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Abstract

Introduction

At low mutation-detection thresholds, next generation sequencing (NGS) for HIV-1 geno-

typic resistance testing is susceptible to artifactual detection of mutations arising from PCR

error and APOBEC-mediated G-to-A hypermutation.

Methods

We analyzed published HIV-1 pol Illumina NGS data to characterize the distribution of muta-

tions at eight NGS mutation detection thresholds: 20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%, and

0.1%. At each threshold, we determined proportions of amino acid mutations that were

unusual (defined as having a prevalence <0.01% in HIV-1 group M sequences) or signature

APOBEC mutations.

Results

Eight studies, containing 855 samples, in the NCBI Sequence Read Archive were analyzed.

As detection thresholds were lowered, there was a progressive increase in the proportion of

positions with usual and unusual mutations and in the proportion of all mutations that were

unusual. The median proportion of positions with an unusual mutation increased gradually

from 0% at the 20% threshold to 0.3% at the 1% threshold and then exponentially to 1.3%

(0.5% threshold), 6.9% (0.2% threshold), and 23.2% (0.1% threshold). In two of three stud-

ies with available plasma HIV-1 RNA levels, the proportion of positions with unusual muta-

tions was negatively associated with virus levels. Although the complete set of signature

APOBEC mutations was much smaller than that of unusual mutations, the former outnum-

bered the latter in one-sixth of samples at the 0.5%, 1%, and 2% thresholds.
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Conclusions

The marked increase in the proportion of positions with unusual mutations at thresholds

below 1% and in samples with lower virus loads suggests that, at low thresholds, many

unusual mutations are artifactual, reflecting PCR error or G-to-A hypermutation. Profiling the

numbers of unusual and signature APOBEC pol mutations at different NGS mutation detec-

tion thresholds may be useful to avoid selecting a threshold that is too low and poses an

unacceptable risk of identifying artifactual mutations.

Introduction

Next-generation sequencing (NGS) is increasingly performed for HIV-1 genotypic resistance

testing [1]. However, low levels of plasma viremia and/or inefficient RNA extraction, or

reverse transcription may result in a low number of amplifiable cDNA templates. In such sce-

narios, much of the observed variability in an NGS sequence may reflect PCR error rather

than authentic viral mutations [2–4]. Since PCR errors are not subject to selective forces

exerted during virus evolution, we have hypothesized that the presence of large numbers of

unusual and likely deleterious mutations at an NGS mutation detection threshold suggests the

threshold is too low [5–8].

NGS is also more likely than Sanger sequencing to detect low frequency APOBEC-mediated

G-to-A hypermutation [9–11]. APOBEC-mediated G-to-A hypermutation can be detected if

plasma samples are contaminated with proviral DNA templates, which are enriched for defec-

tive viruses [12], or if defective hypermutated virus genomes are successfully packaged and

released from cells. Hypermutated viruses are unlikely to be functional because they often con-

tain premature stop codons and mutations at highly conserved residues [9–11, 13]. Therefore,

the detection of drug-resistance mutations (DRMs) that could be caused by APOBEC in

viruses with evidence for G-to-A hypermutation has questionable clinical significance.

In this study, we systematically analyze HIV-1 pol NGS data from eight published studies to

characterize the distribution of unusual mutations and mutations suggestive of APOBEC-

mediated G-to-A hypermutation at different NGS mutation detection thresholds.

Methods

NGS datasets, FASTQ files, and codon frequency tables

We searched the NCBI Sequence Read Archive BioProject Library and other public reposito-

ries to identify NGS data sets of HIV-1 pol meeting the following criteria: (i) sequencing was

performed on Illumina instruments; (ii) samples contained at least 10 clinical specimens; (iii)

samples were from plasma HIV-1 RNA rather than proviral DNA; and (iv) samples required

PCR amplification (i.e., were not from metagenomic studies). The publications associated with

these datasets were reviewed to retrieve the following information for each sample: plasma

HIV-1 RNA level, volume of plasma submitted for RNA extraction, number of sequencing

reads, and methods of RNA extraction, RT-PCR, and library preparation. Datasets for which

there was no associated publication were excluded (Fig 1).

We extended the HYDRA pipeline [14] to generate a codon frequency table from each

FASTQ file. Briefly, we filtered reads with fewer than 100 nucleotides or a mean quality (phred

or q) score<30 (predicted error rate 1 in 1000). We then aligned the filtered reads to the

HXB2 pol nucleotide sequence using BOWTIE 2 [15] with the default HYDRA parameters.
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Individual nucleotides with a q score lower than 30 were not counted. The consensus sequence

for each sample was submitted to the HIVDB drug resistance interpretation program to

impute its subtype. Positions covered with�1000 remaining reads were used to populate a

codon frequency table with five fields:

1. Gene–protease (PR), reverse transcriptase (RT), or integrase (IN).

Fig 1. Flowchart of study selection process. Of 133 studies in the NCBI BioProject Sequence Read Archive as of August 1, 2019,

seven met study selection criteria. One additional study was identified in the research upload site Zenodo (https://zenodo.org/).

https://doi.org/10.1371/journal.pone.0225352.g001
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2. Amino acid position.

3. Number of reads for the position (coverage).

4. Sequenced codon.

5. Number of reads containing the codon.

Each codon frequency table was annotated with the following seven additional fields:

1. The codon’s translation. This is usually an amino acid but can also be a stop codon, an

insertion (indicated by more than one amino acid), a deletion, or a frame shift if the codon

does not contain a multiple of three bases).

2. The fraction of reads containing the codon.

3. The prevalence of the corresponding amino acid in group M sequences in HIVDB.

4. The prevalence of the codon in group M sequences in HIVDB.

5. Whether the amino acid encodes a drug-resistance mutation (DRM).

6. Whether the amino acid is a signature APOBEC mutation.

7. Whether the amino acid is a DRM that could also be caused by APOBEC.

Unusual mutations

The procedure by which HIVDB mutation prevalence data was determined is documented in

a GitHub repository (https://github.com/hivdb/hivfacts). The group M mutation prevalence

data was derived from direct PCR (“population based”) plasma virus Sanger sequences in

HIVDB, from which poor quality sequences had been filtered. The prevalence of an amino

acid at a position was calculated by dividing the number of occurrences of all non-mixed

amino acids by the total number of sequences containing the position. Each mutation was

counted once per individual. Unusual mutations were defined as mutations with a group M

prevalence<0.01% and not on the list of known DRMs (i.e., without an HIVDB mutation pen-

alty score).

Overall, 4,651 (23.4%) of the 19,887 possible amino acids in the 947 protease, RT, and inte-

grase positions were classified as usual and 15,236 (76.6%) were classified as unusual. The

usual amino acids included the 947 (20.4%) amino acids constituting the Los Alamos National

Laboratories group M consensus [16] and 3,704 non-consensus amino acids. The 3,704 non-

consensus usual amino acids included 2,750 (74.2%) with one nucleotide difference from the

group M consensus, 867 (23.4%) with two nucleotide differences, and 87 (2.3%) with three

nucleotide differences. Among the unusual mutations, 3,133 (20.6%) had one nucleotide dif-

ference from the group M consensus, 8,503 (55.8%) had two nucleotide differences, and 3,600

(23.6%) had three nucleotide differences.

Signature APOBEC mutations

Amino acid mutations consistent with APOBEC-mediated G-to-A hypermutation were identi-

fied using a modification of a previously described procedure [6]. Briefly, we found all posi-

tions in PR, RT, and IN for which >50% of amino acids at a position represented a potential

target for APOBEC3F (5’GA dinucleotides) or APOBEC3G (5’GG dinucleotides). We then

identified all amino acid mutations that would result from APOBEC3F or 3G editing of these

potential targets. Each of the resulting APOBEC-context mutations was then examined for its

HIV-1 pol NGS mutation distributions
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prevalence in group M sequences and for its association with stop codons or active site muta-

tions. Stop codons result from APOBEC3G editing of tryptophan (W): TGG ! TAG or TGG
! TGA, when tryptophan is followed by an amino acid beginning with an A or G. Active site

mutations in PR (D25N), RT (D110N, D185N, and D186N), and IN (D64N, D116N, and

E152K) result from APOBEC3F editing of aspartic acid GAC/T (D)! AAC/T (N) or glu-

tamic acid GAA/G (E)! AAA/G (K).

APOBEC-context mutations that met the following criteria were considered signature

APOBEC mutations: (i) they occurred at a prevalence <0.1% or at a prevalence <0.5% if they

occurred frequently in sequences with stop codons or active site mutations and (ii) they were

not known DRMs. Overall, we identified 296 signature APOBEC mutations including 45 in

PR, 154 in RT, and 97 in IN. Based on a previous study [6] and a comparison with the LANL

Hypermut program [17], we determined that pol genes containing three or more signature

APOBEC mutations in were likely to have undergone APOBEC-mediated G-to-A hypermuta-

tion (S1 Text).

Overall, 175 (59.1%) of the 296 signature APOBEC mutations were also unusual (i.e.,

prevalence < 0.01%). The remaining signature APOBEC mutations, which had a prevalence

ranging from 0.01% to 0.4%, were classified based on their genetic context, their rarity, and

their strong association with stop codons and active site mutations. In contrast, just 1.2% of

the 15,236 unusual mutations were also signature APOBEC mutations.

Statistical analysis

We calculated the proportion of amino acid positions with usual mutations, unusual muta-

tions, and signature APOBEC mutations at eight NGS mutation detection thresholds. Usual

mutations were defined as differences from the subtype B consensus sequence that were not

unusual. We also calculated the proportion of all mutations that were unusual (number of

unusual mutations / total number of mutations) at these same thresholds. The eight mutation

thresholds began at 20%, which is often considered the limit of detection of mixed bases for

Sanger sequencing, with each subsequent value approximately two-fold lower than the previ-

ous threshold: 10%, 5%, 2%, 1%, 0.5%, 0.2%, and 0.1%. Such “round” thresholds are commonly

used in manuscripts performing NGS data interpretation, and are meant to serve as represen-

tative values spanning the realistic range used by researchers.

Pearson correlation coefficient (r) was used to quantify the association between a sample’s

(i) virus load and proportion of positions with usual or unusual mutations; and (ii) median

number of sequence reads per position and proportion of positions with usual or unusual

mutations.

Results

NGS datasets

Eight studies containing 855 samples from 821 persons met the inclusion criteria [18–25] (Fig

1 and Table 1). These samples included 693 PR, 700 RT, and 449 IN NGS sequence sets. Of the

RT samples, 209 encompassed all 560 amino acid positions. Ninety percent of the remaining

samples encompassed at least the first 240 amino acid positions. Subtype B accounted for 606

(70.9%) of samples. Subtypes A, C, CRF01_AE, and CRF02_AG were the most common non-

B subtypes, accounting for 224 (26.2%) of sequences. Plasma HIV-1 RNA levels were available

for all sequenced samples in three studies [21, 23, 24].

Table 2 summarizes experimental parameters for each study. Most studies used 0.4 to 1.0

ml of plasma, high-fidelity RT and PCR enzymes, and nested PCR. However, the specific

extraction protocols and enzymes used for PCR amplification varied. Amplicon sizes also

HIV-1 pol NGS mutation distributions
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varied from 750 to 4,400 bp. Across all studies, the median coverage per position was 18,275,

with a 5% to 95% range of 2,944 to 81,184.

Usual and unusual mutations at different NGS mutation detection

thresholds

Pooled data from all datasets. Fig 2 depicts the proportion of positions with usual (panel

A) and unusual (panel B) mutations and the proportion of all mutations that were unusual

(number of unusual mutations / total number of mutations, panel C) as a function of mutation

detection threshold in pooled samples for all studies.

The median proportion of positions with a usual mutation increased from 5.2% to 11.6%

between the 20% and 0.5% thresholds then began doubling to 23.6% at the 0.2% threshold and

to 47.2% at the 0.1% thresholds.

The median proportion of positions with an unusual mutation increased from 0% to 0.3%

between the 20% and 1% thresholds but then began increasing about four-fold to 1.3% at the

0.5% threshold, 6.9% at the 0.2% threshold, and 23.2% at the 0.1% thresholds.

The median proportion of mutations that were unusual increased from 0% to 1.1% between

the 20% and 2% threshold but then jumped to 4.2% at the 1% threshold, 12.0% at the 0.5%

threshold, and to 25.1%, and 33.9% respectively at the 0.2% and 0.1% thresholds.

There was a weak but statistically significant relationship between the log10 of the number

of sequence reads (i.e., coverage) and the number of usual mutations (correlation coefficient r
between 0.21 and 0.24, p<0.001) at the 1%, 2%, 5%, 10%, and 20% thresholds (S1 Fig). The

Table 1. Published studies with available HIV-1 pol NGS datasets.

Author (Yr) Title #

Samples1
Genes VL2 Region ARV

Status

Subtypes3

Avila-Rios

(2016)[23]

HIV Drug Resistance in Antiretroviral

Treatment-Naïve Individuals in the Largest

Public Hospital in Nicaragua, 2011–2015

255 PR/RT Yes Nicaragua Naive B (99.6%)

Moscona

(2017)[19]

Comparison between next-generation and Sanger-based

sequencing for the detection of transmitted drug-resistance

mutations among recently infected HIV-1 patients in Israel,

2000–2014

78 PR (76); RT

(77); IN (30)

No Israel Naïve B (59%); C (22%); A

(14%)

Huber (2016)

[24]

MinVar: A rapid and versatile tool for HIV-1 drug resistance

genotyping by deep sequencing

33 PR/RT (33);

IN (13)

Yes Switzerland NA B (67%), A (9%), C (9%),

CRF02_AG (9%)

Nguyen

(2018)[20]

Prevalence and clinical impact of minority resistant variants in

patients failing an integrase inhibitor-based regimen by ultra-deep

sequencing

134 IN No France Treated B (60%), CRF02_AG

(26%)

Dalmat

(2018)[25]

Limited marginal utility of deep sequencing for HIV drug

resistance testing in the age of integrase inhibitors

112 PR (93); RT

(94); IN (38)

No U.S. Treated B (95%), C (4%), D (1%)

Jair (2019)

[18]

Validation of publicly-available software used in analyzing NGS

data for HIV-1 drug resistance mutations and transmission

networks in a Washington, DC, cohort.

42 PR (34), RT

(41), IN (33)

No U.S. Treated B (98%), CRF02_AG

(2%)

Ode (2015)

[21]

Quasispecies Analyses of the HIV-1 Near-full-length Genome

With Illumina MiSeq

92 PR/RT/IN Yes Japan Treated B (61%), CRF01_AE

(11%), C (11%), CRF02

(9%)

Telele (2019)

[22]

Pretreatment drug resistance in a large countrywide Ethiopian

HIV-1C cohort: a comparison of Sanger and high-throughput

sequencing.

109 PR/RT/IN No Ethiopia Naive C (99%), D (1%)

1Ode 2015 contained 92 samples from 58 persons.
2Virus load (VL) data was available for all samples in three studies. In Telele 2019, virus load data was available for a small subset of patients.
3Samples with uncommon subtypes are not shown.

https://doi.org/10.1371/journal.pone.0225352.t001
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relationship between the number of sequence reads and the number of unusual mutations was

much weaker with r between 0.13 and 0.17 at the 1%, 2%, and 5% thresholds (S2 Fig).

Inter- and intra-study variation. Fig 3A and 3B plot the median proportion of positions

with usual and unusual mutations, respectively, at the eight NGS mutation detection thresh-

olds for pooled samples within each of the eight studies. Fig 3C plots the median proportion of

mutations that were unusual at each threshold for each study. These figures indicate that there

were clear inter-study differences in the distributions of usual and unusual mutations, particu-

larly at thresholds below 1%. The eight studies visually clustered into three groups at the three

lowest thresholds. Two studies had the lowest numbers of both usual and unusual mutations,

and of the proportions of mutations that were unusual [21, 22]. Four studies had intermediate

values for these three metrics [18, 20, 24, 25], and two had higher values [19, 23].

One of the two studies with the lowest numbers of unusual mutations pooled PCR product

from three separate reactions, potentially lowering the impact of artifacts propagated per reac-

tion [21]. However, because of the many inter-study differences in sample characteristics and

laboratory procedures, we were otherwise unable to assess whether specific sample

Table 2. Sample preparation methods and median number of sequence reads in eight studies of HIV-1 pol NGS.

Author (Yr) RNA Extraction1 RT / PCR Enzymes1 PCR Product Size

(bp)2
Sequence

Length

(5% to 95%

Range)

Median #

Reads

(5% to 95%

Range)

Avila-Rios

(2016)

QIAamp Viral RNA Mini Kit

(1 ml plasma)

SuperScript III OneStep RT PCR followed by Platinum Taq

DNA polymerase

1,592 436 (432–440) 30,079

(10,721–

53,845)

Moscona

(2017)

NucliSENS easyMAG (500 ul

plasma)

NA 1,800 436 (313–603) 5,652

(1,306–

11,359)

Huber (2016) NucliSENS easyMAG

(500 ul plasma)

PrimeScript One-Step RT PCR Kit followed by Phusion

HotStart II HF polymerase

3,500 440 (423–947) 72,712

(11,486–

107,307)

Nguyen

(2018)

NucliSENS easyMAG

(1 ml plasma)

Transcriptor One-Step RT-PCR followed by QS High

Fidelity PCR Kit

763 232 (227–235) 13,878

(8,788–

54,314)

Dalmat

(2018)

Boom silica

(400 ul plasma)

GeneAmp RNA PCR Kit 1,306 (PR/RT)

1,306 (IN)

358 (318–713) 5,718

(1,781–

17,979)

Jair (2019) QIAamp Viral RNA Mini Kit

(150 ul plasma)

HiFi Taq DNA polymerase 883 (PR), 652 (RT),

1000+ (IN)

669 (228–771) 41,833

(2,681–

131,625)

Ode (2015) Magnapure compact NA

isolation kit

(200–400 ul plasma)

PrimeScript I high Fidelity One Step RT-PCR Kit followed

by PrimeSTAR GXL DNA Polymerase

2,700 947 (947–947) 13,322

(4,453–

30,279)

Telele (2019) QIAamp Viral RNA Mini Kit

(150 ul plasma)

HiFi Taq DNA polymerase 4,360 947 (947–947) 31,288

(16,467–

96,237)

Footnote:
1Reagent manufacturers: QIAamp Viral RNA Mini Kit (QIAGEN); NucliSENS easyMAG (bioMerieux Clinical Diagnostics); Magnapure compact NA isolation kit

(Roche Life Sciences); SuperScript III OneStep RT PCR (Invitrogen); PrimeScript One-Step RT PCR Kit (Takara, Kusatsu, Japan); Phusion HotStart II HF polymerse

(ThermoFisher); Transcriptor One-Step RT-PCR (Roche); QS High Fidelity PCR Kit (New England Biolabs); GeneAmp RNA PCR Kit (Perkin-Elmer); HiFi Taq DNA

polymerase (Takara; Mountain View, CA, US). For Ode 2015, products from three separate PCR reactions were pooled.
2PCR product sizes were estimated from the HXB2 coordinates provided for the first round of PCR. For Jair 2019, it was not possible to precisely determine the size of

the integrase (IN) first-round PCR product.

https://doi.org/10.1371/journal.pone.0225352.t002
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characteristics or laboratory procedures were responsible for observed differences in the pro-

portion of positions with usual and unusual mutations.

Fig 2. Boxplots demonstrating the distribution in the the proportion of positions with usual mutations (A), the proportion of positions with unusual mutations (B), and

the proportion of mutations that were unusual (number of unusual mutations / [number of usual mutations + number of unusual mutations]) (C) at eight NGS

mutation detection thresholds for pooled samples (n = 855) from eight published studies.

https://doi.org/10.1371/journal.pone.0225352.g002
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There was marked heterogeneity in the distribution of unusual mutations at different

thresholds within each study (S3 Fig). For example, at the 1% threshold, the highest number of

Fig 3. Median proportions of positions with usual mutations (A), proportions of positions with unusual mutations (B), and proportions of mutations that were unusual

(number of unusual mutations / [number of usual mutations + number of unusual mutations]) (C) at eight NGS mutation detection thresholds for the pooled 855

samples in eight published datasets: light red (#FF6C67) [23], gold (#D79400) [19], lime green (#6CB100) [24], jade (#00C25C) [20], egg blue (#00C3C6) [25], sky blue

(#00ABFF) [18], purple (#D475FF) [21], rose (#FF4ED1) [22].

https://doi.org/10.1371/journal.pone.0225352.g003
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unusual mutations in each study was generally about five times higher than the median num-

ber of unusual mutations.

Association of unusual mutations with virus load. Plasma HIV-1 RNA levels were avail-

able for samples from three of the eight studies [21, 23, 24]. The percent of positions with

unusual mutations was significantly higher in samples with lower virus loads in two of the

three studies [23, 24], particularly at the 0.5%, 1%, 2%, and 5% thresholds (Fig 4A and 4B).

This relationship was not detectable either at the very low thresholds of 0.1% and 0.2%, which

contained high numbers of both usual and unusual mutations, or at the 10% and 20% thresh-

olds, which contained few unusual mutations. There was generally no significant relationship

between the proportion of positions with usual mutations and the sample’s virus load (S4 Fig).

Number of APOBEC mutations at different NGS mutation detection thresholds. Fig 5

shows the proportion of positions with signature APOBEC mutations at each threshold. At the

20%, 10%, 5%, 2%, and 1% thresholds, the median proportion of positions with a signature

APOBEC mutation was 0. However, at the 2% and 1% thresholds, 46 and 113 samples, respec-

tively, contained three or more signature APOBEC mutations; given the average sequence

length, this corresponds to approximately 0.9% of positions.

Although the complete set of signature APOBEC mutations (n = 296) was much smaller

than the complete set of unusual mutations that were not signature APOBEC mutations

(n = 14,940), signature APOBEC mutations outnumbered non-APOBEC unusual mutations

in 16.0%, 17.3%, and 13.2% of samples at the 0.5%, 1%, and 2% thresholds, but in just 2.8% to

7.5% of samples at the remaining thresholds (Fig 6).

Discussion

Through a meta-analysis of NGS pol data from 855 samples in eight published studies, we

found that as the mutation detection threshold was lowered, there was a progressive increase

in the proportion of sequence positions with both usual and unusual mutations and in the pro-

portion of mutations that are unusual. The proportion of positions with unusual mutations

increased gradually from 0% to 0.3% between the 20% and 1% thresholds and then exponen-

tially to 1.3%, 6.9%, and 23.2% at the 0.5%, 0.2%, and 0.1% thresholds, respectively. Similarly,

the proportion of mutations that were unusual increased gradually from 0% to 1.1% between

the 20% and 2% threshold but then exponentially to 4.2%, 12.0%, and 25.1%, at the 1%, 0.5%,

and 0.2% thresholds, respectively.

The marked increase in the proportion of positions with unusual mutations and in the pro-

portion of mutations that were unusual at detection thresholds below 1% suggests that many

of the mutations at low thresholds resulted from processes other than virus replication such as

PCR error and APOBEC-mediated hypermutation. Although HIV-1 RT produces approxi-

mately one random nucleic acid mutation per genome each replication cycle [26, 27], the fit-

ness costs of most random nonsynonymous mutations are high. Therefore, viruses containing

many, if not most, random mutations are rarely compatible with levels of replication that

would yield viruses detectable at levels significantly higher than the background error rate

[28]. In contrast, PCR errors and APOBEC-mediated G-to-A hypermutation can result in

mutations detectable at levels that would not be consistent with virus replication.

In two of the studies for which plasma HIV-1 RNA levels were available, the proportion of

positions with unusual mutations was inversely related to virus levels at the 0.5%, 1%, 2%, and

5% thresholds. A plausible explanation for this pattern is that samples with lower virus loads

yield fewer cDNA molecules and that, in these samples, a greater amount of sequence variation

results from PCR amplification rather than from HIV-1 replication.
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Illumina sequence errors were also likely to have contributed to sequence artifact but only

in those samples for which the read coverage was too low to achieve the redundancy required

to prevent random machine errors from being detected at low thresholds. Indeed, over the

complete dataset, the median coverage per position was 18,275 and 95% of positions had a cov-

erage of nearly 3,000 reads. Thus for 95% of samples, machine error would have required the

same random error to occur at least three times to result in detectable sequence artifacts at the

0.1% threshold and at least six times to reach the 0.2% threshold. The observation that read

coverage was not correlated with the proportion of positions with unusual mutations also sup-

ports the conclusion that most unusual mutations did not result from machine error.

APOBEC-mediated G-to-A hypermutation is not a result of PCR error and it presents in

sequences even when PCR errors are excluded through the use of unique molecular identifiers

(UMIs) [9]. This study indicates that, at the thresholds of 0.5%, 1%, and 2%, signature APO-

BEC mutations outnumber non-APOBEC unusual mutations in approximately one-sixth of

samples even though non-APOBEC unusual mutations are far more numerous than signature

APOBEC mutations. There are 17 DRMs that could be caused by APOBEC-mediated G-to-A

hypermutation: D30N, M46I, G48S, and G73S in PR, D67N, E138K, M184I, G190ES, and

M230I in RT, and G118R, E138K, G140S, G163KR, D232N, and R263K in IN. These muta-

tions should be considered possible artifacts if they occur at the same threshold at which multi-

ple signature APOBEC mutations are also present.

To estimate the proportions of positions with unusual mutations generated during HIV-1

replication in vivo, we recently performed a meta-analysis of publicly available pol single

genome sequences (SGSs)–which are not subject to PCR error–in plasma samples from per-

sons with active HIV-1 replication [8]. We found that in samples with a median of 20 SGSs,

the proportion of sequence positions with an unusual mutation was�1% in 90% of samples

Fig 4. Scatter plots demonstrating the relationship between virus load (plasma HIV-1 RNA log copies/ml) and the proportion of positions with unusual

mutations at four NGS mutation detection thresholds in two of the three studies for which virus load data were available [21, 23, 24]: study A [23], study B [24].

The upper-right hand corner of each plot contains the Pearson correlation coefficient (r) and its associated p value.

https://doi.org/10.1371/journal.pone.0225352.g004
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and�3% in 99% of samples. Similarly, the proportion of all mutations that were unusual was

�15% in 90% of samples and�33% in 99% of samples. Although the proportion of positions

with an unusual mutation might have been higher had the median number of SGSs been >20,

the proportion of mutations that were unusual would not be affected by the median number of

SGSs. Additionally, the estimates of the expected number of unusual mutations based on these

SGS data are likely to be inflated as SGSs are subject to errors when RNA is reversed tran-

scribed to cDNA.

The problem of PCR error, as well as the problems of PCR recombination and biased

amplification, have led to an approach in which UMIs are added to each cDNA molecule

Fig 5. Boxplots demonstrating the distribution in the proportion of positions with signature APOBEC mutations at eight NGS mutation

detection thresholds for pooled samples (n = 855) from eight published studies.

https://doi.org/10.1371/journal.pone.0225352.g005
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during reverse transcription [29]. Following PCR, consensus sequences are created from reads

having the same random ID, making it possible to identify and exclude these errors, which

present as mutations that differ from the consensus of sequences containing the same UMI.

This approach also has the advantage of providing an estimate of the number of successfully

amplified cDNA molecules and of identifying non-consensus sequences that result from PCR

recombination. The use of UMIs is becoming the standard approach for investigating HIV-1

dynamics in vivo. However, the use of UMIs necessitates multiple RT reactions and PCR

amplifications to generate amplicons spanning HIV-1 drug targets, thus increasing both

expense and complexity for genotypic resistance testing for routine clinical or surveillance

testing.

Several other approaches can also reduce the risk of PCR errors or the likelihood that such

errors will lead to artifactual results. First, PCR errors can be reduced by using high fidelity

PCR enzymes, although such enzymes often have reduced processivity [30]. Second, the num-

ber of PCR cycles may be reduced if a sufficient number of genomic templates are present

prior to PCR. Third, co-occurrence of low abundance variants can be used to increase the con-

fidence of each constituent mutation, although such co-occurrences can only be observed over

the short genetic distances because most sequence reads are short [31]. Although laboratories

often estimate the probability of PCR errors by sequencing plasmid controls, PCR error rates

determined by this approach are often underestimates, particularly on samples from which

only a small number of cDNA molecules can be generated, as these samples will undergo more

PCR amplification than plasmid DNA controls.

Our analysis was not designed to recommend a single NGS mutation detection thresholds

for routine clinical genotypic resistance testing. First, although the one percent threshold was

generally associated with low numbers of unusual and signature APOBEC mutations, a subset

of samples had high numbers of these mutations above the one percent threshold. Second, the

analyzed data was generated by research laboratories that adopted measures to improve the

detection of low frequency variants, avoided samples with very low virus loads, and made their

data publicly available. Indeed, previous studies have suggested that a five percent threshold is

likely to be more reproducible in clinical settings [7, 24, 32, 33].

In conclusion, we propose that that a post hoc analysis of HIV-1 pol NGS data that quanti-

fies the numbers of unusual and signature APOBEC mutations at different NGS mutation

detection thresholds can be useful to avoid selecting a threshold that is too low and that poses

an unacceptable risk of identifying artifactual mutations. Such an analysis demonstrates how

the body of published sequence data for a gene (i.e., the prevalence of all mutations at all posi-

tions), can be used to optimize the analysis of a new sequence of that gene. To this end, we

Fig 6. Scatterplots demonstrating the relationship between the number of signature APOBEC mutations and the number of unusual mutations that were not

signature APOBEC mutations at four NGS mutation detection thresholds. Samples containing three or more signature APOBEC mutations are shown in red.

https://doi.org/10.1371/journal.pone.0225352.g006
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created a version of the HIVDB genotypic resistance interpretation program that accepts HIV-

1 pol codon frequency tables and provides counts of unusual and signature APOBEC muta-

tions and genotypic resistance interpretations at user-selected mutation detection thresholds

(https://hivdb.stanford.edu/hivdb/by-reads/).
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