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Abstract: A quartz crystal microbalance (QCM) is described, which simultaneously determines
resonance frequency and bandwidth on four different overtones. The time resolution is
10 milliseconds. This fast, multi-overtone QCM is based on multi-frequency lockin amplification.
Synchronous interrogation of overtones is needed, when the sample changes quickly and when
information on the sample is to be extracted from the comparison between overtones. The application
example is thermal inkjet-printing. At impact, the resonance frequencies change over a time shorter
than 10 milliseconds. There is a further increase in the contact area, evidenced by an increasing common
prefactor to the shifts in frequency, Af, and half-bandwidth, AT'. The ratio AT'/(—Af), which quantifies
the energy dissipated per time and unit area, decreases with time. Often, there is a fast initial decrease,
lasting for about 100 milliseconds, followed by a slower decrease, persisting over the entire drying
time (a few seconds). Fitting the overtone dependence of Af(n) and AT'(n) with power laws, one finds
power-law exponents of about 1/2, characteristic of semi-infinite Newtonian liquids. The power-law
exponents corresponding to Af(n) slightly increase with time. The decrease of AI'/(-=Af) and
the increase of the exponents are explained by evaporation and formation of a solid film at the
resonator surface.

Keywords: inkjet printing; quartz crystal microbalance; QCM; fast QCM; picoliter-dosing;
microfluidics; droplet-based microfluidics

1. Introduction

The quartz crystal microbalance has in the recent past seen a tremendous spread in use and,
also, a rather impressive increase in the diversity of applications [1]. In part, this development
was stimulated by the second-generation QCM'’s (sometimes also termed “QCM-D” for QCM with
Dissipation monitoring [2]). These instruments supply information beyond gravimetry [3]. They do so
by reporting the resonance bandwidth in addition to the resonance frequency and, also, by determining
frequency and bandwidth on a number of different overtones. When applied to the study of thin films,
this information can be exploited to make a statement about the sample’s softness [4]. In this regard,
the QCM is superior to the optical techniques of label-free sensing, most notably surface plasmon
resonance (SPR) spectroscopy [5]. SPR spectroscopy otherwise (at least today) has a superior limit of
detection (LOD) and less baseline drift.
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A certain problem with the second-generation QCMs is time resolution. It is difficult to determine
the resonance frequency in a time of less than 100 milliseconds. Common is a data acquisition rate
of 1 s7!. There are numerous fast processes at interfaces (such as the impact and the detachment
of particles, the rupture of membranes, or double-layer charging in dynamic electrochemistry [6]),
which are not easily studied with the QCM because of speed limitations.

In a previous publication, we have elaborated on the limits of a QCM’s speed and reported on
an instrument, which systematically carries the QCM to these limits [7]. The instrument achieving this
improved time resolution is the “multi-frequency lockin amplifier”, MLA. The MLA was developed
with the aim to quickly monitor the resonances of AFM cantilevers. The inventors emphasize
nonlinear behavior, which in this context implies that the resonance frequency and the resonance
bandwidth depend on amplitude [8]. While such effects certainly exist for quartz resonators, they are
negligible at the driving amplitudes employed here and are outside the scope. This work simply
exploits parallel detection on many channels. The MLA applies up to 32 sine waves to the device
under test, in parallel. There is a corresponding set of detection channels. The MLA determines the
Fourier components of the input to the detector at up to 32 frequencies, which are configured (here) to
coincide with the excitation frequencies. We term this mode of data acquisition a “comb measurement”.
The resonator is wired such that the detector essentially determines the current through the device at the
respective frequencies. Dividing by the voltage of excitation, one obtains a set of 32 complex electrical
admittances Y(f;) with i labeling the different frequencies (see Equation (3)). Resonance frequencies
and resonance bandwidths are obtained by fitting resonance curves to these data sets. Basically,
the algorithm is equivalent to impedance analysis, the only difference being that combs are applied
rather than frequency sweeps. More details on the MLA and its relation to conventional impedance
analysis [9] and ring-down [2] are provided in Reference [7].

In the time domain, the combs constitute sequences of electrical pulses, spaced in time by
an interval of Atcomp = 1/8fcomb Where df comb is the frequency spacing between the members of
the comb. For that reason, the time resolution of the comb measurement is 1/86f.omp- In order to
catch the resonance, the frequencies must be spaced from each other by less than the bandwidth
of the resonance. The resonators employed in this work had a resonance bandwidth (half-width at
half-height) of 200-500 Hz, depending on overtone order. The frequency spacing of the combs was
chosen as 100 Hz, which puts the time resolution to 10 milliseconds.

The existing second-generation QCMs access the different overtones sequentially. Thatis a problem
when the softness of the sample is to be inferred from the comparison between overtones. One then
assumes Af(n) and AI'(n) to be functions of n, only. If the different overtones are accessed one after the
other and if, further, the properties of the sample drift in time, an apparent overtone-dependence of
Af and AT’ may;, in reality, be caused by drift. A key novelty of this work is that the 32 frequencies
of interrogation have been distributed over four overtones (at 15, 25, 35, and 45 MHz, see Figure 1).
An “overtone” here denotes an acoustic eigenmode. Overtones are labeled by the number of nodal
planes parallel to the surface of the disk, n (n = 3, 5, 7, and 9 here). The fact that the parallel
interrogation of four overtones succeeds is far from trivial. There might be cross-talk. Such cross-talk
has been seen in other cases. Coupling between modes gives rise to the “activity dips”, much feared in
time-and-frequency control [10]. Mode coupling was not observed here. Mode coupling is absent if the
resonances are spaced widely from each other in frequency, if the mode shapes are sufficiently different,
and if the nonlinearities are sufficiently small.
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Figure 1. The principle of measurement. The electrical admittance is interrogated on 32 channels at the
same time, which are distributed over 4 overtones (at 15, 25, 35, and 45 MHz). n is the overtone order.

Parallel interrogation of modes is common practice in time-and-frequency control [11].
The “temperature-compensated crystal oscillators” (TCXOs) oscillate at both the fundamental and the
3rd overtone. TCXOs exploit the dependence of temperature-frequency-coupling on overtone order.
The driving electronics infers the resonator’s temperature from the difference in the behavior of
overtones 1 and 3 and uses this information to correct the clock-frequency for temperature-effects.
As the name says, the TCXOs contain oscillator circuits. The problems with those are well known
(capacitance compensation, the influence of damping on the oscillation frequency, and others) [12].
Interestingly, Ferrari and Ferrari have applied such a device to droplet impact (as we did, see below) [13].
The droplets contained sugar, which remained on the substrate after drying. Ferrari and Ferrari report
on a transient response, but the time resolution was 2 s, while it was 10 milliseconds here.

The performance of the multi-overtone QCM was demonstrated with a study of
inkjet-printed droplets. The experiment as such is simple; droplets deposited onto a QCM just
about always shift the resonance frequency and the bandwidth. Early work along these lines was
published by the Ward group [14]. Reference [14] interprets QCM data in terms of wetting kinetics.
Droplet spreading on structured surfaces (on the macroscale) was also studied in References [15,16].
QCM-based studies of droplet drying on the macroscale (volumes > 1 pL) have been reported in
References [17-20].

Droplet dispensing is key to a range of technologies, including 3D-printing [21], bioprinting [22],
and microfluidics [23]. Even vesicles [24] and bacteria spores [25] have been printed. Because the
printing device employed was of the drop-on-demand type, we limit the discussion to this technique.
While inkjet printing is a flexible technique in many ways, there are certain constraints. For instance,
the droplet volume usually is in the picoliter range, dictated by the application. The droplet velocity is
around 10 m/s, dictated by the need to separate the droplet from the nozzle. A large-enough velocity
ensures a large-enough momentum of the drop to overcome surface tension at the nozzle. These two
parameters (diameter: some tens of micrometers, velocity: ~ 10 m/s) limit the duration of the impact to
a few microseconds. It is convenient to define a normalized time t* as #/timpact (Figure 2).
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Figure 2. Different phases of the droplet deposition process. The immediate impact happens on
the time-scale of a few microseconds. Inertial forces dominate, but viscosity and surface energy
synergistically prevent splashing. After the impact, the drop may or may not undergo oscillations
in shape. There usually is some further spreading, meaning that the contact line moves outwards.
If the contact line in the final state is pinned, the droplet radius eventually stays constant. Otherwise,
the droplet will shrink in diameter. Droplet drying may occur within less than a second. This was
adapted from Reference [26] and slightly modified to include drying and the time range accessible to
the QCM.

As discussed in Reference [26], the need to avoid splashing and satellite droplets imposes a
constraint on what is called the Ohnesorge number Oh. O is defined as Oh = n/(ypa)? with
the viscosity, v the surface energy, p the density, and a the droplet’s characteristic length. Oh should
be larger than 1 but not much larger than 1. Some viscous dissipation is needed to avoid splashing
but the viscosity should be as small as possible, otherwise. The second constraint concerns the Weber
number We = pav?/y with v the velocity of the droplet. A suitable choice is We~100. Inertial forces
must be strong enough to deform the drop from a sphere to a hemisphere on impact.

The immediate impact is followed by droplet spreading, driven by capillary forces.
During this time, the droplet shape may or may not oscillate in shape. (In the experiments
reported below, the QCM-data give no hint of such oscillations.) With regard to spreading, analytical
theory (sometimes attributed to Tanner [27]) predicts the droplet radius to scale as 110 ynder
certain conditions. In Reference [26], the droplet radius eventually reaches a constant value (Figure 2).
Motivated by the experiments reported below, we have depicted this line with a negative slope because
evaporation does have an influence at these times.

Interestingly, the rate of evaporation is not discussed much in Reference [26]. The rate of
evaporation (often “E”) is a critical parameter in the theory of film formation from latex dispersions,
which has numerous analogies to droplet drying [28]. That the rate of evaporation is of some
importance to inkjet printing, and can be inferred from the use of “humectants” in ink formulations [29].
Humectants (such as ethylene glycol and 2-pyrrolidone, see below) slow down evaporation.
The evaporation rate is of concern if the liquid needs to infuse a porous substrate (such as paper,
see Reference [30] and many others). Evaporation also is of prime importance in those cases,
where the liquid is loaded with solid particles to some appreciable extent. The solids content
typically is moderate because the viscosity would otherwise exceed the limits imposed by the droplet
formation process. Still, when solids are contained in the ink, the drying process includes the
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many facets of “film formation” [28,31]. In this context, the drying rate affects skin formation [28],
the coffee-stain effect [32], Marangoni convection [31], and particle deformation. Drying is, for instance,
addressed in the review by Derby. In the main text, we only discuss dyes which are molecularly
dissolved in the liquid. In the supporting information, we show data taken on droplets loaded with
gold nanoparticles. Clearly, these behave in a more complicated way. There are discontinuities,
which may be related to crack formation. These data are meant to emphasize the potential usefulness
of the QCM. No attempt is made to interpret these data traces in detail.

A few side remarks concern inkjet printing in analytical chemistry. Picoliter-dosing is common
in analytical chemistry because it saves resources and increases throughput. The sample volume is
particularly critical for bio-molecules. Inkjet printing can be helpful in elemental analysis [33-36].
Thermal inkjet printing has been used in X-ray fluorescence analysis (XRF). Picoliter droplets have been
explored for calibration of microscopic sample deposits in the analysis of atmospheric aerosols [37]
as well as in semiconductor analysis [38,39]. The micro deposits out of standard solutions all have a
similar shape [40]. For that reason, they can be used to investigate the physical interactions of X-rays
with the residues (which includes absorption effects in total reflection X-ray fluorescence analysis
(TXREF) [41]) and the performance of novel optics [42]. With known concentration ratios of elements,
matrix-free relative sensitivities of a TXRF device were determined in Reference [43]. The micro
deposits can also be used for calibration of TXRF devices with laser ablation combined with inductively
coupled plasma mass spectrometry (ICP-MS) [33,44]. Cartridges and prototypes generating picoliter
droplets are quite useful as aerosol generators in ICP-MS. Standard solutions can be sprayed with
this aerosol generator directly into the ICP-MS, resulting in better sensitivities and lower detection
limits [34,45].

A measurement protocol exploiting small droplets has also been proposed for the QCM in
Reference [46]. If the analyte to be studied with the QCM is contained in a droplet (rather than in a
bulk liquid, filling the entire cell), the sample volume can be small and the precision of the frequency
readings improves because of the reduced damping.

The paper is structured as follows. In Section 2 we elaborate on technical issues linked to
studies of drops and droplets with the QCM. There are a few subtleties, which—if ignored—can lead
to erroneous conclusions. Section 3 provides details on the printing process and on data analysis.
Section 4 shows experimental results, where a choice has been made to only show data, which can be
compared to each other and which can be understood in a moderately simple frame. Further results,
which are thought-provoking but are not easily interpreted in detail, have been deferred to the
supporting information. Section 5 elaborates on experimental options for more detailed studies.
This concerns improved time resolution, smaller droplets, colloid-loaded droplets, and textured surfaces.

2. General Remarks on the Response of the QCM to Loading with Droplets

Interpretation of QCM data obtained in experiments with droplets poses some challenges.
The issues are:

e droplet weighing

e problems in the derivation of viscoelastic parameters caused by energy trapping
e the effects of capillarity

e  compressional waves

e environmental effects

2.1. Droplet Weighing

At first glance, the QCM might appear to be well-suited to droplet weighing, given its
exceptional precision. One might study the uniformity of droplet generation by weighing the
droplets one-by-one. However, converting from frequency shift to mass by means of the Sauerbrey
equation [47] requires rigid samples. The liquid would have to be incorporated into some kind
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of scaffold. Porous structures on quartz surfaces have been produced [48], but it cannot be taken for
granted that imbibition proceeds fast enough. Part of the liquid might evaporate while the liquid
fills the pores. An alternative is polymeric gels [49]. These swell on the time scale of milliseconds
(with some slow tails in the kinetics). Their softness may be accounted for by suitable steps in
the analysis. Of course, one can always let ink-loaded droplets dry out and weigh the pigments [13].
In this case, uncertainty remains with regard to the extent to which the ink has indeed dried out.

Weighing of individual droplets has also been achieved with conventional balances.
These experiments drive the balances to their technical limits, but they can be done [50].

2.2. Problems in the Derivation of Viscoelastic Parameters Caused by Variable Energy Trapping

Rather than running the QCM in a gravimetric mode (meaning: weighing the sample), one may
infer the sample’s viscosity from Af and AI'. For semi-infinite Newtonian liquids, the increase in
half-bandwidth, AT, equals the negative frequency shift, —Af. Both scale as (pn) /2 with p the density and
1 the viscosity. If the liquid covers only part of the resonator, one may modify the Kanazawa-Gordon
relation [51,52] as

Af + iAT i Adrop i Adrop

= ——Zliq = ——
fo TZq Aefitor 0 TZq Aefitot

iwp(n’ —in") 1

fo is the frequency of the fundamental, Zq is the shear-wave impedance of AT-cut quartz,
and Zjq = (iw on)/2 is the liquid’s shear wave impedance. 1 =1’ — in” is viewed as a complex viscosity.
(If n” is nonzero, AT is larger than —Af). The term Agrop/Aeft ot accounts for the finite droplet area.
Aetttot is the acoustically active area. It is calculated from the amplitude distribution of the
transverse wave. For details, see Reference [53]. The acoustically relevant droplet area, Agrop,
may be unequal to the geometric area because of the nontrivial amplitude distribution.

Equation (1) looks attractive but there are some difficulties in the details. Quantitative data analysis
based on Equation (1) can, in principle, be aided by an optical determination of the droplet area Agrop-
With known droplet size, one may invert Equation (1) for viscosity [54]. One may also, in principle,
treat the term Agrop/Aeft tot a8 an unknown prefactor and make a statement onn’/n” (the “loss factor”
or “loss tangent”), based on the ratio AI'/(—Af). However, the quantitative interpretation of the ratio
AT/(=Af) and, also, of the overtone dependence of Af and AI' with Equation (1), is problematic.
The reasons are discussed in Reference [55]. Complications arise because a sample, which touches the
resonator in the center only, increases the efficiency of energy trapping [56]. The amplitude distribution
changes in response to the load and the change in energy trapping affects —Af and AT.

2.3. Effects of Capillarity

The question of whether the QCM is sensitive to the surface tension of a liquid-air interface has
been addressed in 1994 already [14]. Basically, the answer is no. The influence of surface energy is small,
as can be inferred from the capillary number Ca = 0yjs/0cap = wn/(y/r). w is the angular frequency, 1 is
the viscosity, v is the surface energy, and r is the radius of curvature. The capillary number compares
viscous stress, oyis, to capillary stress, ocap. Unless the radius is in the nanometer range, the viscous
stress is much larger than the capillary stress. Capillary stress does exert a small transverse force onto
the resonator because the motion of the resonator distorts the droplet. However, these stresses are
negligible for droplet sizes larger than about 1 um. The matter is also discussed in Reference [57]
(which is concerned with nanobubbles).

2.4. Compressional Waves

Reference [58] elaborates in some length on a problem in droplet characterization with
a QCM, which occurs with droplets larger than about a millimeter. The QCM is not a pure
thickness-shear resonator; there are flexural admixtures to the modes of vibration, which launch
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longitudinal waves into the medium under study. These propagate (shear waves do not),
are reflected somewhere, and return to the resonator [59]. However, this problem is of minor
influence as long as the drop height is much less than the wavelength of compressional waves.
This is the case here. Compressional-wave effects are small here, as evidenced by the absence of
coupled resonances, which would be associated with them [58].

2.5. Environmental Effects

Given that the effects amount to a few Hz only, there is a worry about environmental effects
caused by variable temperature and stress. The temperature of the droplet slightly differs from the
temperature of the resonator. However, the liquid volume is small here, which implies that the heat
transferred across the resonator surface is correspondingly small. Heat transfer occurs on a time
scale of milliseconds. This estimate is derived from Tty ~ L%/Dy, with Tyt the characteristic time
for heat transfer, L the characteristic length, and Dy, the thermal diffusivity. With L = 100 pm and
Dy, 1072 cm?/s, a time of about 1 ms is obtained. The effects of stress should be small, likewise,
given the droplet’s small mass.

3. Materials and Methods

3.1. Inkjet Printing

The core of the printer consists of a Q2299A mount for the cartridge (HP, Palo Alto, CA, USA).
The cartridges were of the type C6602A from HP [60]. With a conventional weighing experiment
using many droplets, the droplet volume was determined as 165 + 1 pL [43,61], consistent with the
specifications given by the manufacturer [60]. The mount was attached to a Newport 430 linear stage
(Newport, Irvine, CA, USA) with two home-built parts (3D-printed from acrylonitrile butadiene styrene,
ABS) [42]. The cartridge was controlled from an Arduino Uno Rev3 (Arduino, New York, NY, USA)
and an InkShield board, supplied by N.C. Lewis (Nerd Creation Lab, Everett, WA, USA) [62].

In order to adapt the cartridge for use with the QCM, the ink and the sponge were removed,
followed by cleaning with ultrapure water. The cartridges were then closed with a new lid, which had
been 3D-printed. For cleaning, 30,000 droplets (~4.8 uL) were printed three times from each nozzle.
This procedure was repeated twice before the cartridges were allowed to dry in air at room temperature.
For every printing experiment, 2 mL of the printing fluid was filled into the chamber. The lid was
sealed with tape and the entire assembly was positioned 15 mm above the QCM. The software allows
us to print single droplets on demand. The rest time between two droplet ejections was twenty seconds.
Every droplet was ejected from a new nozzle of the printer head. Each droplet behaves like the
“first drop” (meaning that the nozzle is dry at the time of printing).

Two base fluids were used, namely ultrapure water and a mixture of 2-pyrrolidone (purum, >99%,
Fluka, Merck, Darmstadt, Germany), ethylene glycol (p.a., 99.5%, Riedel de Haén, Honeywell,
Morristown, New Jersey), and ultrapure water (resistivity p > 18.2 MQ) cm, Purelab Flex 4, ELGA Veolia,
Paris, France). The most commonly used composition was 30:30:40 vol% 2-pyrrolidone:ethylene
glycol:water (P:E:W). We term this fluid “30:30:40”. 2-Pyrrolidone and ethylene glycol have viscosities
of 13.3 and 16.1 mPa s, respectively (water: 0.89 mPa s) [63-65]. Experiments with varied composition
(P:E:W = 30:30:40, 40:30:40, 30:40:30 and 40:40:20) did not show significant differences.

Two different dyes were studied, which were fluorescein (p.a., Riedel de Haén, Honeywell,
Morristown, NJ, USA) and Food Black 2/black 7894 (5 weight%, contained in the original HP ink).
Dye concentration was varied, but the dependence on dye concentration was weak (see the
supporting information). Stock solutions were prepared by dissolving the dye in the base fluid
at a mass concentration of 5% or 10%. Ammonia was added at a concentration of 2.5 vol% to fluids
containing fluorescein to stabilize fluorescein against precipitation. Also, a slightly alkaline pH prevents
corrosion at the nozzle. Stock solutions were diluted to the desired concentrations before measurement.
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3.2. Quartz Crystall Microbalance (QCM)

Gold-coated resonator crystals with a fundamental frequency of 5 MHz and a diameter of 14 mm
were supplied by Quartz Pro (www.quartzpro.com). The holder was built in-house. The temperature
was 22 + 1 °C. The acoustic resonances were probed using the multi-frequency lockin amplifier
(MLA) supplied by Intermodulation Products AB (Stockholm, Sweden). (Similar functionality is
implemented in the unit HH2LI from ZH-instruments, Zurich, Switzerland). The time resolution was
10 milliseconds for the comb measurements. Af(t) and AI'(t) were determined on four overtones at 15,
25, 35, and 45 MHz.

3.3. Comb. Measurements

As sketched in Figure 1, the multi-frequency lockin-amplifier (MLA) applies a set of 32 sine
waves to the device. From the currents, one infers the complex electrical admittance Y(f;). Ideally,
the electrical admittance of a resonator at the frequency f; would be given as

il'Gmax

~Fe—f, +1T ?

Y(f3)
fres and T are the resonance frequency and the half-bandwidth, respectively. Gmax is an amplitude.
We are only interested in f s and I' (more precisely, in shifts thereof, Af and ATI'). Equation (2) does
not cover the parallel capacitance, Cy, and it does not catch imperfect calibration. The “phase-shifted
Lorentzian” provides for an additional set of three fit parameters (a phase, ¢, and a complex offset of
the admittance, G + iBofr), which account for Cy and imperfect calibration:

iI'Gmax

Y(f;) = eXP(iﬁp)m

+ Gott + iBogt ®)
All fit parameters (6 in total) are real numbers.
The spacing between the frequencies of the comb was chosen as 100 Hz. With 8 frequencies
per overtone, the total width of each of the four combs is 700 Hz. The resonant half-bandwidths, I',
were between 200 and 500 Hz. Further increasing the time resolution would have made the combs
wider than the resonances, which would have compromised precision.

3.4. Data Processing and Interpretation

Given the difficulties discussed in Section 2.2, we do not attempt to quantitatively derive materials
parameters from Af(t) and AT'(t), but rather interpret the time evolution of Af and AI' on a heuristic basis.
We aggregate the data as follows:

e  Power laws are fitted to the functions —Af and AT versus n:

—Af = App n AT = Aprn®” (4)

The prefactors Axr and Aar are related to the droplet area. The power-law exponents report
intrinsic properties, independent of droplet size. There are two limiting cases. For the semi-infinite
Newtonian liquid, one expects o’ = «” = 1/2 (see Equation (1)). For solid films, one expects o’ = 1
and «” = 0. Immediately after impact, we find &’ ~ &” = 1/2. Deviations (which are present) may
come about by energy trapping, by compressional waves, by capillarity, by relaxation processes
with rates comparable to the frequency of vibration, and by the formation of a solid film at the
substrate surface (see Figure 3).

e  We plot the ratio AI'/(—Af) versus time (Figures 4 and 5). AI'/(-Af) is an indicator of energy
dissipated per unit area and unit time.
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Figure 3. (Top) Shifts of frequency and bandwidth for the impact of an individual droplet from
the four types of solutions indicated in the titles. Af and AT’ have been normalized to n'2 because
this scaling makes the data from different overtones overlap. The dye concentrations were 0.5 wt%
(Food Black 2) and 1.5 wt% (fluorescein) in water and 30:30:40. For the 30:30:40-fluid, drying is
slow (>20 s). Droplets based on water dry out in less than 2 s. (Bottom) The ratio AT/(—Af) always

decreases with time.

AT/(=Af)

Food Black 2 / 30:30:40 Fluorescein / 30:30:40
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Figure 4. Data extracted from Af(n) and AI'(n) as described in Section 3.3. The dye concentrations
were between 0.5 and 10 wt%. The third droplet impact was chosen for display. (A) The ratio AT'/(-Af)
averaged over the 4 overtones. (B,C) Prefactors Axr and Aar obtained by fitting power laws to Af(n)

and AT'(n). The prefactors are related to the wetted area. (D,E) Power-law exponents &’ and «’

’

(see Equation (4)). The power-law exponents would be 1/2 for the semi-infinite Newtonian liquid.
(F) The log-log plot of Aps. The dashed line indicates the prediction following Tanner’s law
(droplet radius scales as t'/19, droplet area scales as t/%).
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Figure 5. As drying proceeds, the ratio AT/(—Af) decreases, while the power law exponent of
—Af(n) increases. This can be explained with the formation of a solid film at the substrate surface.
In the limit of the dry film, the ratio AT/(—Af) goes to zero and —Af scales as 1 (not as n'/2, as in the case
of the Newtonian liquid.) The deposition of solid matter at the substrate surface drives the system in
this direction.

4. Results and Discussions

In the first step, 12 droplets were sequentially deposited onto different spots on the resonator surface.

Figure 6 shows an example. (It shows 5 depositions only for the sake of clarity.) Clearly, there is some
variability between the different droplets. Potential reasons are:

Variable conditions of droplet formation at the nozzle. The print head has 12 nozzles, which were
actuated one after the other. Every droplet was a “first droplet” in the sense that the nozzle was dry.
First droplets sometimes behave less reproducibly than droplets ejected after some running-in.
The distance between two nozzles at the printer head was 250 um. Due to evaporation inside
the cartridge, the droplets may increase slightly in droplet mass (following slight increases in
dye concentration).

There may be differences in substrate microstructure and substrate wettability on the micro-scale.
No attempts were made to avoid these.

The amplitude distribution of the QCM often displays some irregular variability over the area
of the plate. It goes back to defects in the crystal, which are not visible to the eye. An image is
shown in Reference [66]. The local amplitude affects the magnitude of —Af and AT.

Apart from the small-scale variability in amplitude, there is a wafer-scale variability, often modeled
as a Gaussian [67]. While the Gaussian is of influence, in principle, the total spread of droplet
positions is 2.25 mm (corresponding to a line of 10 droplets, spaced by 250 um). The length of this
line is to be compared to the electrode radius of 3.5 mm. Presumably, the small-scale variability in
amplitude (often disregarded) is more important than the Gaussian.
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Figure 6. (Left) Raw data from an experiment with Food Black 2 in the liquid 30:30:40 (concentration:
10 wt%), where 10 droplets were deposited at separate spots. Only 5 events are shown for clarity.
Data have been normalized to n'/2 because this lets the data from the different overtones overlap.
(Right) Impact no 2 shifts Af slightly less than the previous impact no 1.

Figure 4 shows shifts of frequency and bandwidth (top) and the ratios AI'/(-=Af) (bottom) for the
four experiments chosen to be discussed in more depth. These data pertain to the third droplet. Figure 4
only shows data from the first three seconds after the impact of an individual droplet. (Figure 5 extends
the time range to 15 s).

Dashed vertical lines denote the time when the drop has converted from a liquid state to a
solid state.

The results displayed in Figure 4A-D can be interpreted as follows:

e —Af and AT are about equal in magnitude. Equal magnitudes are expected for semi-infinite
Newtonian liquids. These samples do not strongly deviate from this expectation.

e Data from different overtones overlap if they are divided by n'/2. Again, square-root-n-scaling is
expected for the Newtonian liquid.

e  Spreading proceeds further after the impact. This is shown by the jumps at ¢ < 1 s after impact in
Figure 4A,C. There is a further gradual increase in longer time scales (also see Figure 5B,C).

e  The ratio AI'/(—Af) decreases, where the decrease is slightly stronger than average in the first few
fractions of a second. Presumably, this initial decrease is related to microscale wetting.

e  The results displayed in Figure 4E-H can be explained as follows:

e  There are rather strong differences in the behavior of droplets printed from the liquid 30:30:40
(2-pyrrollidone: ethylene glycol: water) and droplets printed from aqueous solutions. These liquids
mostly differ in the evaporation rate. A second difference is the viscosity, which is about a factor
of 10 higher for the 30:30:40-liquid than for water.

e  The droplets printed from aqueous solutions dry in less than 2 s. After drying, the bandwidth
reverts to its original value. The frequency shift does not, because the dye remains on the
substrate and acts as a Sauerbrey-type sample. The dye is moist, initially, and loses humidity later,
as evidenced by a gradual increase in Af.

e There is an interesting peculiarity for fluorescein in water (Figure 4G,H). For this sample,
the bandwidth goes through a maximum shortly before returning to its base value before impact.
This behavior would typically be associated with a film resonance, as sketched in Figure 7. If the
three-phase line is pinned, the droplet will turn into a “pancake” while drying. When the height
equals a quarter of the wavelength sound (about equal to the penetration depth of the shear wave,
~100 nm), the film itself is a resonator with a frequency equal to the frequency of the quartz crystal.
At this point, the bandwidth goes through a sharp maximum and the frequency also shows a
characteristic pattern. The drying kinetics shown Figure 4E,G suggest that the contact line is
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pinned for fluorescein, while it is not pinned for Food Black 2. This difference in phenomenology is
seen for all 10 droplets, not just for the third droplet (the drying kinetics of which is displayed here).

o :

height ~ 7./4:
— coupled resonance

Figure 7. Two modes of droplet drying. On the left-hand side, the three-phase line is free to move,
keeping the contact angle constant. On the right-hand side, the three-phase line is pinned. This latter
scenario leads to maxima in —Af and AT, when the height of the drop is about a quarter of the
wavelength of the shear sound. The wavelength of the shear sound is close to the penetration depth of
the shear wave, which is around 100 nm, depending on the viscosity and overtone order. Maxima in
—Af and AT are observed in the kinetics of drying of fluorescein in water (Figure 4G).

Figure 5 shows parameters derived from —Af(n) and AT'(n) as described in Section 3.3, namely Axf,
Apr aswellas &’ and «”. The time axis has been extended to 15 s. The graph now includes a significant
portion of the drying process. Only data from droplets made from the fluid 30:30:40 are shown because
these are more typical for the technical process than the aqueous solutions. Different concentrations of
dye in the range of 0.5-10 wt% were printed. Again, the data of the third droplet was used to display
the results.

The results can be summarized as follows:

o  AT/(=Af) decreases not only in the first few 100 milliseconds (Figure 4B,D,EH), the decrease
continues slowly over the entire drying time.

e  The power-law exponents of —Af(n) (see Equation (4)) increase with time. Both the decrease in
AT'/(—Af) (Figure 6A) and the increase in o’ (Figure 5D) can be explained by the formation of a solid
film at the resonator surface as sketched in Figure 3. When a film forms at the substrate surface,
this film adds a Sauerbrey-type contribution to the overall shifts of frequency and bandwidth.
Accordingly, the bandwidth shifts become less pronounced compared to the frequency shift.
The power-law exponent in fits of power laws to —Af(n) shifts towards 1 (which is the exponent
expected for dry films).

e  The droplet area slowly increases over the entire drying time (Figure 5B,C). Figure 5F shows a
log-log plot of Af versus time. The dashed line indicates the slope, which would be expected from
Tanner’s law [26]. Tanner’s law states that the droplet radius should scale as t/19, which implies
that the droplet area scales as /5.

e  The dependence of the drying kinetics on dye concentration is comparable in magnitude to the
drop-to-drop variability. The respective graph has been moved to the supporting information
(Figure S1). This is not meant to say that the observed variability (which includes the peculiar
behavior of the 5%-sample) was not systematic. It might be systematic, but interpreting the limited
amount of data shown in Figure 5 would amount to speculation.

Again, this discussion was limited to examples that can be understood easily. The supporting
information shows the data from two more experiments, the results of which one gets not
easily interpreted.

5. Future Directions

In order to advance studies of droplet-drying with a QCM, the following experimental and
instrumental aspects may be considered in the future:

e  The droplet volume (160 pL) was on the large side as far as common technical procedures
are concerned. The sensitivity would easily suffice to also study droplets with volumes of a few
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tens of pL. If sensitivity is a problem and if the droplet volumes should go down to a few pL, one may
consider the use of HFF-resonators (high-frequency-fundamental-resonators) [7,68]. These consist
of a thin quartz membrane in a thicker frame. The recess is created with reactive-ion etching.
These resonators are exceptionally sensitive and they have a small active area. Overtones are not
easily accessed, though. (Arcamone et al. have studied femtoliter droplets with a nanomechanical
resonator [69], but such studies would not have been possible with a conventional QCM.)

e  Smaller droplets would dry faster, and the benefits of the QCM-based measurement would play
out stronger.

e Timeresolution can be improved to about 100 us with single-frequency measurements, as discussed
in Reference [70]. Presumably, this would allow access to the time scale, where droplets oscillate
in shape.

e Combination with a high-speed camera is worth consideration to study droplet impact and
evolution on the surface with an independent method [71].

e It would be interesting to study textured or porous substrates. Those would have to be rigid and
thinner than a few microns. Nonetheless, they can be applied to the QCM-surface as films by
printing as well.

e Colloid-loaded droplets (see Figure S2 in the supporting information) will reveal details of the
film formation process.

6. Conclusions

The performance of a fast multi-overtone QCM was demonstrated, which is well suited to study
transient effects in inkjet printing. The time resolution is 10 milliseconds. The immediate impact
(occurring on the time scale of a few tens of us) is not resolved. Droplet impact is followed by:

e  afast decrease in AI'/(—Af), indicative of microscale wetting, in general.

e a slow, further decrease in AI'/(—Af), paralleled by an increase in the power-law exponent
of —Af(n), which can be explained by the formation of a solid film at the resonator surface for the
30:30:40 samples.

e a slow, further spreading over a time scale of a few seconds, following Tanner’s law for the
30:30:40 samples.

The experiments are not at all demanding. They can be easily extended to other processes with
characteristic times in the millisecond range.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/20/5915/s1,
Figure S1: Derived parameters as shown in Figure 6 in the main text as a function of dye concentration, Figure S2:
The impact of a droplet containing gold nanoparticles, Figure S3: Impacts of macroscopic droplets (2 pL).
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