
performed on these DEGs. GO pathway enrichment analysis
revealed that the DEGs were mainly concentrated in “mitotic
nuclear division,” “mitotic sister chromatid segregation,” “sister
chromatid segregation,” and “nuclear division” in the biological
process category. The KEGG analysis results showed that the
DEGs were mainly enriched in pathways associated with
“complement and coagulation cascades,” “cell cycle,” “retinol
metabolism,” “drug metabolism-cytochrome P450”, and
“metabolism of xenobiotics by cytochrome P450” (Figure 8).

GSEA was further performed to complement and validate the
functional annotation of KEGG and GO. KEGG enrichment
analysis indicated that the most enriched pathways in the high-
risk group were “cell cycle,” “DNA replication,” “ECM receptor
interaction,” and “neuroactive ligand-receptor interaction.” In
contrast, “fatty acid metabolism,” “retinol metabolism,” and
“drug metabolism cytochrome P450” were enriched in the low-
risk groups. Additionally, GO enrichment analysis indicated that
the most enriched biological processes in the high-risk
group were closely linked to “humoral immune response
mediated by circulating immunoglobulin,” “phagocytosis
recognition,” “B-cell receptor signaling pathway,” and “positive
regulation of B-cell activation” (Figure 9).

Analysis of Tumor Mutation Burden in
Different Risk Groups
A CNV is a DNA fragment with copy sizes ranging from 1 kB to
1 MB in the human genome that is related to activation of
oncogenes or inactivation of tumor suppressor genes and
heterogeneity of the genome and molecular phenotype, further
leading to the tumorigenesis and progression of tumors (28, 29).
We analyzed the frequencies of genetic amplification and
deletion of selected genes from the MRS. The above results
revealed that S100A9, CBX2, STC2, G6PD, and PFN2 had a
higher frequency of gain-of-function mutations in HCC, while
CDCA8, NEIL3, IL15RA, SPP1, and KLRB1 had a higher
frequency of loss-of-function mutations (Figures 10A, B). In
view of the important role that TMBmay play in clinical practice,
we attempted to understand the intrinsic association between
TMB and MRS. The results revealed that TMB was higher in the
high-risk group and that the risk score was positively correlated
with the TMB score in HCC (r=0.13, P=0.018, Figures 10C, D).
Furthermore, it appeared that there was a combined influence of
TMB and MRS on survival outcomes in patients with HCC
May 2022 | Volume 13 | Article 843408
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(Figure 10E). Waterfall plots demonstrated the mutation
differences of the top 20 genes between different risk groups in
HCC (Figures 10F, G). Consistent with the TMB score, patients
in the high-risk group had a higher mutation frequency. The
mutation frequency of TP53 in the high-risk group was
significantly higher than that in the low-risk group, while the
mutation frequency of AXIN1 in the low-risk group was
significantly higher, and it was mainly composed of frameshift
deletion and nonsense mutation.

The Role of MRS in Immunotherapy
We compared the proportions of immune subtypes of HCC
between different risk groups. The results indicated that there
Frontiers in Immunology | www.frontiersin.org 11
were significant differences in immunophenotyping between
different groups (Figures 11A, B). Immune-related functions,
including cytolytic activity, type I IFN response, and type II IFN
response, were enriched in the low-risk group, and MHC class I
responses were enriched in the high-risk group. We found that the
expression of ICI genes in the high-risk group was generally higher
than that in the low-risk group, except for TDO2 (Figures 11C, D).
Additionally, the results revealed the correlation between MRS and
ICI gene expression, as shown in Supplementary Figure S6.

We further evaluated whether the MRS could serve as an
immunotherapy predictor for HCC patients. Based on the TIDE
algorithm, we observed that there was a negative correlation
between TIDE score and risk score, and the TIDE score in the
A

B
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C

FIGURE 6 | The MRS signature based on macrophage-related clusters was associated with the clinicopathological characteristics of patients with HCC in the
TCGA-LIHC dataset. (A) Heatmap for the MRS signature based on macrophage-related clusters and clinicopathological manifestation. (B) Boxplot of risk score
based on macrophage-related clusters in HCC patients with different stages. (C) Boxplot of risk score based on macrophage-related clusters in HCC patients with
different tumor stages. (D) Boxplot of risk score based on macrophage-related clusters in HCC patients with different pathological grades. (E) Boxplot of risk score
based on macrophage-related clusters in HCC patients with different status of survival. ***P < 0.001.
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FIGURE 7 | Establishment and assessment of the nomogram for survival prediction. (A, B) Univariate and multivariate Cox regression analyses showed that risk score
based on macrophage-related clusters is an independent prognostic factor affecting the prognosis of HCC patients in the TCGA-LIHC dataset. (C, D) Univariate and
multivariate Cox regression analyses showed that risk score based on macrophage-related clusters is an independent prognostic factor affecting the prognosis of HCC
patients in the GSE14520 dataset. (E, F) Univariate and multivariate Cox regression analyses showed that risk score based on macrophage-related clusters is an
independent prognostic factor affecting the prognosis of HCC patients in the ICGC dataset. The decision curve analysis of the 1-year overall survival in the TCGA-LIHC
dataset (G). (H) The nomogram combining risk score based on macrophage-related clusters and other clinicopathological parameters was developed to predict 1-, 3-,
and 5-year survival. Calibration curves showing the predictions of the nomogram that we established for 1- (I), 2- (J), and 3-year (K) overall survival. ***P < 0.001.
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and low-risk groups from the TCGA-LIHC dataset. The bubble plot (A), bar plot (B), circular plot (C), and
according to the risk score based on macrophage-related clusters. The bubble plot (E), bar plot (F), circular
-risk groups according to risk score based on macrophage-related clusters.
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high-risk groups was significantly lower than that in the low-risk
group (Supplementary Figure S7). The percentage of responses in
the high-risk group was higher than that in the low-risk group
(Figures 11E–G). In the IMvigor210 cohort, 348 patients with
metastatic urothelial cancer treated with anti-PD-L1 drugs were
segmented into high- and low-risk groups, although no significant
difference in OS was detected (P = 0.43), and the high-risk group
showed a better survival trend (Figure 11K). There was no
significant difference in the proportion of inflammatory immune
subtypes or tumor-infiltrating immune cells expressing PD-L1
between the high- and low-risk groups (Figures 11H, I).
However, compared with the low-risk groups, we found that the
tumor tissue samples of the high-risk group had a higher proportion
of tumor cells expressing PD-L1 (Figure 11J). In addition, we found
that neoantigen count was positively correlated with risk score
(Supplementary Figure S7), suggesting that a higher level of
immune events might exist in patients with higher risk scores (R
= 0.31, P = 6e−17). Compared with the low-risk group, the high-risk
Frontiers in Immunology | www.frontiersin.org 14
group had a higher percentage of complete response/partial
response (Figures 11L, M). Analysis of two cell line data (BNL-
MEA) from the TISMO database showed upregulated NEIL3,
CBX2, and CDCA8 related to a poor response for ICB and
downregulated NEIL3, CBX2, and CDCA8 related to a better
response for ICB when compared with maintaining baseline
expression level. In addition, the data revealed the downregulated
TTK, S100A9, PON1, PFN2, and GPC1 related to a poor response
for ICB and upregulated TTK, S100A9, PON1, PFN2, and GPC1
related to a better response for ICB when compared with
maintaining baseline expression level (Supplementary Figure S8).

Drug Sensitivity of MRS in HCC
To study the possible application of MRS in the personalized
treatment of HCC, we assessed the IC50 values of several
chemotherapy agents between the different MRS signature groups.
The results of drug susceptibility indicated that the high-risk group
had lower IC50 values of gemcitabine, bleomycin, cisplatin,
FIGURE 9 | Enrichment plots from gene set enrichment analysis in the high-risk groups and low-risk groups according to risk score based on macrophage-
related clusters.
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doxorubicin, mitomycin C, and paclitaxel than the low-risk group,
which implied that patients with high riskmay benefit more from the
above chemotherapies, while the IC50 values of sorafenib, rapamycin,
bosutinib, dasatinib, docetaxel, and metformin were lower in the
low-risk group, which suggested that patients with low risk may
benefit more from the above chemotherapies (Figure 12).
DISCUSSION

HCC is one of the most fatal malignancies with a poor prognosis
worldwide. Recently, the incidence of HCC has gradually
Frontiers in Immunology | www.frontiersin.org 15
increased due to the prevalence of viral hepatitis, alcoholism,
and non-alcoholic steatohepatitis, especially in non-traditionally
high-prevalence regions, such as the United States and Europe
(2). Currently, HCC is treated mainly through surgical liver
resection and liver transplantation, but most HCC patients are in
an advanced stage when they are diagnosed, and only a minority
of malignancies can be completely removed through surgery.
The lack of safe and effective treatments for advanced HCC will
lead to the rapid development and metastasis of the disease as
well as an increase in mortality (30). HCC is a highly
immunogenic malignant tumor that is characterized by a large
number of immune cells around it. In recent years, as we have
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C

FIGURE 10 | Tumor mutation analysis between different MRS signature groups. (A) Circus plots of chromosome distributions of selected genes from the MRS
signature. (B) Frequencies of gain and loss for selected genes from the MRS signature. (C) Box plot showing tumor mutation burden in the high- and low-risk
groups. (D) Risk scores from the MRS signature are correlated with TMB score in the TCGA dataset. (E) The Kaplan–Meier curve survival analysis for HCC patients
stratified by both TMB groups and MRS signature. Waterfall plot displaying gene mutations in the high- (F) and low-risk (G) groups.
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FIGURE 11 | Comparison of the risk groups in our study with stage and existing immune subtype and prediction of response to immunotherapeutic agents for different
risk groups. (A) The Sankey diagram revealed the potential connection between cluster, risk score, and survival status. (B) Comparison of the differences in immune
subtype between different risk groups. (C) The boxplot illustrating the difference in immune-related functions between the high-risk and low-risk groups. (D) The boxplot
displaying the difference in immune checkpoint genes between different cluster groups. (E) Comparison of the tumor immune dysfunction and exclusion (TIDE) prediction
scores in the low- and high-risk groups. (F) Distribution and percentage of immunotherapy response among risk groups of HCC patients. (G) Comparison of risk scores
between the response group and the non-response group. Predictive value of risk score for immunotherapy response in the IMvigor210 cohort. (H) Distribution and
percentage of immune subtypes among risk groups of HCC patients. (I) Distribution and percentage of immune cell (IC) level type among risk groups of HCC patients.
(J) Distribution and percentage of tumor cell (TC) level type among risk groups of HCC patients. (K) The Kaplan–Meier curve survival analysis between the high- and low-
risk groups in the IMvigor210 cohort. (L) Comparison of risk scores between the CR/PR group and the SD/PD group. (M) Distribution and percentage of immune
response type among risk groups of HCC patients in the IMvigor210 cohort. Specimens were scored as immunohistochemistry IC0, IC1, IC2, or IC3 if <1%, ≥1% but
<5%, ≥5% but <10%, or ≥10% of IC were PD-L1 positive, respectively. Specimens were scored as immunohistochemistry TC0, TC1, TC2, or TC3 if <1%, ≥1% but
<5%, ≥5% but <50%, or ≥50% of TC were PD-L1 positive, respectively. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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better understood the immunopathological mechanism and
microenvironment of HCC, immunotherapy based on the
regulation of the TIME has emerged as a new treatment option
for HCC patients. Its clinical advantages include triggering a
systemic, durable, and efficient antitumor immune response and
having fewer side effects, low tumor recurrence rate, and even
complete remission of some advanced tumors (31, 32). Previous
studies found that macrophages, which are innate immune
effector cells, play a crucial role in immunotherapy and are
related to the response to immune checkpoint blockade (33,
34). It was reported that IL-6 secreted by TAMs can upregulate
the expression of CD47 in HCC cells through the STAT3
signaling pathway, which in turn affects TAM-mediated
phagocytosis, resulting in poor OS and recurrence-free survival
(35). It was also found that M1 macrophages can promote the
expression of PD-L1 on HCC cells through IL-1b, thereby
promoting the development of HCC (36).

Therefore, we quantified the abundance of macrophages in the
three cohorts, then systematically explored the expression of
macrophage-related genes that influenced the prognosis of HCC
patients and identified a hub module of genes related to
macrophage infiltration level in HCC. We used the unsupervised
clustering to divide HCC into two molecular subtypes based on
these genes: cluster 1 and cluster 2. We observed that the prognosis
of macrophage-related cluster 2 was significantly worse than that
of cluster 1. Cluster 2 had higher stromal and immune scores and
its ICI gene expression was also higher, but tumor purity was
lower. The high expression of the ICI gene is more likely to foster
an immunosuppressive microenvironment and facilitate tumor
immune escape. We observed that cluster 1 was mainly enriched
in metabolism-related pathways, while cluster 2 was mainly
related to immune pathways. In addition, cluster 2 is more
responsive to anti-PD-1 and anti-CTLA4 treatments, which
indicates that cluster 2 is an immune-favorable tumor.

In order to better apply these subtypes of macrophage clusters
to the clinical treatment of HCC and calculate specific
macrophage-related risk scores for each HCC patient, we
explored the DEGs between the two clusters and used LASSO
Cox regression analysis to establish an MRS model to quantify
the prognostic risk based on the two clusters and to provide
promising prognostic biomarkers of HCC that could predict the
response to various chemotherapies and immunotherapies.
Among the genes identified by LASSO analysis, IL15RA usually
exists in heterotrimeric receptors together with IL2RB and IL2RG
Frontiers in Immunology | www.frontiersin.org 17
and binds to IL15 with high affinity to activate signal
transduction, which is associated with the regulation of the
body’s adaptive immune response and the activation and
maintenance of different lymphocyte populations (37–39).
Studies have reported that the coexpression of IL15RA and
IL15 in breast cancer cell lines can promote tumor cancer
proliferation, prevent tumor cell apoptosis, and enhance cell
migration. Studies have reported that the coexpression of
IL15RA and IL15 in breast cancer cell lines can promote
cancer proliferation, prevent cell apoptosis, and enhance cell
migration (37). A recent study demonstrated that NEIL3 could
repair oxidative DNA damage at telomeres in mitosis, thereby
preventing the senescence of HCC cells (40). Similarly, the high
expression of HILPDA in tumor cells may contribute to TAM
infiltration and is related to tumor immunosuppressive status
(41). EPO acts on the EPO receptors on the surface of tumor cells
to increase the suppression of T cells in the immune
microenvironment mediated by macrophages (42). S100A9,
which is an immunosuppressive TAM marker, is related to the
shorter survival period of cancer patients and adverse reactions
to immunotherapy (43). S100A9 can increase TAM infiltration
by promoting CCL2 secretion and enhance the stem cell-like
characteristics of HCC cells through Ca2+-dependent signal
transduction of the AGER/NF-kB axis (44). Many other genes
in the MRS model, such as PFN2, HAVCR1, CDCA8, CYP26B1,
TTK, SPP1, STC2, and CBX2 play vital roles in regulating and
participating in the progression of different cancers, thereby
affecting tumor cell proliferation, migration, and invasion and
epithelial–mesenchymal transition (45–52). ANXA10 is a
calcium-/phospholipid-binding protein. Previous studies found
inconsistent effects of ANXA10 on tumors, and there is
controversy. Studies have reported that the expression of
ANXA10 is significantly increased in melanoma and can
promote melanoma metastasis by suppressing E3 ligase
TRIM41-directed PKD1 degradation (53). However, in gastric
cancer, ANXA10 plays a role in suppressing cancer (54). The
KLRB1 gene encodes the CD161 receptor of natural killer cells,
thereby regulating the cytotoxic function of cells and regulating
the production of cytokines (55). However, in a recent study, it
was found that CD8+ T cells overexpressed KLRB1 in HCC with
early recurrence and showed a congenital state of low
cytotoxicity, which affected the prognosis of HCC patients
(56). More in-depth research is needed to explore the
mechanism of ANXA10 and KLRB1 in HCC.
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CNVs can facilitate cancer progression by activating or
inactivating oncogenes. It has been reported that frequent
CNVs in cancer cells increase tumor heterogeneity (57). We
found that the oncogenic driver genes S100A9 and CBK2 had
copy number amplification, and the change in copy number
might change the immune infiltration state of the body to a
certain extent. TMB is thought to be a predictive biomarker of
tumor biological behavior and immune response, and the
accumulation of somatic mutations is one of the main causes
of tumorigenesis and facilitates the expression of neoantigens
(58). Our analysis indicated that there was a significant difference
in the survival time of patients in the high- and low-TMB groups.
We found that the prognosis of HCC patients can be effectively
distinguished based on TMB and MRS. Additionally, we found
that the frequency of TP53 gene mutations was higher in the
high-risk group, while the AXIN1 mutation rate was higher in
the low-risk group. TP53 is a commonly mutated gene in tumors,
playing a vital role in regulating cell stress, DNA damage repair,
and cell apoptosis and inhibiting the body’s immune response
(59). TP53 could act as a physiological brake on the M2
macrophage polarization process through the TP53/MDM2/c-
MYC axis, and its mutation has been confirmed to be
significantly related to the poor prognosis of many tumors
(60). There was no significant difference in the somatic
activating mutation frequency of the CTNNB1 gene coding for
b-catenin between the high- and low- risk groups. AXIN1 is a
negative regulator of the Wnt/b-catenin signaling pathway (61),
but whether the AXIN1 mutation causes Wnt/b-catenin
activation is still controversial. Studies have shown that
CTNNB mutation status was related to the upregulation of
Wnt/b-catenin pathway genes instead of AXIN1 mutation and
AXIN1mutation was unlikely to be a strong driving factor in the
development of HCC in humans (62), which may explain why
the low-risk group had a better prognosis despite the higher
frequency of AXIN1 mutations.

Immunotherapy related to ICIs is a promising method to
treat a variety of malignant tumors, and we found that there was
a positive correlation between the risk score of the MRS model
and almost all immune checkpoint gene expression levels.
Similarly, it is worth noting that the proportions of the C1
subtype (wound healing) and C2 subtype (IFN-g dominant) in
the high-risk group were significantly higher, and the proportion
of the C3 subtype (inflammatory) was significantly lower. It was
reported that the C2 subtype (IFN-g dominant) was related to the
polarization of M1/M2 macrophages and can lead to increased
tumor cell proliferation, which may override an evolving type I
immune response; however, the C3 subtype, which has obvious
Th17 characteristics, might represent immunologic control of
the disease. The scatter plot revealed a negative correlation
between the MRS score and TIDE score in the TCGA cohort,
and a higher MRS model score might be more likely to benefit
from immunotherapy. Previous studies have reported that cross-
tumor information could be used to predict the effect of
immunotherapy (63, 64). Herein, to test the effectiveness of the
MRS model in distinguishing immunotherapy outcomes, we
used the IMvigor210 cohort of 348 patients with urothelial
cancer to test the predictive value of immunotherapy of the
Frontiers in Immunology | www.frontiersin.org 19
MRSmodels for immunotherapeutic effect. We observed that the
high-risk group had a higher proportion of complete remission
and partial remission after immunotherapy. There was no
significant difference in survival between the two groups,
which might be related to the survival benefits of
immunotherapy for high-risk patients. The above results verify
the conclusion that the MRS model might be used as an
immunotherapy indicator. Notably, the sensitivity of HCC to
various chemotherapeutic drugs is relatively poor due to the
existence of drug resistance mechanisms and heterogeneity,
resulting in limited benefit from chemotherapy. In our study,
different risk groups had different responses to traditional
chemotherapy drugs, which indicated that the MRS model we
established could also assist in the choice of chemotherapy drugs
for HCC patients.

This study aimed to divide HCC patients into different
macrophage cluster subtypes, identify DEGs between different
clusters, and establish an MRS model and link macrophage-
related genes with the prognosis of HCC patients. We have
performed multiangle and multidatabase validation, and the
MRS signature model shows good prospects in predicting the
prognosis of HCC patients. Our study still has some limitations.
First, the clinical data we downloaded from public databases are
incomplete and lack some important clinical details, such as
AFP, range of liver resection scope, and microvascular
infiltration, so we could not explore the impact of the above
factors on the prognosis of HCC patients. We need to conduct a
prospective, multicenter study with a larger sample to verify the
accuracy of the MRS model we established. In addition, the
results of single-cell sequencing can help us better understand
the changes in macrophage-related genes in the HCC tumor
microenvironment. Second, functional experiments (both in
vitro and in vivo) should be performed to further clarify the
molecular mechanism through which macrophage-related genes
affect HCC.

In conclusion, this study identified macrophage-related genes
in HCC patients; furthermore, we established and validated the
MRS model to predict the OS of HCC patients, and it showed
good predictive ability. We also assessed the differences in
immunotherapy response and chemotherapeutic drug
sensitivity between MRS risk groups. The above results may
help to advance our understanding of the features of macrophage
infiltration and provide new strategies for personalized therapy.
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Supplementary Figure 1 | Expressions of the 69 differentially expressed
macrophage co-expression genes between tumor tissues and normal samples and
their interactions. (A) The heatmap showing 69 differentially expressed macrophage
co-expression gene between tumor tissues and normal samples (blue: low
expression level; red: high expression level). (B) PPI network showing the
Frontiers in Immunology | www.frontiersin.org 20
interactions of the macrophage-related differentially expressed genes (interaction
score = 0.9). (C) The correlation network analysis of the macrophage-related
candidate genes (red line: positive correlation; blue line: negative correlation. The
intensity of the color reflects the degree of its relevance).

Supplementary Figure 2 | Coefficients for each gene in MRS signature based on
the macrophage-related clusters by the LASSO regression algorithm.

Supplementary Figure 3 | Kaplan–Meier survival curves for selected genes
which obtained by LASSO Cox regression analysis.

Supplementary Figure 4 | Verifying protein expression levels of genes from MRS
model in normal liver tissue and HCC using the HPA database.

Supplementary Figure 5 | MRS signature based on macrophages related
clusters was associated with the clinicopathological characters of patients with
HCC in the GSE14520 dataset and ICGC dataset. (A) Heatmap for MRS signature
based on macrophages related clusters and clinicopathological manifestation in the
GSE14520 dataset. (B) Boxplot of risk score based on macrophages related
clusters in HCC patients with different size. (C) Boxplot of risk score based on
macrophages related clusters in HCC patients with different AFP. (D) Boxplot of risk
score based on macrophages related clusters in HCC patients with different
multinodular status. (E) Boxplot of risk score based on macrophages related
clusters in HCC patients with different stage. (F) Boxplot of risk score based on
macrophages related clusters in HCC patients with different cirrhosis status.
(G) Boxplot of risk score based on macrophages related clusters in HCC patients
with different status of survival. (H) Heatmap for MRS signature based on
macrophages related clusters and clinicopathological manifestation in the ICGC
dataset. (I) Boxplot of risk score based on macrophages related clusters in HCC
patients with different stage. (J) Boxplot of risk score based on macrophages
related clusters in HCC patients with different status of survival.

Supplementary Figure 6 | (A) Chord diagram illustrating the correlations
between the expression of 15 key immune checkpoint genes, as well as between
the mRNA expression of 15 key immune checkpoint and the risk score from the
MRS signature in TCGA-LIHC dataset. Association between risk score from the
MRS signature and (B) BTNL2, (C) CD274, (D) CD276, (E) CTLA4, (F) HAVCR2,
(G) IDO1, (H) LAG3, (I) LAIR1, (J) NP1, (K) PDCD1, (L) TDO2, (M) TIGHT,
(N) TNFRSF14-AS1, (O) VSIR, (P) VTCN1.

Supplementary Figure 7 | Association between risk score from the MRS
signature and (A) TIDE score and (B)0 neoantigen burden per MB.

Supplementary Figure 8 | Gene expression levels across groups of different
responses to ICBs in syngeneic mouse models.
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