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Abstract: Angiotensin (Ang)-(1-7) is a beneficial renin–angiotensin system (RAS) hormone that elicits
protective cardiometabolic effects in young animal models of hypertension, obesity, and metabolic
syndrome. The impact of Ang-(1-7) on cardiovascular and metabolic outcomes during aging,
however, remains unexplored. This study tested the hypothesis that Ang-(1-7) attenuates age-related
elevations in blood pressure and insulin resistance in mice. Young adult (two-month-old) and aged
(16-month-old) male C57BL/6J mice received Ang-(1-7) (400 ng/kg/min) or saline for six-weeks via a
subcutaneous osmotic mini-pump. Arterial blood pressure and metabolic function indices (body
composition, insulin sensitivity, and glucose tolerance) were measured at the end of treatment.
Adipose and cardiac tissue masses and cardiac RAS, sympathetic and inflammatory marker gene
expression were also measured. We found that chronic Ang-(1-7) treatment decreased systolic
and mean blood pressure, with a similar trend for diastolic blood pressure. Ang-(1-7) also improved
insulin sensitivity in aged mice to levels in young mice, without effects on glucose tolerance or body
composition. The blood pressure–lowering effects of Ang-(1-7) in aged mice were associated with
reduced sympathetic outflow to the heart. These findings suggest Ang-(1-7) may provide a novel
pharmacological target to improve age-related cardiometabolic risk.
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1. Introduction

Cardiovascular disease remains the leading cause of death in individuals greater than 65
years of age [1]. Aging is associated with increased arterial stiffness, changes in cardiac structure
and function, reduced parasympathetic tone, and elevated sympathetic outflow to the heart and other
cardiovascular organs. These age-related manifestations predispose to increased risk for developing
cardiovascular diseases including systolic hypertension, stroke, myocardial infarction, and heart
failure [1]. Aging is also associated with weight gain and metabolic dysfunction (e.g., insulin resistance,
glucose intolerance, and type 2 diabetes), which exacerbates the progression of cardiovascular
disease to increase morbidity and mortality [2]. Given the increasing aging population worldwide,
it is important to understand pathophysiological mechanisms contributing to age-related impairments
in cardiovascular and metabolic functions.

The renin–angiotensin system (RAS) may provide an important hormonal link connecting
cardiovascular and metabolic derangements in aging. Angiotensin (Ang) II is well recognized to
bind type 1 receptors (AT1R) to increase blood pressure via neural, renal, vascular, and cardiac
mechanisms [3,4]. Ang II is implicated in numerous cardiovascular diseases, with more recent
evidence showing a role for elevated levels of this hormone in insulin resistance, obesity, and type
2 diabetes [5,6]. While plasma renin activity and responsiveness and Ang II levels decline during
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aging, AT1R density is increased to enhance sensitivity to Ang II at the local tissue level [7,8].
Consistent with this, therapies blocking Ang II activity such as angiotensin-converting enzyme (ACE)
inhibitors and angiotensin receptor blockers (ARBs) effectively lower blood pressure, reduce risk
for diabetes, prevent deficits in cardiovascular and metabolic functions and increase lifespan in
aged animals and clinical populations [7,9–11]. Of interest, ACE inhibitors and ARBs increase
levels of the protective hormone Ang-(1-7), which our group and others have shown contributes to
the beneficial cardiometabolic effects of these therapies in animal models of cardiovascular diseases,
obesity, and diabetes [12–15]. Importantly, ACE inhibitors are limited in up to 11% of patients by
cough due to production of kinins, and many patients are unresponsive to these therapies in terms of
blood pressure control [16]. Direct targeting of Ang-(1-7) may provide benefit beyond ACE inhibitors
and ARBs by improving integrated cardiometabolic function while avoiding limiting side effects of
these therapies.

Ang-(1-7) is a more recently discovered RAS hormone that binds Mas receptors to oppose
the deleterious cardiovascular and metabolic actions of Ang II [17,18]. In young adult rodent models
of obesity and metabolic syndrome, circulating Ang-(1-7) levels are reduced, and chronic restoration of
this hormone improves blood pressure control as well as measures of metabolic function such as body
mass, hyperinsulinemia, insulin sensitivity, glucose tolerance, and lipid metabolism [19–23]. Ang-(1-7)
also attenuates cardiac hypertrophy, fibrosis, and post-infarct remodeling in young adult rodent models
of hypertension and obesity [19,24]. Emerging evidence suggests that aging is also associated with
decreased levels of Ang-(1-7) in the circulation as well as reduced vasodilatory responses to exogenous
Ang-(1-7) administration in isolated aortic vessels [25–27]. To our knowledge, there are no studies
evaluating the importance of Ang-(1-7) treatment in vivo to integrated cardiovascular and metabolic
outcomes during aging. In this study, we tested the hypothesis that Ang-(1-7) attenuates age-related
elevations in blood pressure and insulin resistance. We also examined if any blood pressure lowering
effects of Ang-(1-7) in aged mice were associated with changes in indices of cardiac autonomic tone.

2. Results

2.1. Ang-(1-7) Does Not Affect Body Weight or Composition in Aged Mice

Body mass and adipose and cardiac tissue weights are shown in Table 1. Aged mice had a
higher body mass compared to young mice. In aged mice, adiposity and fluid mass percentages
were also higher, and percent lean mass was lower. Chronic Ang-(1-7) treatment did not affect body
mass or body composition in aged or young mice. The weights of epididymal and inguinal white
adipose, brown adipose, and cardiac tissue were higher in aged, compared to young mice, but were
not significantly affected by Ang-(1-7) treatment.

2.2. Ang-(1-7) Improves Insulin Sensitivity in Aged Mice

Aged mice developed a modest hyperinsulinemia, in the absence of changes in fasting blood
glucose levels following a four-hour fasting period (Figure 1A,B), suggesting insulin resistance.
There was a significant main effect of Ang-(1-7) to increase glucose (on average 12–16 mg/dL), without
affecting insulin. The decrease in blood glucose in response to exogenous insulin during the insulin
tolerance test (ITT) is shown in Figure 1C. The area under the curve (AUC) was calculated to summarize
changes in glucose in response to insulin, with a more negative value indicating higher insulin
sensitivity (Figure 1D). Insulin sensitivity was significantly lower in aged mice compared to in young
mice (Figure 1D). While no main effect of Ang-(1-7) treatment was evident, there was a significant
interaction detected, with Ang-(1-7) improving insulin sensitivity in aged mice to a similar level to that
observed in young mice.
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Table 1. Angiotensin (Ang)-(1-7) and body composition in aged mice.

Parameter, Unit Young Saline Young Ang-(1-7) Aged Saline Aged Ang-(1-7) PAge PDrug PInt

n 10 10 8 10

Body composition

Body mass, g 30.0 ± 0.8 30.9 ± 0.6 46.1 ± 1.7 *† 44.4 ± 1.6 *† 0.001 0.740 0.302

Adiposity, % 7.0 ± 0.5 7.2 ± 0.7 14.6 ± 1.7 *† 16.7 ± 1.5 *† 0.001 0.328 0.451

Lean mass, % 69.7 ± 0.8 69.3 ± 0.9 60.7 ± 1.9 *† 58.2 ± 1.3 *† 0.001 0.251 0.403

Fluid mass, % 6.9 ± 0.1 6.7 ± 0.1 8.6 ± 0.2 *† 8.4 ± 0.1 *† 0.001 0.207 0.969

Adipose and heart tissue weights

EPF, % 1.3 ± 0.2 1.6 ± 0.3 2.8 ± 0.5 3.7 ± 0.5 *† 0.001 0.152 0.457

SCF, % 1.0 ± 0.1 1.1 ± 0.2 2.3 ± 0.5 3.2 ± 0.4 *† 0.001 0.178 0.278

BAT, % 0.29 ± 0.05 0.29 ± 0.03 0.44 ± 0.06 † 0.45 ± 0.02 *† 0.001 0.809 0.877

Heart, % 0.36 ± 0.06 0.44 ± 0.01 0.48 ± 0.02 0.45 ± 0.03 0.038 0.362 0.085

Data are mean ± SEM and were analyzed by two-way ANOVA for main effects of age (PAge) and Ang-(1-7) versus
saline treatment (PDrug) as well as their interaction (PInt) in young adult and aged mice. * p < 0.05 versus young
saline and † p < 0.05 versus young Ang-(1-7) from post-hoc pairwise comparisons with Tukey correction for multiple
comparisons. Body composition measurements and adipose and heart tissue weights are expressed as a percentage
of total body mass. EPF, epididymal visceral white adipose tissue; SCF, inguinal subcutaneous white adipose tissue;
BAT, interscapular brown adipose tissue.
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Figure 1. Angiotensin (Ang)-(1-7) improved insulin sensitivity in aged mice (n = 8–10/group). (A), Bar 

charts showing there was no effect of aging on circulating glucose levels measured after a 4-h fasting 

period. The Ang-(1-7) treatment mildly elevated glucose compared with saline in young adult and 

aged mice. (B), Bar charts showing aged mice had elevated circulating insulin levels measured after 

a 4-h fasting period, which was not reversed by Ang-(1-7) treatment. (C), Raw data curve showing 

changes in blood glucose levels from baseline over a 120-min period following exogenous insulin 

administration in young adult and aged mice. Dotted line represents baseline. (D), Glucose data 

summarized as an area under the curve (AUC), with a more negative number indicating a greater 

drop in glucose in response to insulin or increased insulin sensitivity. Aged mice had a significant 

reduction in insulin sensitivity, which was improved following chronic Ang-(1-7) treatment to a 

similar level to that observed in young adult mice. Data are mean ± SEM and were analyzed by two-

way ANOVA for main effects of age (PAge) and Ang-(1-7) versus saline treatment (PDrug) as well as 

their interaction (PInt), with Tukey post-hoc pairwise comparisons with correction for multiple 

comparisons. 

Figure 1. Angiotensin (Ang)-(1-7) improved insulin sensitivity in aged mice (n = 8–10/group).
(A), Bar charts showing there was no effect of aging on circulating glucose levels measured after a 4-h
fasting period. The Ang-(1-7) treatment mildly elevated glucose compared with saline in young adult
and aged mice. (B), Bar charts showing aged mice had elevated circulating insulin levels measured
after a 4-h fasting period, which was not reversed by Ang-(1-7) treatment. (C), Raw data curve showing
changes in blood glucose levels from baseline over a 120-min period following exogenous insulin
administration in young adult and aged mice. Dotted line represents baseline. (D), Glucose data
summarized as an area under the curve (AUC), with a more negative number indicating a greater drop
in glucose in response to insulin or increased insulin sensitivity. Aged mice had a significant reduction
in insulin sensitivity, which was improved following chronic Ang-(1-7) treatment to a similar level to
that observed in young adult mice. Data are mean ± SEM and were analyzed by two-way ANOVA
for main effects of age (PAge) and Ang-(1-7) versus saline treatment (PDrug) as well as their interaction
(PInt), with Tukey post-hoc pairwise comparisons with correction for multiple comparisons.
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2.3. Glucose Tolerance Is Not Affected by Either Aging or Ang-(1-7) Treatment

There was no impact of either aging or Ang-(1-7) treatment on circulating glucose levels when
measured after an overnight fast (Figure 2A). The increase in blood glucose in response to exogenous
dextrose administration during the glucose tolerance test (GTT) is shown in Figure 2, with a more
positive AUC value indicating glucose intolerance. There were no main effects of age or Ang-(1-7)
treatment on glucose tolerance (Figure 2B,C) as well as no interaction. During the GTT, the AUC for
change in plasma insulin in response to dextrose was also measured to examine for potential changes
in glucose-stimulated endogenous insulin secretion, with a higher AUC indicating increased insulin
secretion. Similar to the findings for glucose tolerance, there was no effect of either age or Ang-(1-7)
treatment on insulin secretion (Figure 2D).
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Figure 2. Glucose tolerance was not affected by aging or chronic angiotensin (Ang)-(1-7) treatment
(n = 8–10/group). (A), Bar charts showing there was no impact of aging or Ang-(1-7) treatment on
circulating glucose levels measured after an overnight fasting period. (B), Raw data curve showing
changes in blood glucose levels from baseline over a 120-min period following exogenous dextrose
administration in young adult and aged mice. (C), Glucose data summarized as an AUC, with a
more positive number indicating higher levels of glucose remaining in the blood over time or glucose
intolerance. There was no effect of aging or Ang-(1-7) treatment on glucose tolerance. (D), Insulin data
summarized as an AUC, with a more positive number indicating increased insulin secretion. There was
no effect of aging or Ang-(1-7) treatment on glucose-stimulated endogenous insulin secretion. Data are
mean± SEM and were analyzed by two-way ANOVA for main effects of age (PAge) and Ang-(1-7) versus
saline treatment (PDrug) as well as their interaction (PInt), with Tukey post-hoc pairwise comparisons
with correction for multiple comparisons.

2.4. Ang-(1-7) Decreases Systolic and Mean Blood Pressure in Aged Mice

Aged mice exhibited higher systolic and mean blood pressures compared with young mice, with
a similar trend for diastolic blood pressure (Figure 3A,C). Ang-(1-7) reduced systolic and mean blood
pressure in aged mice, with no effect on diastolic blood pressure. Heart rate was reduced in aged mice,
compared to in young mice (Figure 3D), but was not affected by Ang-(1-7) treatment.

2.5. Ang-(1-7) Decreases Measures of Cardiac Sympathetic Tone in Aged Mice

To determine potential mechanisms underlying blood pressure-lowering effects of Ang-(1-7) in
aged mice, cardiac autonomic tone was assessed via spectral analysis in a subset of aged mice treated with
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saline versus Ang-(1-7). We found that Ang-(1-7) significantly decreased cardiac sympathetic tone in
aged mice (Figure 4A), with no effect on cardiac parasympathetic tone (Figure 4B). This resulted in a trend
towards improved sympathovagal balance in Ang-(1-7)-treated aged mice (Figure 4C). Cardiac gene
expression of tyrosine hydroxylase (Th), a marker of sympathetic neuronal activity, was significantly
reduced by Ang-(1-7) treatment in aged mice, further suggesting reduced cardiac sympathetic tone
(Figure 4D). Cardiac gene expression of RAS (AT1R, Mas receptor, ACE, and angiotensin-converting
enzyme 2 (ACE2)) and inflammatory (tumor necrosis factorα (TNFα), interleukin 6 (IL6), and interleukin
10 (IL10)) markers were unaffected by Ang-(1-7) treatment in aged mice (Figure 4D).
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Figure 3. Angiotensin (Ang)-(1-7) decreased blood pressure in aged mice (n = 4–10/group).
(A), Bar charts showing aged mice exhibited an increase in systolic blood pressure, which was
reduced by Ang-(1-7) to levels seen in young adult mice. (B), Bar charts showing there was no effect of
either age or Ang-(1-7) treatment on diastolic blood pressure. (C), Bar charts showing aged mice had
an increase in mean blood pressure, which was reduced by Ang-(1-7) to levels seen in young adult
mice. (D), Bar charts showing aged mice had a lower heart rate compared with young mice, which was
not impacted by Ang-(1-7) treatment. Data are mean ± SEM and were analyzed by two-way ANOVA
for main effects of age (PAge) and Ang-(1-7) versus saline treatment (PDrug) as well as their interaction
(PInt), with Tukey post-hoc pairwise comparisons with correction for multiple comparisons.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 13 
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Figure 4. Angiotensin (Ang)-(1-7) decreased measures of cardiac sympathetic tone in aged mice.



Int. J. Mol. Sci. 2020, 21, 5131 6 of 13

(A–C), Indices of cardiac sympathetic and parasympathetic tone measured by spectral analysis of
low-frequency and high-frequency components of heart rate variability, respectively (n = 7–9/group).
Ang-(1-7) reduced cardiac sympathetic tone, with no effect on parasympathetic tone, in aged mice.
This resulted in a trend for Ang-(1-7) to improve overall cardiac sympathovagal balance in aged
mice. (D), Gene expression measured in hearts from saline- versus Ang-(1-7)-treated aged mice using
quantitative real-time PCR methods (n = 4–6/group). Ang-(1-7) reduced cardiac mRNA of tyrosine
hydroxylase (TH), the rate-limiting enzyme for norepinephrine synthesis, in the heart of aged mice.
There was no effect of Ang-(1-7) on cardiac mRNA for markers of the renin–angiotensin system (AT1R,
Ang II AT1 receptor; MasR, Ang-(1-7) Mas receptor; ACE, angiotensin-converting enzyme; ACE2,
angiotensin-converting enzyme 2) or inflammatory markers (TNFα, tumor necrosis factor α; IL6,
interleukin 6; IL10, interleukin 10). Data are mean ± SEM and were analyzed by an unpaired t-test.

3. Discussion

Despite numerous studies showing protective cardiometabolic effects in young animals [6,17,18],
there are few studies examining Ang-(1-7) actions in aged animals. The goal of this study was to
determine whether chronic Ang-(1-7) treatment improved age-related cardiovascular and metabolic
deterioration. The main findings in aged mice are as follows: (1) a cardiometabolic phenotype similar
to aging in clinical populations was observed including the increased body mass and adiposity,
hyperinsulinemia, insulin resistance, cardiac hypertrophy, elevated blood pressure, and reduced
heart rate; (2) Ang-(1-7) infusion for six weeks improved measures of integrated cardiometabolic
function, specifically systolic and mean blood pressure and insulin sensitivity; (3) Ang-(1-7)-mediated
improvements in blood pressure and insulin sensitivity were independent of changes in body mass,
body composition, and cardiac hypertrophy; and (4) blood pressure-lowering effects of Ang-(1-7) were
associated with reduced measures of sympathetic tone to the heart, in the absence of changes in local
RAS and inflammatory markers. These overall data indicated that Ang-(1-7) may provide a novel
target to reverse age-related cardiovascular and metabolic complications. To our knowledge, this is
the first report describing effects of Ang-(1-7) on cardiometabolic outcomes in aged animal models.
Therefore, while descriptive in nature, this study adds to the very limited literature on Ang-(1-7) in
aging and provides a rationale for further research to identify precise mechanisms underlying these
beneficial effects.

Healthy aging is known to alter activity and responsiveness of the RAS. Plasma renin activity
and responsiveness and aldosterone and Ang II levels are decreased in aged animals and clinical
populations [7,8]. Ang II elicits exaggerated responses in aged animals, however, due to the increased
tissue production of Ang II and the expression of AT1R [7,26,28,29]. In addition to increased Ang II
actions, emerging studies suggest that circulating Ang-(1-7) levels are reduced with aging in human
subjects, expression of Mas receptors and ACE2 are decreased in aorta of aged mice, and there is
loss of vasodilatory responses to Ang-(1-7) in aorta of aged female mice [25–27]. This increased
Ang II activity combined with decreased protective effects of Ang-(1-7) pathways can contribute to an
increase in reactive oxygen species, mitochondrial dysfunction, and end-organ damage in aging [7,30].
The mechanisms underlying this potential shift in the Ang II to Ang-(1-7) balance in aging have
not been investigated but may include changes in formation and degradation enzymatic pathways,
changes in receptor density and related signaling pathways, as well as altered release of angiotensin
peptides from local tissues into the circulation. A limitation of our study is we did not examine for
changes in these potential circulating or tissue RAS mechanisms in response to either aging or chronic
Ang-(1-7) infusion, and this will be an important future direction.

Aging is an independent risk factor for systolic hypertension, which is largely attributed to
increased arterial stiffness and higher sympathetic nervous system activity [31,32]. Diastolic blood
pressure and heart rate decrease with age in humans [32,33]. In male mice, systolic and mean blood
pressures increase with age, but diastolic blood pressure and heart rate remain stable throughout
the lifespan [34]. Similarly, in our study, systolic and mean blood pressures increased with age and were
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selectively reduced by Ang-(1-7) treatment. We also observed a decrease in heart rate with aging
that was not affected by Ang-(1-7), while diastolic blood pressure was not altered by either age or
Ang-(1-7) treatment. These findings are consistent with previous studies, in which Ang-(1-7) decreased
mean blood pressure in aged rats [35] and in young adult rodent models of metabolic syndrome
and hypertension [36–38].

The blood pressure-lowering effects of Ang-(1-7) in aged mice were associated with decreased
cardiac sympathetic tone measured by spectral analysis of heart rate variability. We also observed
Ang-(1-7) decreased gene expression of Th, a rate-limiting enzyme for norepinephrine synthesis, in aged
hearts. This suggests Ang-(1-7) lowers blood pressure via cardiac sympathoinhibitory mechanisms, a
finding consistent with a previous study in metabolic syndrome rats [36]. We did not observe effects on
cardiac parasympathetic tone in aged mice, which contrasts previous studies showing improvements
in parasympathetic measures such as heart rate variability and arterial baroreflex sensitivity with
Ang-(1-7) in younger animals [17]. A limitation is that we did not have cardiac samples from the young
mice to determine if aging itself altered markers of sympathovagal balance prior to the Ang-(1-7)
treatment. Alternate mechanisms that could contribute to depressor effects of Ang-(1-7) in aging
include the restoration of attenuated vasodilatory responses [25,26], reductions in arterial stiffness,
and the inhibition of local Ang II-ACE-AT1R pathways. Our data suggest that blood pressure-lowering
effects of Ang-(1-7) are independent of changes in local RAS signaling and inflammatory pathways in
the heart, although we did not assess for changes in Ang-(1-7) or Ang II peptide content.

Aging is associated with increased cardiac mass, indicating left ventricular hypertrophy, which
can occur even in the absence of hypertension [33]. While we observed age-related increases in
cardiac mass in this study, it was not improved by Ang-(1-7) treatment. This contrasts previous
studies, in which chronic Ang-(1-7) treatment improved cardiac function, reduced cardiac fibrosis
and prevented cardiac remodeling following ischemia in young rodent models of hypertension,
obesity, and metabolic syndrome [19,24,37,38]. In addition, ARBs reverse cardiac remodeling in
aged spontaneously hypertensive rats, although this could reflect effects of reduced Ang II versus
increased Ang-(1-7) [39]. It is also possible that six weeks of Ang1-7 treatment is not sufficient to
reverse age-related impairments in cardiac structure and that more long-term infusions are needed.
In addition, the aged mice in this study exhibited mild cardiac hypertrophy compared with the other
models, which may not be improved with Ang-(1-7).

Aging is one of the strongest known risk factors for developing insulin resistance and type 2
diabetes [40]. Insulin resistance in aging is partially attributed to skeletal muscle aging leading to decreased
expression of skeletal muscle glucose transporter type 4 (Glut4) and mitochondrial dysfunction [41].
In the current study, we observed that aged mice were insulin-resistant, which was reversed by chronic
Ang-(1-7) treatment. Insulin-sensitizing effects of Ang-(1-7) have been demonstrated in lean rats and in
rodent models of obesity, diabetes, and metabolic syndrome [20–22,42–44]. The mechanisms reported for
insulin sensitization include improved intracellular insulin signaling and increased glucose uptake in
peripheral tissues. We previously showed that, in obese male mice, Ang-(1-7) improves skeletal muscle
insulin sensitivity by increasing Glut4 in the sarcolemma [21]. We suspect that Ang-(1-7) improves insulin
sensitivity via a similar mechanism in aged mice, but further studies using hyperinsulinemic-euglycemic
insulin clamps will be needed to confirm this. While not examined in this study, Ang-(1-7) could also
induce changes in local RAS components in insulin-sensitive tissues such as skeletal muscle and adipose to
contribute to improving insulin sensitivity in aged mice. Of interest, a recent study showed that Ang-(1-7)
restores muscle strength in aged mice without changes in Ang II content in skeletal muscle or ACE2,
Mas receptor, or AT1R expression in skeletal muscle and epididymal adipose tissue [45]. This finding,
combined with our data showing lack of changes in RAS receptor and enzyme gene expression the heart,
may suggest that beneficial physiological effects of Ang-(1-7) in aging are independent of local RAS
signaling pathways. Further studies are needed, however, to confirm these findings.

While aging is also known to promote glucose intolerance, aged mice in this study were not
glucose–intolerant and thus there was no effect of Ang-(1-7) treatment. This is consistent with
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our previous studying showing that Ang-(1-7) does not improve glucose tolerance in obese male
mice [43]. This contrasts other studies in male rat models of hypertension and metabolic syndrome,
however, showing improved glucose tolerance with chronic Ang-(1-7) administration [20,22,36,42,44].
These discrepancies could reflect differences in species (rats versus mice), diets (control versus high fat
versus high fructose) as well as disease models (aging versus obesity versus metabolic syndrome).

Aging increases risk of hyperglycemia and hyperinsulinemia, as they are signs of insulin resistance
and glucose intolerance. Plasma glucose and insulin are commonly measured clinically but are less
sensitive to detect impaired glucose homeostasis compared with insulin and glucose tolerance tests [40].
While our study showed age-related hyperinsulinemia, we did not observe evidence for hyperglycemia
or effects of Ang-(1-7) to improve these measures. This is consistent with recent findings from our
group and others showing that Ang-(1-7) does not impact fasting plasma insulin or glucose levels in
obese mice [21,43,46]. Other studies support that Ang-(1-7) reduces fasting insulin but not glycemia in
fructose-fed rats [20,44]. Longer-term treatment with Ang-(1-7) does improve both hyperinsulinemia
and hyperglycemia in obese mice and fructose fed rats [44,47], suggesting improvements in insulin
sensitivity precede the correction of hyperglycemia. It is possible, therefore, that longer durations of
Ang-(1-7) treatment would correct hyperinsulinemia in aged mice but would be unlikely to impact
glucose levels as aged mice were not hyperglycemic.

Improvements in cardiovascular and metabolic function can be secondary to reductions in
body mass, as weight loss independently decreases blood pressure, sympathetic activity, and insulin
resistance [48,49]. Previous studies found that Ang-(1-7) decreases body mass and adiposity while
increasing lean mass in obese male and female mice [42,43,50]. In the current study, Ang-(1-7) did
not significantly decrease body mass or improve body composition in aged mice. It is possible again
that longer treatment durations are needed to manifest changes in body composition in aged mice,
given that energy balance is tightly regulated. Supporting this concept, previous studies showed body
mass-independent improvements in cardiometabolic function in fructose-fed rats after four weeks of
peripheral or central Ang-(1-7) treatment, whereas more chronic six-month treatment reduced body
mass and adiposity in this model [44].

Overall, these studies showed that chronic Ang-(1-7) treatment improved integrated
cardiometabolic function in aged mice by reducing blood pressure, insulin resistance, and cardiac
sympathetic activity. The beneficial effects of Ang-(1-7) in aged mice occurred independent of changes
in body mass or composition. Future studies will focus on circulating and tissue-specific mechanisms by
which Ang-(1-7) ameliorates age-related cardiovascular and metabolic dysfunction, and potential sex
differences. In particular, Ang-(1-7) could inhibit local or circulating components of Ang II pathways
to elicit beneficial cardiometabolic effects. In support of this, Ang-(1-7) reduces plasma renin activity
in fructose-fed rats [44], as well as ACE activity in canines and ex vivo in human cardiovascular
tissues [51,52]. However, there is no information on the impact of Ang-(1-7) infusion on these RAS
components during aging, and therefore, this remains an area of interest for future mechanistic research.

4. Materials and Methods

4.1. Approvals

All procedures were approved by the College of Medicine Institutional Animal Care and Use
Committee at the Pennsylvania State University (Approved 03/03/2016, ID 46841) and conformed to
the NIH Guide for the Care and Use of Laboratory Animals.

4.2. General Protocol

There were four groups of mice in this study: (1) young, saline infusion (n = 10); (2) young,
Ang-(1-7) infusion (n = 10); (3) aged, saline infusion (n = 8); and (4) aged, Ang-(1-7) infusion (n = 10).
Young adult (2-month-old) and aged (16-month-old) male C57BL/6J mice (Jackson Laboratory, Bar
Harbor, ME, USA) were implanted with a subcutaneous osmotic mini-pump (Alzet 2006, Cupertino,
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CA, USA) to chronically deliver saline vehicle or Ang-(1-7) (400 ng/kg/min; Bachem, Torrance, CA,
USA) for 6 weeks. This dose and administration route of Ang-(1-7) is known to improve cardiovascular
and metabolic function in young adult mouse models of hypertension and obesity [12,21]. All mice were
fed a standard chow diet (Teklad 2018, Envigo, Indianapolis, IN, USA) with ad libitum access to food
and water. After 4 weeks of treatment, whole-body insulin action was assessed using standardized
ITT and GTT, respectively. After 5 weeks of treatment, body composition and hemodynamics
were measured. On the last day of treatment, mice were euthanized for the collection of blood
and tissue samples.

4.3. Insulin and Glucose Tolerance Testing

As recently described [43], for the ITT, four-hour fasted mice were injected intraperitoneally with
insulin (0.75 U/kg, Novolin R), with glucose measured via a glucometer (Prodigy AutoCode, Charlotte,
NC, USA) from tail vein blood samples at 15, 30, 60, 90, and 120 min post-injection. An additional
blood sample was taken at baseline via a micro-hematocrit capillary tube to measure plasma insulin.
For the GTT, overnight-fasted mice were injected intraperitoneally with 50% dextrose (2 g/kg),
with glucose measured at baseline and at 15, 30, 60, 90, and 120 min post-injection. Plasma insulin was
measured at baseline during the ITT as well as at baseline and 15 and 120 min post-injection during
the GTT, using a mouse ultrasensitive insulin ELISA (Alpco Diagnostics, Salem, NH, USA). At least
two days of recovery were allowed between ITT and GTT procedures.

4.4. Body Composition

During the last week of treatment, body mass and composition were measured in conscious mice
using a Bruker Minispec LF50 quantitative nuclear magnetic resonance analyzer (Billerica, MA, USA).
Fat, lean, and fluid masses were reported as percentages of total body mass.

4.5. Blood Pressure and Heart Rate Measurements

Blood pressure and heart rate were measured in a subset of mice (n = 4–10/group) via an
indwelling carotid artery catheter connected to a strain gauge-type transducer and a blood pressure
analyzer (MP36R, Biopac Systems, Inc. Goleta, CA, USA), similar to our previous studies [12,21].
Blood pressure and heart rate were continuously recorded for at least 10 min, with average values
during this period reported. Blood pressure and heart rate recordings were analyzed for indices of
cardiac sympathetic and parasympathetic tone using frequency-domain spectral analysis methods
(Acqknowledge 4 software, Biopac Systems, Inc.).

4.6. Euthanasia and Blood and Tissue Collection

Mice were euthanized via cardiac exsanguination under isoflurane anesthesia for the collection
of blood and the isolation and weighing of heart and adipose (visceral epididymal, subcutaneous
inguinal, and interscapular brown) tissues.

4.7. Cardiac Gene Expression of RAS, Inflammatory and Sympathetic Markers

In a subset of aged mice treated with Ang-(1-7) versus saline (n = 4–6/group), the heart was
flash frozen in liquid nitrogen and stored at −80 ◦C to examine RAS, sympathetic and inflammatory
markers using quantitative real-time PCR. Frozen heart tissue (25 mg) was homogenized in QIAzol
Lysis Reagent using a TissueLyser II, with total RNA extracted using RNAeasy Lipid Tissue Mini
Kits and the automated processing QIAcube (Qiagen, Germantown, MD, USA). RNA concentration
was measured with a NanoDrop spectrophotometer (ND-1000). cDNA was synthesized from total
RNA using a high-capacity cDNA reverse transcription kit (ThermoFisher Scientific, Waltham, MA,
USA). Quantitative real-time PCR was performed on a QuantStudio 12K Flex system (Applied
Biosystems, Foster City, CA, USA) using mouse-specific Taqman gene primers (ThermoFisher Scientific).
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The primers used were: AT1R (Agtr1a, mm01957722_s1), Mas receptor (Mas1, mm00434823_s1),
ACE (mm00802048_m1), ACE2 (mm01159006 m1), Th (mm00447557_m1), TNFα (Tnf, mm00443258_m1),
IL6 (mm00446190_m1), and IL10 (mm01288386_m1). Each sample was measured in triplicate with cycle
threshold (CT) values normalized to the 18S ribosomal RNA (Rn18s; mm03928990_g1) housekeeping
gene. Relative gene expression was determined using 2−∆∆Ct methods.

4.8. Statistical Considerations

Data are presented as mean ± SEM and analyzed by GraphPad Prism (Version 8.3.0, San Diego,
CA, USA). Outcomes were compared among groups using two-way ANOVA to examine for main
effects of age and drug as well as their interaction with a post-hoc Tukey test for multiple comparisons
or between groups using an unpaired t-test. A p-value of <0.05 was considered statistically significant.
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Ang angiotensin
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IL6 interleukin 6
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