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Abstract: The idea behind network caching is to reduce network traffic during peak hours via
transmitting frequently-requested content items to end users during off-peak hours. However, due
to limited cache sizes and unpredictable access patterns, this might not totally eliminate the need
for data transmission during peak hours. Coded caching was introduced to further reduce the peak
hour traffic. The idea of coded caching is based on sending coded content which can be decoded in
different ways by different users. This allows the server to service multiple requests by transmitting
a single content item. Research works regarding coded caching traditionally adopt a simple network
topology consisting of a single server, a single hub, a shared link connecting the server to the hub,
and private links which connect the users to the hub. Building on the results of Sengupta et al. (IEEE
Trans. Inf. Forensics Secur., 2015), we propose and evaluate a yet more complex system model that
takes into consideration both throughput and security via combining the mentioned ideas. It is
demonstrated that the achievable rates in the proposed model are within a constant multiplicative
and additive gap with the minimum secure rates.

Keywords: coded caching; secure delivery; hierarchical coded caching; cost analysis; system model

1. Introduction

Coded caching, proposed by Maddah-Ali and Niesen [1], refers to an augmented
variant of caching. Coded caching follows two strategies during two transmission phases
in order to avoid a traffic bottleneck in the network. The first transmission phase, referred
to as the placement phase, takes place in off-peak hours. During this phase the system
attempts at placing frequently-demanded content items in local memories of corresponding
interested users in order to avoid unnecessary transmission during peak time. This helps
deteriorate network bandwidth over utilization and underutilization problems during
peak and off-peak intervals. An effective placement strategy should consider the statistical
and probabilistic nature of the users’ access patterns. The second phase, i.e., the delivery
phase manages the transmission in peak hours. The ideal goal in the latter phase is to send
only a single coded content item which is a function of the originally-requested content
items. Each user—in the ideal case—should be able to calculate its own demanded item
from the transmitted item. The more the system approaches this goal, the less amount of
transmission during the delivery phase (rate) is required.

The authors in [1] made a lot of simplifying assumptions when establishing the first
system model for a coded caching scheme. They assumed a simple network based on a
star topology which provides a one-way content transmission from a single server storing
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N files each of size F bits to K users and each user having cache size of MF bits. Each user
requests a single file during the delivery phase. Every file sent by the server passes through
a single shared link and arrives at the hub where it is duplicated and transmitted to each
user through a private link.

This system model is obviously not realistic enough because it ignores many con-
siderations of a real-world network among which we focus on scalability and security in
this paper. There are various security-related issues, such as confidentiality, privacy, and
distributed denial-of-service (DDoS) attack protection which need to be addressed in coded
caching. Among the mentioned issues, confidentiality has received the most focus in recent
years [2,3]. Previous works in this area have augmented the coded caching system model
by adding an adversary with access to the shared link only during the delivery phase.
The space required to store the cryptographic keys in the server memory and user caches,
as well as the extra traffic caused by key exchange mechanisms should be considered as
obvious costs of this variant of coded caching.

In order to address the scalability issue, some researchers have augmented the coded
caching system model in another way via proposing hierarchical network topology [4]. In
the proposed topology, the main server is mirrored in each cluster of users. This allows
part of the traffic to be locally handled in user clusters which leads to improved scalability.
This improvement is achieved at the cost of redundant servers and links.

Although scalability and security have been separately examined in previous research,
the literature in this area has not come up with a study on the possibility or the costs of
considering both issues at the same time. This paper addresses both of the mentioned issues
via considering confidential content transmission over a hierarchical network. This goal is
achieved by further augmenting the coded caching system model, as well as analyzing the
related costs. In our proposed system model, the adversary can eavesdrop the shared links
in each hierarchy level during the peak interval.

The costs of scalability have already been analyzed in previous research [4]. We
compare the results of our mathematical cost evaluations with those obtained in [4] to
analyze the extra cost posed by confidentiality considerations. The key contribution of the
paper is the result that although the achievable rates are within a constant multiplicative
and additive gap to the corresponding lower bounds in both schemes, confidentiality
causes the constants to grow larger.

The rest of this paper is organized as follows. Section 2 defines the problem we
are tackling in this paper. This section first studies relevant works and presents some
preliminaries, and then the shortcomings of the previous works which motivate our work
in this paper are discussed. Section 3 explains the secure hierarchical coded caching
scheme and describes the system model and configuration. The fundamental limits as well
as costs are analyzed in Section 4. In this section, the secure achievable rates, memory
requirements and the lower bounds on the rates are calculated. A gap analysis between
the secure achievable rates and the corresponding lower bounds is presented in Section 5.
The last section of this paper is Section 6 which concludes the paper and suggests further
research topics.

2. Problem Statement

In this section, we first present some preliminary discussions regarding coded caching
and review the related literature and then highlight some shortcomings in the related
works which motivate us to propose the secure hierarchical coded caching scheme.

2.1. Related Works

Caching is a solution to the problem of temporally-nonuniform access to contents
stored in servers which may causes the network bandwidth to be underutilized in the
off-peak interval while it can render a bottleneck in the peak interval. This technique
helps achieve more uniform network traffic and deteriorate the bottleneck problem by
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allowing the system to store frequently-accessed content items in local caches during the
off-peak time.

Coded caching has been a research focus during recent years [5–9]. Coded caching is
finding its application in modern technologies and services, such as content delivery [10–12],
mobile computing [13–15], and information-enteric networks [16]. Different aspects of coded
caching have recently been studied among which we can refer to as [17], centralized [18,19]
and decentralized [18,19] coded caching, placement [20] and delivery [21,22] schemes, as
well as added pre-fetching phase [23], multi-casting [22,24–26], scheduling [27], error correc-
tion [28], clustering [29], heterogeneity [12,25,30], the impact of file size [31,32], dealing with
non-uniform user demands [33] and peak-time traffic reduction [1]. Moreover, security in
coded caching has been considered as a concern [20,34–36] and cryptography has been among
the best-studied security mechanisms for use in coded caching [37,38].

Examining the above problems has led to different variants of caching schemes. In
this paper, we focus on coded caching schemes which try to service as many user requests
as possible by transmitting a single coded data item in the peak time. Coded caching
schemes can be classified into the following categories with respect to their behaviors in
the placement phase.

2.2. Centralized Schemes

In these schemes, the server decides the data items which are to be stored in user
caches during the placement phase [1,39–43]. It has been shown that a multiplicative factor
of 1

1+KM/N in size reduces the rate in centralized coded caching. This factor is referred to
as global caching gain. As shown in [1], the centralized coded caching rate RC(M) is given
by (1),

RC(M) , K · (1−M/N) ·min
{

1
1 + KM/N

,
N
K

}
. (1)

2.3. Decentralized Schemes

In the latter schemes, users are allowed to store random data in their caches. It was
shown in [44] that the rate [1] in decentralized coded caching can be obtained from (2),

RD(M) , K · (1−M/N) ·min
{

N
KM

(1− (1−M/N)K),
N
K

}
. (2)

An important point to note here is that the term “decentralized” does not refer to the
underlying network and the network topology adopted in [44,45] are the same as the one
considered in [1].

2.4. Hierarchical Coded Caching Scheme

The scheme introduced in [4] proposes a hierarchical coded caching scheme in which
the content stored in the main server can be mirrored by intermediate servers in different
levels of hierarchy before being placed in end user caches. In this scheme, the requests
issued by each end user are first forwarded to the closest intermediate server. If not serviced
the request is then forwarded to the higher hierarchy level. This implies the existence of
different peak and off-peak intervals in different hierarchy levels.

Two different caching schemes have been proposed in this paper. The first scheme
referred to as Scheme A allows simultaneous coded multicasting in both hierarchy levels.
Each mirror first downloads the content items requested by its corresponding users from
the main servers. Then, the items are coded and forwarded to the users. In Scheme B,
mirrors act as memory-less routers. They receive the items from the main server and
forward them without being stored or coded. It has been demonstrated that both schemes
can individually perform sub-optimally [4]. The authors in this paper argued that because
of the disjunctive relation between Scheme A and Scheme B, the rate of each link is the sum
of the individual rates induced by the two schemes. They proposed a hybrid scheme named
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as the generalized coded caching scheme that attempts to incorporates a proper combination
of Scheme A and Scheme B in order to approximately minimize the overall rate.

2.5. Secure Coded Caching Scheme

The scheme presented in [3] argued that the shared link may be eavesdropped by
an adversary since it is publicly accessible as a broadcast medium. Thus they proposed
an on time pad (OTP) cryptosystem [46] to preserve the confidentiality of the data items
exchanged through this link. In their proposed scheme, the keys are placed in user cache
along with the data in the placement phase. These confidentiality measures can be applied
in both centralized and decentralized coded caching systems.

It is demonstrated in this paper that the secure rates for the centralized scheme and
the decentralized scheme can be obtained through replacing M/N by (M− 1)/(N − 1)
in Equations (1) and (2), respectively. The authors of [4] argued that the overall rate
of the hierarchical network is the sum of the individual rates in different levels of the
hierarchy. Thus, if the overall rate needs to be minimized, both levels should operate at
their minimum rates.

The relationship between the goals followed by the mentioned schemes motivates
our work in this paper. Moreover, we compare our results with the ones obtained in [4]
as reference.

2.6. Motivations

The researchers who proposed the idea of coded caching made several simplifying
assumptions regarding the system model [1]. These assumptions made the core idea more
manageable in its early days. However, several aspects of the primary system model
obviously need to be revisited in order for the scheme to be applicable to real-world
networks. Scalability and security are two aspects considered by other researchers [3,4].
However, there are still several related issues which can motivate further research. For
example, It should be considered that confidentiality (addressed in [3]) is not the only
aspect of security. Moreover, the network topology (studied in [4]) is not the only factor
affecting scalability. However, what motivates us for the work of this paper is the lack of a
research on a system model which is both secure and confidential.

Achieving the confidentiality promised in [3], as well as the scalability of the network
studied in [4] by combining both ideas looks an enticing natural idea. However, the impor-
tant issue to consider here is that combining these ideas can bring about new problems.
In fact, the traffic and memory space overhead caused by the secure coded caching is
against the scalability aimed by the hierarchical network. The key transmission occupies
the bandwidth of the network which adversely affects the scalability. This problem will
look more prominent when we consider the fact that OTP requires a new key for each
single transmission. On the other hand, storing the keys in user caches prevents some
frequently-requested data items to be stored during the placement phase because of the
limited cache sizes. This will affect the peak time rate and may, consequently, overshadow
the scalability of the underlying hierarchical network. Thus, every research focusing on
simultaneous confidentiality and scalability should consider the trade-off between the two
parameters. This trade-off will appear as an extra cost induced by the security-related
constraints which should be tolerated by the hierarchical coded caching scheme.

In this paper, we first present an extended coded caching scheme which incorporates
OTP confidentiality provisions and hierarchical network topology in the system model.
Then, we analyze the extra cost induced by confidentiality via comparing the rate bounds
to the case of non-secure hierarchical coded caching.

3. Secure Hierarchical Coded Caching

In this section, we present our secure hierarchical coded caching scheme and the
related system model. Our system model needs to be defined in two aspects. We first
introduce the topology and resources of the underlying network and then discuss the
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caching scheme which describes the transmissions in placement and delivery phases. Next,
we discuss the security-related considerations.

In terms of topology, we adopt the 2-level hierarchical topology, described in [4]. In
the top level of the hierarchy, the main server is connected to a hub via a shared link and
then to mirror servers via separate links. In each cluster in the next hierarchy level, a shared
link connects the mirror server to the hub while end users are connected to the same hub
using separate links. We assume the number of the clusters to be equal to K1 each of which
connects K2 end users.

As for the resources, the main server is assumed to store N files represented by W1
through WN each of size F bits. We assumed that the bits in a file are independent and
uniformly distributed. The cache sizes in the mirrors and the end users are assumed to
be M1F and M2F bits, respectively. The main and mirror servers are assumed to have
unlimited processing power.

With respect to the caching scheme, we will assume the generalized caching scheme
presented in [4] which is a combination of Scheme A and Scheme B. We follow the procedure
to find the most efficient combination of the schemes.

During the delivery phase, each user makes exactly one demand. The local demands
in each cluster are collected by the corresponding mirror server and then forwarded to the
main server. The demand issued by U(i,j) is represented by the element di,j in the demand
matrix D. According to the demands, the main server encodes the proper content along
with with the orthogonal keys and transmits them within a file X

D
of size RS1 F bits to

all mirrors. Then, each mirror re-encodes (Scheme A) or forwards (Scheme B) the data
requested by its corresponding users along with the related keys and transmits them within
a file YD of size RS2 F bits.

Security-related constraints are considered in order to keep the transferred contents
confidential from an external adversary assumed to have access to every shared link. In
order to add confidentiality to our caching scheme, we adopt the security constraints
proposed in [2,3]. Adopting the orthogonal key scheme proposed in [3], user caches, as
well as mirror server memories are considered to be partitioned into Data and Key regions
in order to keep space for storing the keys in the placement phase. Figure 1 shows the
access model of adversary as well as the security-related configuration.

N – Files 

1
M

2M

1SR

2SR
2SR

Server

1 2K K caches

1 2K K users

1K mirrors

Adversary

Adversary Adversary

DX

DYDY

Figure 1. A hierarchical caching system with external adversaries acting overall shared links.

The mentioned security constraints guarantees that I(X
D

; W1, W2, . . . , WN) = ε1 and
I(Y

D
; W1, W2, . . . , WN) = ε2, where ε1 → 0 and ε2 → 0 which states that the external adver-

sary cannot reveal any information regarding the files W1, W2, . . . , WN by eavesdropping
the shared links without access to users’ and mirrors’ caches. It is to be noted that ε1 → 0
and ε2 → 0 are for the case when file size is sufficiently large, i.e., when file size→ ∞. The
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minimum number of mirrors or users needed to be compromised in order to break the
security was discussed in [3].

Adopting the security constraints from [3] requires some extra assumption regarding
the placement phase in Scheme A. Since the users cannot establish an immediate communi-
cation with the main server, we assume a delegation between the main server and mirror
servers in the placement phase in Scheme A. It means that the mirror servers are trusted
and granted access to the keys because they need to decrypt and encrypt the contents again
before and after re-encoding them.

Another assumption adopted from [3] in our system model is that every user is inter-
ested in no more than one file in the delivery phase and the demanded files are mutually
different. The system cannot allocate resources, such as private links, network bandwidth,
and cache space to a user with no demands in the delivery phase. Therefore, we suppose
every user makes exactly one request in this phase. The latter assumptions obviously result
in N ≥ K1K2 as a criterion for the server to be able to answer all user requests. Again, we
note that it is not reasonable to store files which will never be demanded. Thus, we assume
that N = K1K2. Throughout, we assume that the placement phase is secure and links are
error-free.

Let us represent the secure rate in the top hierarchy level by RS1 and the second level
secure rate by RS2 . For a demand matrix D and for a large-enough file size F, a tuple
(M1, M2, RS1 , RS2) is said to be feasible forD if each user U(i,j) is able to recover its requested
file di,j securely with a probability arbitrarily close to unity. Moreover, (M1, M2, RS1 , RS2) is
feasible if it is feasible for all possible request matrices D. Throughout, we assume feasible
rate region in our analysis.

4. Fundamental Limits and Cost Analysis

The procedure we follow in our evaluations in this section can be described as follows.
In order to maximize the secure achievable rate in the generalized scheme, we try to find
the most effective combination of the Schemes A and B. To do this, we first parameterize
the combination. We assume that a fraction equal to α of each file residing in the server (as
well as transmissions in the top hierarchy level) are ruled by Scheme A and the rest (1− α)
are transmitted on the basis of Scheme B. The corresponding fractions in the user cache (as
well as transmissions in the second hierarchy level) are assumed to be equal to β and 1− β,
respectively. Then we try to find the best possible values for α and β which will result in
the most effective combination. We denote the latter values by α∗ and β∗. In the next step,
we calculate the secure achievable rate for the generalized scheme via calculating the rates
for both Schemes A and B and then combining the results together assigning the values α∗

and β∗ to α and β. We calculate the lower bounds of the rates through a similar procedure
and then analyze the gap between the achievable rates and the rates specified by the lower
bounds. A comparison between our results and those obtained in [4] highlights the cost of
security in hierarchical network caching.

4.1. Preliminary Discussions

While analyzing the rates in each scheme, we separately consider each of the three
regimes proposed in [4]. This makes it plausible to compare our results to those obtained
in [4]. The mentioned regimes are characterized as shown in Equation (3) in terms of M1
and M2,

1M1 + M2K2 ≥ N and 0 ≤ M1 ≤ N/4,

2M1 + M2K2 < N,

3M1 + M2K2 ≥ N and N/4 < M1 ≤ N. (3)
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The results in [4], to which we compare our own results are as follows. The optimum
values of α and β for the mentioned regimes in the non-secure hierarchical coded caching
scheme are [4],

(α∗, β∗) ,



(
M1

N
,

M1

N

)
in regime 1,(

M1

M1 + M2K2
, 0
)

in regime 2,(
M1

N
,

1
4

)
in regime 3.

(4)

Moreover, the corresponding non-secure achievable rates for Scheme A and Scheme B
have been calculated as functions of α∗ and β∗ in [4],

R1(α
∗, β∗) ≈



min
{K1K2

1
,

N
M2

}
in regime 1,

min
{

K1K2,
M1

M1 + M2K2
· (N −M1)K2

M1 + M2K2
,+

M1

M1 + M2K2
· NK2 −M1

M1 + M2K2

}
in regime 2,

(N −M1)
2

NM2
in regime 3,

(5)

R2(α
∗, β∗) ≈ min

{
K2,

N
M2

}
. (6)

See Figure 2 for different regimes of M1, M2 for α∗ and β∗. In (4) and (5), the approxi-
mation is within a constant additive and multiplicative as given by (7) and (8),

R1 ≥ Rlb
1 (M1, M2) ≥

1
60

R1(α
∗, β∗)− 4, (7)

R2 ≥ Rlb
2 (M1, M2) ≥

1
36

R1(α
∗, β∗)− 16. (8)

regime III

regime I

regime II

1

2K

1M

2M

1

N

K

2

N

K

N

N

Figure 2. Different regimes of M1, M2 for α∗ and β∗.
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4.2. Secure Achievable Rates

Before beginning to develop our mathematical modelings, let us introduce some
notations we will use in our equations. We will refer to the jth user (j ∈ [1, 2, . . . , K2] ) in
the ith cluster where i ∈ [1, 2, . . . , K1] as U(i,j) and refer to the corresponding cache as C(i,j).
Let us represent the coded content items transmitted in the first and second levels of the
hierarchy by XD and YD , respectively, where D is the request matrix. Furthermore, let us
represent the secure rate in the top hierarchy level by RS1 and the second level secure rate
by RS2 .

Now, let us begin the derivation of our model by calculating RS1 and RS2 for scheme
A. For N files and K1 mirrors each with a cache size of M1 ∈ N−K2

K1
· t1 + K2, where

t1 ∈ {0, 1, 2, · · · , K1}, RS1 for scheme A is given by

RA
S1

= K2 · r
(

M1 − K2

N − K2
, K1

)
, (9)

where r(., .) is defined as:

r
(

M
N

, K
)

,

[
K ·
(

1− M
N

)
· N

KM

(
1−

(
1− M

N

)K
)]+

, (10)

with [x]+ , max{x, 0}. Moreover, RS2 for Scheme A considering K2 users each with a
cache size of M2 ∈ N−1

K2
· t2 + 1, where t2 ∈ {0, 1, . . . , K2}, can be obtained from

RA
S2

= r
(

M2 − 1
N − 1

, K2

)
. (11)

Similarly, RS1 and RS2 for the scheme B can be calculated as

RB
S1

= r
(

M2 − 1
N − 1

, K1K2

)
, (12)

RB
S2

= r
(

M2 − 1
N − 1

, K2

)
. (13)

Let us normalize the total file size, mirror memory size, and user cache size involved by
scheme A as shown in (14) and (15), respectively,

F′ , αF,

M′1 ,
M1F

F′
=

M1

α
, (14)

M′2 ,
βM2F

F′
=

βM2

α
. (15)

Moreover, let us normalize user cache size involved by scheme B as shown in (16),

F′′ , (1− α)F,

M′′2 ,
(1− β)M2F

F′′
=

(1− β)M2

1− α
. (16)
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Thus, the secure rates induced by scheme A and scheme B can be normalized with respect
to the file size as given by

RA′
S1

= αK2 · r
(

M′1 − K2

(N − K2)
, K1

)
= αK2 · r

(
M1 − αK2

α(N − K2)
, K1

)
, (17a)

RA′
S2

= α · r
(

M′2 − 1
(N − 1)

, K2

)
= α · r

(
βM2 − α

α(N − 1)
, K2

)
, (17b)

and

RB′
S1

= (1− α) · r
(

M′′2 − 1
N − 1

, K1K2

)
= (1− α) · r

(
(1− β)M2 − (1− α)

(1− α)(N − 1)
, K1K2

)
, (18a)

RB′
S2

= (1− α) · r
(

M′′2 − 1
N − 1

, K2

)
= (1− α) · r

(
(1− β)M2 − (1− α)

(1− α)(N − 1)
, K2

)
. (18b)

In the next step, we will calculate α∗ and β∗ for each of the regimes in a way that both
RS1(α, β) and RS2(α, β) can be minimized. Let us begin with regime 1. According to (17b)
and (18b), for α = β it holds that RS2(α, α) = r((M2 − 1)/(N − 1), K2) . It can be verified
that α = M/N results in a near-optimal value for RS1(α, α) in Regime A. Thus, we chose
α∗ = M1/N and β∗ = M1/N in this regime. Choosing α∗ = M1/N allows each mirror to
store the first part of each of the N files in the first transmission. Thus, there will be no
need for further transmission between the server and the mirrors in the placement phase
or key memory space in the mirrors.

Now let us proceed with regime 2. In this regime, it can be verified from Equation (20b)
that M2 < N/K2 which means that the M2 cache area is very small. Thus, RS2(α, β) will
be of order K2 for any choice of α and β. Therefore, we only need to choose α and β in a
way that RS1(α, β) is minimized. In this regime, the optimized values for α and β can be
obtained as α∗ = M1/(M1 + M2K2) and β∗ = M1/(M2(M1 + M2K2)).

In regime 3 (like in regime 1), a choice of α = β = M1/N is preferable. However,
it should be considered that a large value of β leads to an unacceptably-large value of
RS1(α, β). Thus, a minimum threshold of β∗ = M1/M2N should be considered. Similar
to the case of regime 1, no extra transmission between the server and the mirrors in the
placement phase or key area in the cache is required in this regime.

After deciding the proper choice of α∗, β∗, let us calculate RS1(α
∗, β∗) and RS2(α

∗, β∗)
for the generalized scheme as a combination of the secure rates in the two schemes A and B.

Theorem 1. We have the following conditions on RS1(α
∗, β∗) and RS2(α

∗, β∗)

RS1(α
∗, β∗) ≈



min
{

K1K2,
N − 1

M2 − 1

}
in regime 1,

min
{

K1K2,
M1

M1 + M2K2
· K2(N −M1)

M1 + (M2 − 1)K2

+
M2K2

M1 + M2K2
· (N − 1)K2M2

(M2 − 1)(M1 + M2K2)

}
in regime 2,

(N −M1)
2

N(M2 − 1)
in regime 3,

(19a)

and

RS2(α
∗, β∗) ≤ K1 ·min

{
K2,

N − 1
M2 − 1

}
. (19b)

Proof. The normalized achievable secure rates for the generalized scheme can be calculated
in the form of functions of α and β,
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RS1(α, β) , RA′
S1

+ RB′
S1

,

= αK2 · r
(

M1 − αK2

α(N − K2)
, K1

)
+ (1− α) · r

(
(1− β)M2 − (1− α)

(1− α)(N − 1)
, K1K2

)
, (20a)

and

RS2(α, β) , RA′
S2

+ RB′
S2

,

= α · r
(

βM2 − α

α(N − 1)
, K2

)
+ (1− α) · r

(
(1− β)M2 − (1− α)

(1− α)(N − 1)
, K2

)
. (20b)

With the proper choice of α∗, β∗, we proceed to calculate secure achievable rates RS1(α
∗, β∗),

RS2(α
∗, β∗). As we observe, the secure achievable rates for the generalized caching scheme

is a function of r(., .), as mentioned in the Equation (1). We observe the following,

r
(

M
N

, K
)
≤


min

{
K,

N
M
− 1
}

M ≤ N,

0 otherwise.

(21)

Now let us proceed with calculating the secure achievable rates for each of the regimes
of M1 and M2 beginning with regime 1. According to (5), (20), and (21), the secure
achievable rates in this regime can be upper bounded as shown in inequalities (22a)
and (22b),

RS1(α
∗, β∗) =

M1

N
K2 · r(1, K1) +

(
1− M1

N

)
· r
(

M2 − 1
N − 1

, K1K2

)
≤ 0 + min

{
K1K2

N − 1
M2 − 1

}
= min

{
K1K2,

N − 1
M2 − 1

}
, (22a)

and

RS2(α
∗, β∗) =

M1

N
·
(

M2 − 1
N − 1

)
+

(
1− M1

N

)
· r
(

M2 − 1
N − 1

, K2

)
= r

(
M2 − 1
N − 1

)
≤ min

{
K2,

N − 1
M2 − 1

}
. (22b)

Through a similar reasoning, the upper bounds to the secure achievable rate RS1(α
∗, β∗)

in regime 2 can be obtained from the inequality (23a) (the form of equations are different
from regime 1).
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RS1(α
∗, β∗) =

M1K2

M1 + M2K2
· r
(

M1 + M2K2 − K2

N − K2
, K1

)
+

M2K2

M1 + M2K2
· r
(
(M2 − 1)(M1 + M2K2)

(N − 1)M2K2
, K1K2

)
≤ M1K2

M1 + K2M2
·min

{
K1,

N − K2

M1 + M2K2 − K2
− 1
}

+
M2K2

M1 + M2K2
·min

{
K1K2,

(N − 1)K2M2

(M2 − 1)(M1 + M2K2)
− 1
}

≤ M1

M1 + M2K2
·min

{
K1K2,

K2(N −M1)

M1 + (M2 − 1)K2

}
+

M2K2

M1 + M2K2
·min

{
K1K2,

(N − 1)K2M2

(M2 − 1)(M1 + M2K2)

}
≤ min

{
K1K2,

M1

M1 + M2K2
· K2(N −M1)

M1 + (M2 − 1)K2

+
M2K2

M1 + M2K2
· (N − 1)K2M2

(M2 − 1)(M1 + M2K2)

}
. (23a)

Furthermore, according to (20) and (21), the reader can easily verify that RS2(α
∗, β∗) in

regime 2 will be upper bounded by

RS2(α
∗, β∗) ≤ K2 = min

{
K2,

N − 1
M2 − 1

}
. (23b)

Additionally, for regime 3 we have,

RS1(α
∗, β∗) =

(
1− M1

N

)
· r
(

1− M1

N

)
+ r
(
(1− 1/K1)M2 − (1−M1/N)

(1−M1/N)(N − 1)
, K2

)
≤ 0 +

(
1− M1

N

)
·min

{
K1K2,

(N −M1)(N − 1)K1

NM2(K1 − 1)− K1(N −M1)

}
≤

(
N −M1

N

)
· K1(N −M1)(N − 1)
(K1 − 1)N(M2 − 1)

≤ K1

K1 − 1
· (N −M1)

2

N(M2 − 1)
, (24a)

and
RS2 (α

∗, β∗) =
M1
N
· r
(

M2
K1 M1

, K2

)
+

(
1− M1

N

)
· r
(
(1− 1/K1)M2 − (1−M1/N)

(1−M1/N)(N − 1)
, K2

)
≤ M1

N
·min

{
K2,

K1(N − 1)
M2 − 1

}
+

(
1− M1

N

)
min

{
K2,

K1(N − 1)
M2 − 1

}
≤ min

{
K2,

K1(N − 1)
(M2 − 1)

}
≤ K1 ·min

{
K2,

N − 1
M2 − 1

}
. (24b)

Summarizing our results for the generalized scheme from the discussions above we have

RS1(α
∗, β∗) ≈



min
{

K1K2,
N − 1

M2 − 1

}
in regime 1,

min
{

K1K2,
M1

M1 + M2K2
· K2(N −M1)

M1 + (M2 − 1)K2

+
M2K2

M1 + M2K2
· (N − 1)K2M2

(M2 − 1)(M1 + M2K2)

}
in regime 2,

(N −M1)
2

N(M2 − 1)
in regime 3,

(25a)
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and

RS2(α
∗, β∗) ≤ K1 ·min

{
K2,

N − 1
M2 − 1

}
. (25b)

The proof is now complete.

4.3. Memory Requirements

An information-theoretical analysis will reveal some minimum requirements regard-
ing the cache size in the mirrors and uses cache. Consider a caching system in which two
files denoted by A and B are residing in the main server N = 2. Consider K1 = 2 mirrors
denoted by m1 and m2 with each of mirrors cache size M1. Cache contents denoted by
Zm

1 , Zm
2 cached by users in the placement phase. Let us assume that mirror m1 demands a

content item Aα in the delivery phase which is part of file A and mirror m2 demands part
of file B denoted by Bα. Both demanded items are assumed to be of size αF which can be
considered a fraction equal to α of the size of file A or B. The mentioned demands can be
represented by a demand vector (d1, d2) = (Aα, Bα).

In this setup, the main server will transmit X(Aα ,Bα) to the mirrors which should be
capable of regenerating the items Aα and Bα when combined with Zm

1 and Zm
2 . From an

information theoretical point of view, the criterion stated by inequality (26) should hold to
make it possible to achieve this goal,

H(Aα, Bα|X(Aα ,Bα), Zm
1 , Zm

2 ) ≤ ε. (26)

For the security constraint between the server and the mirrors, inequality (27) should hold
in order to keep the delivery phase transmissions confidential,

I(Aα, Bα; X(Aα ,Bα)) ≤ δ. (27)

Using (26) and (27) we have

2αF ≤ H(Aα, Bα),

= I(Aα, Bα; X(Aα ,Bα), Zm
1 , Zm

2 ) + H(Aα, Bα|X(Aα ,Bα), Zm
1 , Zm

2 ),

≤ I(Aα, Bα; X(Aα ,Bα), Zm
1 , Zm

2 ) + ε,

= I(Aα, Bα; X(Aα ,Bα) + I(Aα, Bα; Zm
1 , Zm

2 |X(Aα ,Bα)) + ε,

≤ I(Aα, Bα; Zm
1 , Zm

2 |X(Aα ,Bα)) + δ + ε,

≤ H(Zm
1 , Zm

2 |X(Aα ,Bα)) + δ + ε,

≤ 2M1F + δ + ε. (28)

From (28) we immediately obtain

M1 ≥ α− δ

F
− ε

F
. (29)

When δ and ε approach zero, inequality (29) will be converted to M1 ≥ α. Again, we note
that users should be able to recover both file A and file B from a single cached item Zm

1
along with two items within X(Aα ,Bα) and X(Bα ,Aα) transmitted in response to the demand
vectors (d1, d2) = (Aα, Bα) and (d1, d2) = (Bα, Aα), respectively. The latter requirement
leads to the following inequalities,

H(Aα, Bα|X(Aα ,Bα), X(Bα ,Aα), Zm
1 ) ≤ ε, (30)

I(Aα, Bα; X(Aα ,Bα)) ≤ δ. (31)

Through similar reasoning the latter two inequalities will lead to R∗s + M1 ≥ 2α where R∗s
is minimum rate between the server and the mirrors.
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4.4. Lower Bounds

Now let us discuss the lower bounds on secure rates RS1 and RS2 for different values
of M1, M2 given the feasibility of (M1, M2, RS1 , RS2). To do this, we follow the approach
taken in [3] for the secure non-hierarchical scheme and extend the discussions and results
to the case of the secure hierarchical network.

Theorem 2. We have

RS1 ≥ max
s1∈{1,2,...,K1}
s2∈{1,2,...,K2}

max
{

s1s2

[
1− 1

N − 2s1s2

(
s1M1 + s1s2(M2 − 1)

)]
,

s1s2(N − s1M1 − s1s2M2)

N

}

, Rlb
S1
(M1, M2),

and

RS2 ≥ max
t∈{1,2,...,K2}

t(N − tM2)

N
.

Proof. Let us begin with the lower bound on RS1 . For s1 ∈ {1, 2, . . . , K1} and s2 ∈
{1, 2, . . . , K2}, suppose the first s1 mirrors store Zm

1 , Zm
2 , . . . , Zm

s1
. Furthermore, assume that

for i ∈ {1, 2, . . . , s1} and j ∈ {1, 2, . . . , s2}, every user C(i,j) caches Zu
i,1, Zu

i,2, . . . , Zu
i,s2

. Sup-
pose the mentioned users issue the demand matrix D1 defined as d1

i,j = (i− 1)s2 + j which
includes requests for the first s1s2 files residing in the main server. The items transmitted by
the main server within X1 = X(d1,1,...,ds1s2 )

, along with the mirrored items Zm
1 , Zm

2 , . . . , Zm
s1

and cached items Zu
i,1, Zu

i,2, . . . , Zu
i,s2

must able to decode the files W1, W2, . . . , Ws1s2 .
Similarly, for the different request matrix D, where user U(i,j) demands di,j = s1s2 +

(i − 1)s2 + j, i.e., requesting next s1s2 files from the server. The transmission X2, along
with mirrors Zm

i,1, Zm
i,2, . . . , Zm

i,s2
and users cache Zu

i,1, Zu
i,2, . . . , Zu

i,s2
must be able to decode

the files Ws1s2+1, Ws1s2+2, . . . , W2s1s2 . Likewise, considering all bN/s1s2c request matrices,
multicast transmission X1, . . . , XbN/s1s2c along with mirrors Zm

1 , Zm
2 , . . . Zm

s1
and users cache

Zu
i,1, Zu

i,2, . . . , Zu
i,s2

, must be able to recover the files W1, . . . , Ws1s2bN/s1s2c. Let

W̃ = {W1, . . . , Ws1s2bN/s1s2c}

X̃ = {X1, . . . , XbN/s1s2c}

X̃\{l} = {X1, . . . , Xl−1, Xl+1, . . . , XbN/s1s2c}

Z̃m = {Zm
1 , . . . , Zm

s1
} = Z̃m

i

Z̃u = {Zu
1,1, . . . , Zu

1,s2
, Zu

2,1, . . . , Zu
s1s2
} = {Zu

i,j}.

Another point implied by the feasibility of (M1, M2, Rs1 , Rs2) in our system model is
that the external adversary should not be able to retrieve any information regarding the
contents being transmitted in the delivery phase. This criterion is formally described by
inequalities (32) and (33),

H(W̃|X̃, Z̃m, Z̃u) ≤ ε1, (32)

and
I(W̃; Xl) ≤ ε2, l = 1, . . . , q. (33)

Consider the information flow consisting of multicast transmission X1, . . . , XbN/s1s2c,
mirrors Z1, Z2, . . . , Zs1 and users cache Zi,1 . . . , Zi,s2 for decoding file W1, . . . , Ws1s2bN/s1s2c.
We have
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s1s2bN/s1s2cF ≤ H(W̃)

= I(W̃; X̃, Z̃u, Z̃m) + H(W̃|X̃, Z̃u, Z̃m)

≤ I(W̃; X̃, Z̃u, Z̃m) + ε1

= I(W̃; Xl) + I(W̃; X̃\{l}, Z̃m, Z̃u|Xl) + ε1

≤ I(W̃; X̃\{l}, Z̃m, Z̃u|Xl) + ε1 + ε2

≤ H(X̃\{l}, Z̃m, Zu) + ε

≤
bN/s1s2c

∑
k=1,k 6=l

H(Xk) +
s1

∑
i=1

H(Zm
i ) +

s1

∑
i=1

s2

∑
j=1

H(Zu
i,j) + ε

≤ (bN/s1s2c − 1)Rs1 F + s1M1F + s1s2M2F + ε. (34)

So,

s1s2bN/s1s2c ≤ (bN/s1s2c − 1)RS1 + s1M1 + s1s2M2 +
ε

F
. (35)

Solving and optimizing for all possible values of s1 and s2 we obtain

RS1 ≥ max
s1∈{1,2,...,K1}
s2∈{1,2,...,K2}

lim
ε→0

1
bN/s1s2c − 1

{
s1s2bN/s1s2c − s1M1 − s1s2M2 −

ε

F

}

≥ max
s1∈{1,2,...,K1}
s2∈{1,2,...,K2}

s1s2 −
s1M1 + s1s2(M2 − 1)

N/s1s2 − 2

≥ max
s1∈{1,2,...,K1}
s2∈{1,2,...,K2}

s1s2

(
1− s1M1 + s1s2(M2 − 1)

N − 2s1s2

)
. (36)

We can obtain an alternate lower bound by using dN/s1s2e transmissions instead of
bN/s1s2c in (35),

RS1 ≥ max
s1∈{1,2,...,K1}
s2∈{1,2,...,K2}

1
dN/s1s2e − 1

(N − s1M1 − s1s2M2)

≥ max
s1∈{1,2,...,K1}
s2∈{1,2,...,K2}

1
N/s1s2

(N − s1M1 − s1s2M2)

≥ max
s1∈{1,2,...,K1}
s2∈{1,2,...,K2}

1
N
(s1s2(N − s1M1 − s1s2M2)). (37)

The inequalities (36) and (37) hold for any value of s1 ∈ {1, 2, . . . , K1} and s2 ∈ {1, 2, . . . , K2}.
So, we obtain the following lower bound on RS1 for the tuple (M1, M2, RS1 , RS2) to be feasible,

RS1 ≥ max
s1∈{1,2,...,K1}
s2∈{1,2,...,K2}

max
{

s1s2

[
1− 1

N − 2s1s2

(
s1M1 + s1s2(M2 − 1)

)]
,

s1s2(N − s1M1 − s1s2M2)

N

}

, Rlb
S1
(M1, M2). (38)

After calculating the lower bound for RS1 , let us proceed with that of RS2 assuming
the feasibility of (M1, M2, RS1 , RS2). Let t ∈ {1, 2, . . . , K2}. Consider the t users cache U(1,j)
as Zu

1,1, Zu
1,2, . . . , Zu

1,t with j ∈ {1, 2, . . . , t}. Consider the request matrix D with demands
d1,j = j, i.e., requesting t files from the server. The transmission Y1 = Y(d1,1,...,d1,t)

, along
with the users cache U(1,j) Zu

1,1, Zu
1,2, . . . , Zu

1,t must be able to decode the files W1, . . . , Wt.
Similarly, for the different request matrix D, where the user demands di,j = t + j, i.e.,
requesting another t files from the server. The transmission Y2 along with the users
cache U1,j, must be able to decode the files Wt+1, . . . , W2t. Likewise, considering the
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all dN/te request matrices, multicast transmission, Y1, . . . , YdN/te along with the users
cache Zu

1,1, Zu
1,2, . . . , Zu

1,t must be able to recover the files W1, . . . , WN . Assuming Yl be the
information leaked to the external adversary through the link connecting between the
mirror and its corresponding users.

W̃ = {W1, . . . , WN}
Ỹ = {Y1, . . . , YdN/te}

Ỹ\{l} = {Y1, . . . , Yl−1, Yl+1, . . . , YdN/te}

Z̃u = {Zu
1,1, . . . , Zu

1,t} = {Zu
1,j}, where j ∈ {1, 2, . . . , t}.

The file recovery and security constraints can be stated as

H(W̃|Ỹ, Z̃u) ≤ ε1, (39)

I(W̃; Yl) ≤ ε2, l = 1, . . . , YdN/te (40)

This is similar case of single layer secure scheme. Consider the information flow consisting
of multicast transmission Y1, . . . , YdN/te and users cache Zu

1,1, Zu
1,2, . . . , Zu

1,t for decoding the
files W1, W2, . . . , WN . We have

NF = H(W̃)

= I(W̃; Ỹ, Z̃u) + (W̃|Ỹ, Z̃u)

≤ I(W̃; Ỹ, Z̃u) + ε1

= I(W̃; Yl) + I(W̃; Ỹ\{l}, Z̃u|Yl) + ε1

≤ I(W̃; Ỹ\{l}, Z̃u|Yl) + ε1 + ε2

≤ H(Ỹ\{l}, Z̃u) + ε, where ε1 + ε2 = ε

≤
dN/te

∑
i=1,i 6=l

H(Yi) +
t

∑
j=1

H(Zu
1,j) + ε

≤ (dN/te − 1)RS2 F + tM2F + ε. (41)

Therefore,

N = (dN/te − 1)RS2 + tM2 +
ε

F
. (42)

Solving and optimizing for all value of t, we obtain the following lower bound

RS2 ≥ max
t∈{1,2,...,K2}

lim
ε→0

N − tM2 − 2ε
F

dN/te − 1

≥ max
t∈{1,2,...,K2}

N − tM2

N/t

= max
t∈{1,2,...,K2}

t(N − tM2)

N
(43)

, Rlb
S2
(M1, M2).

5. Gap Analysis

In this section, we analyze the gap between the secure achievable rates and the
corresponding lower bounds.
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5.1. RS1(α
∗, β∗) against Rlb

S1
(M1, M2)

Theorem 3. RS1(α
∗, β∗) will vary between a constant multiplicative and a constant additive gap

with Rlb
S1
(M1, M2). Specifically,

RS1 ≥ Rlb
S1
(M1, M2) ≥

1
96

RS1(α
∗, β∗)− 4.

Proof. The values of α∗ and β∗, and consequently Rs1(α
∗, β∗) obviously depend on the

regime characterized by M1 and M2. This makes it necessary to examine each of the
regimes. We begin with regime 1 assuming that N ≥ K1K2, K1 ≥ 4 and K2 ≥ 4.

Regime 1: M1 + M2K2 ≥ N and 0 ≤ M1 ≤ N
K1

where M1 ≥ M1K2
N , M2 ≥ 1. Inequali-

ties (25a) and (38) give the achievable secure rate RS1(α
∗, β∗), as well as the lower bound

on RS1(M1, M2) for regime 1.
In order to make the margin of the gap more manageable, we further divide our

discussions regarding this regime into three sub-regimes specified as follows:

1.A)
M1K2

N
≤ M1 ≤

N
2K1

,
3N
4K2
≤ M2 ≤

N
4

,

1.B)
N

2K1
≤ M1 ≤

N
K1

,
3N
4K2
≤ M2 ≤

N
4

,

1.C)
M1K2

N
≤ M1 ≤

N
K1

,
N
4
≤ M2 ≤ N.

For sub-regime 1.A), let us feed s1 = 1 and s2 =
⌊

N
2M2

⌋
(which is a valid choice

because bzc ≥ z/2 for any z ≥ 1) into (38) which gives

Rlb
S1
(M1, M2) ≥

⌊
N

2M2

⌋(
N −M1 −

⌊
N

2M2

⌋
M2

)
N

(a)
≥ 1

N

[
N

4M2

(
N − N

2K1
− N

2M2
·M2

)]

≥ N
4M2

(
1− 1

2K1
− 1

2

)
(b)
≥ N

4M2

(
1
2
− 1

8

)
(c)
≥ 3N

32M2
≥ 3

32
· 4

5
· N − 1

M2 − 1
,

≥ 3
40

min
{

K1K2,
N − 1

M2 − 1

}
. (44)

In deriving (44), we have used (a) : bzc ≥ z/2 ∀z ≥ 1, (b) : K1 ≥ 4 and (c) : N ≥ K1K2.
Combining (44) and (22a), we obtain

Rlb
S1
(M1, M2) ≥

3
40

RS1(α
∗, β∗). (45)

For sub-regime 1.B, let

(s1, s2) =


(⌊

N
K1 M1

⌋
,
⌊

M1
M2

⌋)
for M1 ≥ M2,(⌊

N
K1 M1

⌋
, 1
)

otherwise.
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Note that for M1 ≥ M2, we have

1 =

⌊
N

K1.N/K1

⌋
≤
⌊

N
K1M1

⌋
≤ N

K1M1
≤ 2,

1 ≤
⌊

M1

M2

⌋
≤ M1

M2
≤ N/K1

3N/(4K2)
=

4K2

3K1
,

and for M1 < M2, we have

1 =

⌊
N

4N/4

⌋
≤
⌊

N
4M2

⌋
≤
⌊

N
K1M1

⌋
≤ N

K1M1
≤ 2.

Finally, feeding the chosen values of s1, s2 into (38) we obtain

Rlb
S1
(M1, M2) ≥

N
4K1 M2

(
N − N

K1 M1
·M1 − N

4M2
·M2

)
N

≥ N
4K1M2

(
1− 1

K1
− 1

4

)
≥ N

32M2
≥ 1

32
· 4

5
· N − 1

M2 − 1

≥ 1
40

min
{

K1K2,
N − 1

M2 − 1

}
. (46)

Combining (46) and (22a), we obtain

Rlb
S1
(M1, M2) ≥

1
40

RS1(α
∗, β∗). (47)

Similarly, in sub-regime 1.C, we have

Rlb
S1
(M1, M2) ≥

N
M2
− 4 ≥ N − 1

M2 − 1
− 4

≥ min
{

K1K2,
N − 1

M2 − 1

}
− 4. (48)

Combining (48) and (22a), we obtain
Rlb

S1
(M1, M2) ≥ RS1(α

∗, β∗)− 4. (49)

Our analysis for sub-regimes 1.A, 1.B and 1.C demonstrate that the secure achievable rate
Rlb

S1
(M1, M2) is within a constant multiplicative and additive gap for regime 1.

As for regime 2, we further divide it into the following sub-regimes.

(2.A)
M1K2

M1 + M2K2
≤ M1 <

N
K1

, 1 ≤ M2 <
N

K1K2
,

(2.B)
M1K2

M1 + M2K2
≤ M1 <

N
K1

,
N

K1K2
≤ M2 <

N
3K2

,

(2.C)
M1K2

M1 + M2K2
≤ M1 <

N
K1

,
N

3K2
≤ M2 <

N
4

,

(2.D)
N
K1
≤ M1 ≤ N, 1 ≤ M2 <

N −M1

2K2
,

(2.E)
N
K1
≤ M1 ≤ N,

N −M1

2K2
≤ M2 <

N −M1

K2
.

For sub-regime 2.A, we assume s1 = bK1
3 c and s2 = K2. Using bzc ≥ z/2 for any

z ≥ 1, we see that it is a valid choice of s1, s2, since K1 ≥ 4 and thus bK1/3c ≥ 1. Equating
the values of s1, s2 in (38), we obtain
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Rlb
S1
(M1, M2) ≥ 1

N

[⌊
K1

3

⌋
K2(N −

⌊
K1

3

⌋
M1 −

⌊
K1

3

⌋
K2M2)

]
(a)
≥ 1

N

[
K1K2

6

(
N − M1K1

3
− M2K1K2

3

)]
(b)
≥ 1

N

[
K1K2

6

(
N − N

3
− N

3

)]

=
K1K2

18

≥ 1
18

min
{

K1K2,
M1

M1 + M2K2
· K2(N −M1)

M1 + (M2 − 1)K2

+
M2K2

M1 + M2K2
· (N − 1)K2M2

(M2 − 1)(M1 + M2K2)

}
, (50)

where (a) follows from bzc ≥ z/2 for any z ≥ 1; and (b) follows from M1 < N/K1,
M2 < N/(K1K2). Combining the result with (23a), we obtain

Rlb
S1
(M1, M2) ≥

1
18

RS1(α
∗, β∗). (51)

The remaining sub-regimes of this regime can be analyzed in a similar manner, thus
we present only the values chosen for s1 and s2, as well as the final inequality for each sub-
regime. The values (b N

3M2K2
c, K2), (1, K2), (1, b N

4M2
c) and (1, bN−M1

2M2
c) are chosen for (s1, s2)

in sub-regimes 2.B, 2.C, 2.D and 2.E, respectively. Moreover, inequalities (52) through (55)
demonstrate the gaps for the same sub-regimes, respectively,

Rlb
S1
(M1, M2) ≥

2
135

RS1(α∗ ,β∗), (52)

Rlb
S1
(M1, M2) ≥

3
64

RS1(α
∗, β∗), (53)

Rlb
S1
(M1, M2) ≥

1
32

Rlb
S1
(α∗, β∗), (54)

Rlb
S1
(M1, M2) ≥

1
96

RS1(α
∗, β∗). (55)

We will also study regime 3 through dividing it into two sub-regimes as follows:

3.A)
N
K1
≤ M1 ≤ N,

N −M1

K2
≤ M2 <

N −M1

2
,

3.B)
N
K1
≤ M1 ≤ N,

N −M1

2
≤ M2 ≤ N.

The reasoning method is similar to the case of sub-regimes 2.A through 2.E. Therefore, we
briefly mention only the chosen values for (s1, s2) and the final inequality obtained for each
sub-regime. For sub-regime 3.A, we chose s1 = 1 and s2 = bN−M1

2M2
c and derive

Rlb
S1
(M1, M2) ≥

1
16

RS1(α
∗, β∗). (56)

In sub-regime 3.B, we obtain
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Rlb
S1
(M1, M2) ≥ 0 =

8
3
− 8

3

≥ 4
3
· 2 · 1− 8

3
(a)
≥ K1

K1 − 1
· N −M1

M2
· N −M1

N
− 8

3

≥ K1

K1 − 1
(N −M1)

2

M2N
− 8

3

=
M2 − 1

M2
· K1

K1 − 1
(N −M1)

2

N(M2 − 1)
− 8

3
(b)
≥ 5

6
RS1(α

∗, β∗)− 8
3

, (57)

where (a) follows from N−M1
M2

≤ 2 and (b) follows from N ≥ K1K2, K1 ≥ 4, and (24a).
The results obtained for sub-regimes 3.A and 3.B suggest that the gap analysis for

regime 3 will be similar to the case of regime 1 and regime 2. On the other hand, we
show that regimes 1, 2 and 3 cover the entire (M1, M2) plane. This helps us come into
the conclusion that in each subregime RS1(α

∗, β∗) and Rlb
S1
(M1, M2) are within a constant

multiplicative and additive gap. Therefore, the unified final result which we will obtain for
all the studied regimes is

RS1 ≥ Rlb
S1
(M1, M2) ≥

1
96

RS1(α
∗, β∗)− 4. (58)

5.2. RS2(α
∗, β∗) against Rlb

S2
(M1, M2)

Theorem 4. RS2(α
∗, β∗) is within a constant multiplicative and additive gap with Rlb

S2
for every

possible value of (M1, M2). Specifically,

RS2 ≥ Rlb
S2
(M1, M2) ≥

1
45

RS2(α
∗, β∗)− 16.

Proof. Let us focus on the case where N ≥ K1K2, K1 ≥ 4 and K2 ≥ 4. Recall from (25b)
that achievable secure rate RS2(α

∗, β∗) is upper bounded as

RS2(α
∗, β∗) ≤ K1 · min

{
K2,

N − 1
M2 − 1

}
. (59)

Furthermore, the lower bound on RS2(α
∗, β∗) can be obtained from (43) as

Rlb
S2
(M1, M2) = max

t∈{1,2,...,K2}

t(N − tM2)

N
. (60)

In the rest of our discussion we will partition the (M1, M2) plane by distinguishing the
following two cases:

(1) 1 ≤ M2 ≤
N
4

,

(2)
N
4
≤ M2 ≤ N.

We will examine the mentioned cases in order to improve the margin of the gap.

(1) 1 ≤ M2 ≤
N
K2

, let t =
⌊

1
3 min

{
K2, N

M2

}⌋
in (60). This is a valid choice since K2 ≥ 4.

Thus,

1 ≤
⌊

1
3

min
{

K2,
N

M2

}⌋
≤ K2

3
.
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By feeding the value of t into (60), it follows that

Rlb
S2
(M1, M2) ≥

1
N

[⌊
1
3

min
{

K2,
N

M2

}⌋
·
(

N −
⌊

1
3

min
{

K2,
N

M2

}⌋
M2

)]
.

Since ∀z ≥ 1 : bzc ≥ z/2, we can continue as follows,

Rlb
S2
(M1, M2) ≥

1
N

[
1
6

min
{

K2,
N

M2

}(
N − N

3

)]

=
1
9

min
{

K2,
N

M2

}
.

Because N ≥ K1K2 and K1 ≥ 4, we have

Rlb
S2
(M1, M2) ≥

1
9
· 4

5
min

{
K2,

N − 1
M2 − 1

}
=

4
45

min
{

K2,
N − 1

M2 − 1

}
≥ 1

45
· K1 ·min

{
K2,

N − 1
M2 − 1

}
. (61)

From (61) and (25b) we obtain

Rlb
S2
(M1, M2) ≥

1
45

RS2(α
∗, β∗). (62)

(2) For
N
4
≤ M2 ≤ N, it holds that

Rlb
S2
(M1, M2) ≥ 0 = K1

N
M2
− K1

N
M2

≥ K1 ·min
{

K2,
N

M2

}
− K1

N
M2

(K1≥4)
≥ K1 ·

3
4

min
{

K2,
N − 1

M2 − 1

}
− 16.

Therefore,

Rlb
S2
(M1, M2) ≥

3
4

RS2(α
∗, β∗)− 16. (63)

The entire (M1, M2) plane is obviously covered by cases 1) and 2). Thus, RS2(α
∗, β∗) and

Rlb
S2
(M1, M2) are shown to be embraced by constant additive and multiplicative curves as

shown by (64) which is derived via combining (62) and (63),

RS2 ≥ Rlb
S2
(M1, M2) ≥

1
45

RS2(α
∗, β∗)− 16. (64)

6. Conclusions and Further Works

In this paper, we further developed the system model of a coded caching scheme
by simultaneously assuming a hierarchical network and adversaries tapping the shared
links in peak time. We calculated the secure achievable rates of each link in the proposed
scheme. The parameters considered in previously-proposed hierarchical scheme have been
reconsidered here to obtain approximate minimum achievable rates. Furthermore, we
calculated the lower bound on the feasible rates. We showed that the secure achievable
rates are within a constant multiplicative and additive gap to the corresponding lower
bounds. These results are similar to those obtained in the non-secure hierarchical scheme,
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but the cost of security appears in the form of larger constants. Our work can be continued
by proposing and evaluating yet more complex system models. More complicated models
can assume that the adversary has access to the shared links in the placement phase or
allow the users to issue more than one request in the delivery phase.
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