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Abstract

Within influenza virus infected cells, viral genomic RNA are selectively packed into progeny

virions, which predominantly contain a single copy of 8 viral RNA segments. Intersegmental

RNA-RNA interactions are thought to mediate selective packaging of each viral ribonucleo-

protein complex (vRNP). Clear evidence of a specific interaction network culminating in the

full genomic set has yet to be identified. Using multi-color fluorescence in situ hybridization

to visualize four vRNP segments within a single cell, we developed image-based models of

vRNP-vRNP spatial dependence. These models were used to construct likely sequences of

vRNP associations resulting in the full genomic set. Our results support the notion that

selective packaging occurs during cytoplasmic transport and identifies the formation of mul-

tiple distinct vRNP sub-complexes that likely form as intermediate steps toward full genomic

inclusion into a progeny virion. The methods employed demonstrate a statistically driven,

model based approach applicable to other interaction and assembly problems.

Author summary

Influenza virus consists of eight viral ribonucleoproteins (vRNPs) that are assembled by

infected cells to produce new virions. The process by which all eight vRNPs are assembled

is not yet understood. We therefore used images from a previous study in which up to

four vRNPs had been visualized in the same cell to construct spatial point process models

that measure how well the subcellular distribution of one vRNP can be predicted from

one or more other vRNPs. We used the likelihood of these models as an estimate of the

extent of association between vRNPs and thereby constructed likely sequences of vRNP

assembly that would produce full virions. Our work identifies the formation of multiple
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distinct vRNP sub-complexes that likely form as intermediate steps toward production of

a virion. The results may be of use in designing strategies to interfere with virus assembly.

We also anticipate that the approach may be useful for studying other assembly processes,

especially for complexes with modest affinities and more components than can be visual-

ized simultaneously.

Introduction

Influenza A virus, part of the orthomyxoviridae family, has a segmented genome of eight dis-

tinct viral RNA segments coding at least 11 major proteins and several auxiliary peptides.

Most notable of the 11 viral proteins are hemagglutinin (HA) and neurominidase (NA), the

canonical H and N in influenza strain designation. A segmented genome offers potential evo-

lutionary advantages during viral replication, in the form of reassortment. The exchange of

genomic material between two distinct viral strains in a co-infected cell often causes a shift

within the genome, greatly increasing viral genetic diversity. In only the last century, influenza

pandemics of 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1) have emerged through reassort-

ment of at least two viruses [1]. Segmented genomes also come with an inherent mechanistic

challenge: ensuring that progeny receive a complete set of genomic segments. Random packag-

ing is possible but comes at the cost of producing an overwhelming majority of progeny that

are not viable [2]. Evidence suggests that there exists an active mechanism of selective packag-

ing ensuring progeny viability through efficient and accurate genomic packaging [3, 4].

Within a virion, the viral genome is organized into individual viral ribonucleoprotein

(vRNP) complexes, composed of the viral RNA, virally encoded nucleoprotein (NP), and a het-

erotrimeric polymerase complex made up of PB1, PB2 and PA. The vRNP structure is known

classically as a helical panhandle, where the RNA is wrapped around NP with RNA bases

exposed and the 3’ and 5’ ends associated with the polymerase complex [3]. We have recently

demonstrated that the structure of vRNP is more complex than the classically depicted “beads-

on-a-string” schematic. The NP and viral RNA associate in a non-uniform manner, where

regions of the RNA are unbound by NP and capable of forming complex structures [5].

Macro-organization of vRNPs within the viral capsid show tight packaging, organized in a ‘7

+1’ orientation, a single vRNP center shaft surrounded by seven others (4–6).

Given the need to package one copy of all eight vRNP segments, there is strong evidence for

the existence of a selective packaging mechanism prior to budding [3, 6–9]. Intersegmental

RNA-RNA interactions have been proposed to mediate selective packaging of all eight influ-

enza vRNP segments. The 5’ and 3’ regions of each segment have been implicated to be essen-

tial for efficient packaging and may be critical for the proposed RNA-RNA interactions [3, 10–

13]. Previous studies using in vitro transcribed viral RNA have successfully demonstrated

RNA-RNA binding. These studies also show that a set of eight reproducible interactions can

suffice to form a full genome complex [14–16]. However, these studies were performed on

viral RNA in the absence of NP which would alter the regions of viral RNA accessible for the

proposed RNA-RNA interactions. Recent in vivo experiments have also pointed towards

RNA-RNA interaction as the driving mechanism for selective packaging [17]. While there is

consensus of its existence, a clear network of segment interactions leading to a full genome

complex has yet to be elucidated.

We and others have previously used fluorescence in situ hybridization (FISH) studies to

visualize the intracellular localization of multiple vRNP segments during a productive viral

infection [18, 19]. These studies, performed eight hours post infection to capture an initial

infection cycle and reduce complication of cytoplasmic vRNP from a subsequent infection,
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have shown that distinct vRNP segments colocalize within the cytoplasm. Based on our previ-

ous studies, we proposed a model whereby vRNP segments are exported from the nucleus, the

site of vRNP synthesis, as subcomplexes that undergo further assembly en route to the plasma

membrane through dynamic fusion or colocalization events [19]. We also performed a series

of binary colocalization comparisons, which would postulate a simple linear vRNP interaction

network. However, no such network was identified, suggesting the presence of a more complex

vRNP interaction network, including higher order subcomplexes as intermediate steps [19].

The lack of a method to image all eight vRNP segments within a single infected cell has lim-

ited our ability to examine the precise spatial relationship between segments. In this study, we

developed a model based approach, rooted in point process theory, to quantify vRNP spatial

dependence as a metric for RNA-RNA interaction using multi-color FISH images. A spatial

point process model is a statistical model that captures the probability that an event will hap-

pen at any position within a given geometry. The probability can depend on the spatial distri-

butions of other events or objects, often referred to as covariates or factors. In this context, an

event is the observance of fluorescent signal (corresponding to one or more vRNPs) at a given

location. We have previously used point process modeling to construct generative models

reflecting the spatial dependencies between various punctate cell organelles and other cellular

structures, such as the cell and nuclear membranes, microtubules and the endoplasmic reticu-

lum [20, 21]. Related analytical methods have been used to analyze clustering of molecules

reflecting spatial dependencies between copies of the same structure [22, 23] Here we use

point process models to present a statistically rigorous analysis of intracellular influenza A

genome assembly dynamics from a spatial perspective during a productive viral infection.

For an imaged cell, the locations of each vRNP segment can be represented as “realizations”

of an underlying probability density specific to that vRNP, calculated over the cytoplasm, and

dependent on the spatial proximity to various other structures within the cell. That is, at any

given position within the cell, there exists a probability of observing a single segment, of a par-

ticular identity, that depends on the positions of cellular organelles and other vRNP segments.

By modeling the locational densities of each vRNP, we can therefore learn a dependency net-

work from which likely vRNP interactions are implied.

FISH imaging yields many distinct observations of individual cells, each with multiple

vRNP patterns observed. These point patterns, when viewed as realizations of point processes,

allow for statistical learning of spatial dependencies over many replicates for each vRNP seg-

ment. By defining a set of covariates as the minimum distances between a given segment and

other segments observed within the same cell, we produce a set of models that describe the spa-

tial relationship between distinct segments. The extent to which two (or more) vRNPs are

dependent upon each other (e.g., likely to be found at nearby positions) is reflected in the like-

lihood that images of those vRNPs would have been produced by a learned model: high likeli-

hoods signify that the positions of a given vRNP can be predicted well from the others in that

model. Model likelihoods can then be seen as a metric of vRNP interaction, with higher likeli-

hoods indicating more probable vRNP association. These likelihoods can then be used to con-

struct the most probable sequence of interactions to form the full genome with methods

borrowed from evolutionary tree construction [24].

Results

Imaging influenza virus infected cells

To investigate the spatial dependence between vRNP segments, we utilized images from a pre-

vious study of infected cells stained for different combinations of vRNP segments using four-

color FISH at eight hours post infection [19]. The data set included 14 different probe
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combinations that covered all pairwise vRNP associations and 32 out of 56 possible triple

vRNP combinations (S1 and S2 Tables). Prior to initiating pattern analysis, each image was

processed to remove background, isolate individual cells, and find punctate vRNP segments.

Fig 1A and 1B presents representative raw and segmented images with detected points.

Assessing randomness of the spatial distributions of vRNP

We began by determining the extent to which the individual vRNPs could be considered ran-

domly distributed throughout the cell, since our search for spatial dependencies between dif-

ferent vRNPs would be illogical if their positions were all random. We defined the null

hypothesis as complete spatial randomness, as would be exhibited by a homogenous Poisson

process, and estimated a p-value for this hypothesis using Monte Carlo methods. Briefly, for a

Fig 1. Illustration of the analysis pipeline. (a) Unprocessed fluorescence channels for cells FISH tagged for four vRNA

segments and stained with DAPI. (b) Preprocessed image channels after filtering, nuclear and cell membrane

segmentation, and point identification. The 3D images in (a) and (b) are displayed as maximum value projections. (c)

Factors are calculated for each channel in each image, model parameters are fit, and a likelihood generated. (d) Dynamic

programming is used to generate a most likely set of interactions yielding a full genome. Edges are possible interactions,

solid lines indicate edges that are part of the most likely set of interactions. In this toy example, the most likely set of

interactions is A and B binding to form AB, and then C binding to AB.

https://doi.org/10.1371/journal.pcbi.1006199.g001
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given vRNP in a particular cell, we started by segmenting the cytoplasm and counting the

number of points observed within. We then simulated (generated) many random point config-

urations, of the same number of points, within the segmented cytoplasm. We calculated a test

statistic for each random configuration (see Methods) and used these to assign a p-value to the

test statistic for the observed pattern for that cell; these were averaged for each vRNP. As

shown in Table 1, every vRNP segment showed significant deviation (at the p< 0.05 level),

with low variance, from a spatially random distribution. This indicates the presence of a spatial

trend and some dependency on cellular structures for their location.

Modeling cell and nuclear membrane dependence

Given that the localizations of vRNPs are not random, we sought to determine if some relation-

ship to the cell and nuclear membranes could explain the spatial trend of vRNP segments. Three

covariates were defined for each position in the cell (minimum distance to the cell membrane,

minimum distance to the nuclear membrane, and the minimum ratio of cell to nuclear distance

for each point) and models were created for each vRNP using each of the covariates separately.

We estimated the accuracy of each model by cross validated likelihood calculation (see Meth-

ods), where values closer to 0 are more likely. It is important to note that, because actual likeli-

hoods were calculated, they can be compared between models of different complexity.

Dependency on the cell membrane produced the lowest likelihood (worst) models relative

to all others (Table 2) for all vRNP segments. Congregation of vRNP to the apical cell mem-

brane is a potential skewing factor, since there will be a high concentration of all segments at

this cellular location. The many observed points within close proximity to the membrane

potentially caused low fitted probability of observing other points closer to the nucleus. Cell

Table 1. Monte Carlo p-values and variances for the hypothesis that the spatial distribution of each vRNA seg-

ment is distributed by a homogeneous Poisson process.

Mean p-value Variance

PB2 0.0034 0.00011

PB1 0.00524 0.00034

PA 0.00467 0.0002

HA 0.00671 0.00015

NP 0.01185 0.00036

NA 0.00249 0.00003

M 0.00005 0

NS 0.00306 0.00007

https://doi.org/10.1371/journal.pcbi.1006199.t001

Table 2. Cross validated negative log-likelihoods for models dependent on distance to different reference

locations.

Cell Model Nuclear Model Cell+Nuclear Model

PB2 2.5547 0.4153 0.9158

PB1 2.3908 0.408 1.2574

PA 2.4228 0.4643 1.2352

HA 2.443 2.3928 4.396

NP 2.4885 2.4584 4.5447

NA 2.5019 2.4372 2.1754

M 2.4871 2.1294 3.0799

NS 2.3906 0.6666 1.4624

https://doi.org/10.1371/journal.pcbi.1006199.t002
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shape differences combined with lower resolution in the z-dimension may have also influ-

enced these models.

For most vRNPs, models incorporating nuclear distance showed higher likelihoods than

those using cell membrane distance (Table 2). Some vRNP segments, such as PB2, PB1, PA

and NS, showed greater dependency on nuclear distance than the other segments. The ratio of

cell membrane to nuclear distance generally produced models better than cell membrane

alone, but they were worse than nuclear alone in all cases except NA (Table 2). Thus nuclear

distance provides the most cogent model for dependence of vRNP localization on a cellular

structure.

Inter-segment dependence in pairs, triplets, and quadruplets

Every pair of vRNP segments was observed in at least three cells, allowing for modeling of

vRNP-vRNP dependence among all segment pairs. For each pair of vRNP segments, two mod-

els were trained, switching the dependent (primary) and independent (secondary) patterns.

Since the minimum inter-pattern distance measure is not commutative, the two models need

not be the same. More simply, a given vRNP location may depend on its proximity to another

vRNP, but the converse is not necessarily true. This can be observed when one vRNP segment

is found in two distinct locations, and a second vRNP segment is found in only one of those

locations. The second vRNP segment would be observed to have a high likelihood for being

predicted from the first, but the first would not have a high likelihood of being predicted from

the second.

In all cases, pairwise inter-pattern distance models (Table 3) for a given vRNP had higher

likelihoods than those produced for that vRNP with only the cell and/or nuclear membrane

factors (Table 2). Some pairs showed higher likelihoods than others, such as PB1-NP, PB1-M,

PA-NP, HA-PB1, and NP-PB1. These pairings also showed relatively low variance in cross-val-

idated likelihood estimates (S3 Table). Many of the highest likelihood vRNP pairs are observed

between segments encoding the viral polymerase components (PB2, PB1, PA and NP). Given

the dependence between these proteins both structurally and functionally [25–27], it is possi-

ble that these segments evolved a dependence upon each other to ensure their joint packaging

in a virion (a possibility that would require extensive additional work to examine).

Extending the pairwise models, nuclear distance was added as another covariate. Minor

improvements in model likelihood were seen in some models (Table 4) with others showing

decreased likelihood. Overall there was an increase in the variance of our estimates (S4 Table).

Overfitting to nuclear distance may be the cause of this increased variance. Fig 2 highlights the

pairwise models in Table 4 by illustrating vRNP pairs that are below 0.23 log likelihood. Over-

all, vRNPs showed the greatest dependence on PA and PB1, with the most connections

Table 3. Cross validated negative log-likelihoods for pairwise interaction models. The row label indicates the independent (secondary) variable, the vRNP upon which

a model predicting the column label (the dependent or primary variable) was constructed.

PB2 PB1 PA HA NP NA M NS

PB2 0.3705 0.2694 0.282 0.3146 0.5605 0.2146 0.3926

PB1 0.2398 0.2018 0.2044 0.1186 0.4015 0.1701 0.2905

PA 0.2276 0.2217 0.2284 0.1502 0.3222 0.2816 0.2315

HA 0.3334 0.1266 0.1838 0.2787 0.232 0.2623 0.2845

NP 0.3438 0.1805 0.1942 0.2895 0.2529 0.275 0.3411

NA 0.3191 0.324 0.3093 0.2947 0.2742 0.2747 0.2982

M 0.3287 0.2236 0.2832 0.2803 0.2975 0.2897 0.2848

NS 0.3427 0.2888 0.2292 0.2838 0.325 0.3436 0.2841

https://doi.org/10.1371/journal.pcbi.1006199.t003
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between these two segments and the others. The least dependence was observed for NA and

NS vRNP segments.

Thirty-two of 56 possible triplet vRNP segment complexes (referred to as triplets) were

present within the dataset analyzed and could therefore be modeled within the same cell. This

process allows for modeling of complex vRNP relations containing more than two vRNP seg-

ments. Three models were trained for each observed triplet, one for each vRNP depending on

the other two. The highest likelihood model was chosen. Model likelihoods tended to be higher

than that of either pair model for a given vRNP (Table 5). We observed that the most likely

triplet models for each vRNP included four of the five most likely vRNP pairings observed in

pair likelihood models (Table 3), (namely PB1-NP, PA-NP, HA-PB1, and NP-PB1). However,

not all of the most likely pairwise associations (e.g., PB1-M) were observed in the most likely

triplet models, highlighting that models based solely on pairwise comparisons might not accu-

rately represent larger order vRNP complexes. Model likelihoods for all triplets observed can

be found in S5 Table.

A small subset of all possible four vRNP segment complexes (referred to as quadruplets)

were contained within the dataset and models for predicting one of the four from the other

three were also constructed. Again, considerable overlap is seen between the most likely qua-

druplet models and both triplet and pair models (Table 6), such as PB2-PB1-PA and PB1-PA.

The consistency in vRNP composition between observed likely quadruplet, triples, and pairs

further validates the spatial dependence of vRNP segments and the presence of vRNP subcom-

plexes as influenza A assembly intermediates. Model likelihoods for all quadruplets observed

can be found in S6 Table.

One of our major goals was to attempt to extrapolate higher order relationships from the

pair, triple and quadruplet models. To project how accurately this might be done, we com-

pared our observed triple and quadruple models with predicted models calculated from any of

the four pair models (vRNP pairs (Table 3), vRNP pairs + nucleus (Table 4), vRNP pairs +-

cellular membrane, and vRNP pairs +nuclear/cell membrane ratio) (Fig 3A). We also com-

pared observed quadruplet likelihoods to those predicted using both the pair and triple

models, similar to the pair models any of the 4 models including the various cellular features

were included (Fig 3B). Most of our observed triples and quadruplets could be predicted with

modest accuracy from the pair models but the overall r2 value was only 0.302. This was due to

inaccuracy in predicting the triple and quadruple clusters containing the PB2-NA pair with

either NS, PB1 or both. These combinations were predicted to occur much more often than

was observed in the experimental data sets. The pairwise likelihood of NA with PB2 is>-0.6,

which is consistent with the observed likelihood and may be the driving force behind the score

compared to the other pairwise interactions. Analysis of the predicted triples and quadruples

Table 4. Cross validated negative log-likelihoods for pairwise interaction models that also include nuclear distance. The row label indicates the independent (second-

ary) variable, the vRNP upon which a model predicting the column label (the dependent or primary variable) was constructed.

PB2 PB1 PA HA NP NA M NS

PB2 0.3817 0.2694 0.2833 0.3145 0.5643 0.2166 0.3977

PB1 0.2427 0.2023 0.2191 0.1215 0.4188 0.1714 0.3097

PA 0.2278 0.2211 0.661 0.1504 0.3238 0.4967 0.5378

HA 0.336 0.13 0.9138 1.944 1.7048 1.2324 0.5447

NP 0.3084 0.1746 0.1949 0.2095 1.6062 1.6495 0.3523

NA 0.3166 0.3317 0.3114 1.7801 1.4877 1.0989 0.3

M 0.33 0.2246 0.5374 1.2838 1.7105 1.1884 0.4153

NS 0.3454 0.2816 0.6259 0.4561 1.7998 0.3466 0.4368

https://doi.org/10.1371/journal.pcbi.1006199.t004
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after removing the PB2-NA containing clusters resulted in a r2 value increases to 0.642 (we

cannot justify this removal on a statistical basis but rather on the observation that the combina-

tions with the poorest predictions all involved the same pair). Predicting quadruples from

pairs and triples resulted in a r2 value of 0.450, and with removal of the same quadruple it rose

to 0.714. Overall, these data support the notion that pairwise point process models can be used

to predict higher order complexes with moderate accuracy, and that prediction accuracy

increases if higher order models are used.

Fig 2. Pairwise interactions learned from MDCK cell images. Each vRNA segment is arranged around the perimeter. Bands connect vRNA segments that

interact with high likelihood. The position of the base of each band indicates the independent (secondary) variable and the larger the width of the base the more

likely the interaction. Only interactions whose log likelihoods are below 0.23 from Table 4 are shown.

https://doi.org/10.1371/journal.pcbi.1006199.g002
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Interaction network construction

Given these results, we sought to create a model of the set of vRNP interactions (complexes)

that occur at all steps in the formation of a complete viral genome. To do this, we represented

all possible interactions between vRNP segments as a weighted, directed, acyclic graph with

nodes labeled by each unique, unordered set of vRNP segments. A path from all single nodes

to the root represents a set of vRNP interactions resulting in a full genome complex (see Meth-

ods). For illustration, if all eight vRNP segments directly formed a complete set without form-

ing any intermediate complexes (a highly unlikely scenario), this would be represented by

weights of one for the connection between each vRNP and the complete vRNP supramolecular

complex containing all eight segments and weights of zero for all other complexes. Such a sce-

nario would result in a tree with the root connected to each of the leaves.

In our analysis, we estimated the weight for each possible intermediate vRNP complex

assembly subcomplex to contain at least two and up to eight segments based upon either the

observed or predicted likelihoods (see Methods). Dynamic programming, an efficient method

for recursively finding the highest scoring path to a given node, was then used to find the most

probable path within the graph using the highest likelihood trained model for a given nodes

from those with or without cell and/or nuclear features (Fig 4A). The resultant tree produces

two distinct clusters HA, M, NA, NS (hereafter referred to as C1) and PB1, PB2, NP (C2) that

merge with PA as a final step towards forming the full genome. This network suggests three

steps to form a complete set of all eight vRNP segments: 1) formation of C1, 2) formation of

C2 and 3) addition of PA to C1 and C2 to form the final product.

Table 5. Cross validated negative log-likelihoods for the top two triple models with each vRNA segment as the primary pattern. Pairwise model negative log-likeli-

hoods for the members of each model are shown in the right columns.

RNA CV Likelihood PB2 PB1 PA HA NP NA M NS

PB2

PB2 M PB1 0.114 0.382 0.217

PB2 HA M 0.162 0.283 0.217

PB1

PB1 PA PB2 0.062 0.243 0.202

PB1 NP PB2 0.071 0.243 0.122

PA

PA PB2 PB1 0.113 0.228 0.222

PA PB2 NP 0.121 0.228 0.15

HA

HA M PB1 0.059 0.13 1.232

HA PB1 NS 0.111 0.13 0.545

NP

NP PB1 PB2 0.141 0.344 0.181

NP PB2 PA 0.145 0.344 0.195

NA

NA HA NP 0.225 1.78 1.488

NA HA NS 0.246 1.78 0.3

M

M PB1 NS 0.201 0.225 0.415

M HA PB1 0.201 0.225 1.284

NS

NS M PB1 0.169 0.289 0.437

NS HA PB1 0.184 0.289 0.456

https://doi.org/10.1371/journal.pcbi.1006199.t005
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To assess whether a particular vRNP localization dataset was driving this network, we per-

formed a series of network analyses with data excluded. First, the contribution of observed

quadruplets and triplets was assessed by excluding observed quadruplets (Fig 4B) and without

observed quadruplets and triplets (Fig 4C). Interestingly, exclusion of all observed quadruplets

did not drastically alter the network, with both C1 and C2 still being present, although forma-

tion of C1 required two steps. However, networks built only with observed pairs (excluding

triplets and quadruplets) resulted in a quite different network lacking larger subcomplexes

(Fig 4C), reflecting the fact that pairs were only able to make approximate estimates of higher

order interactions.

Given that the dynamic programming approach yields only a single most likely tree, we

sought to assess the robustness of the inferred tree to potential inaccuracy in the estimated

dependencies. We therefore assessed the stability of the tree by adding various amounts of ran-

dom noise to the estimated likelihoods (see Methods). Surprisingly, the addition of noise of up

to a quarter of the mean log-likelihood had no effect on the network found, yielding the same

network (Fig 4A). As noise levels increased to half of the mean log-likelihood, one other tree

was generated (Fig 4F). This demonstrates the stability limit of the construction but notably

this revised tree still contains clusters that resemble the original. If the original tree was based

on biased likelihoods from imaging artifacts, the addition of noise would have resulted in an

altered tree network at lower noise levels and with higher frequency, but since this did not

occur, we are confident in the accuracy of our original likelihood estimations.

Table 6. Cross validated negative log-likelihoods for the top two quadruple models with each vRNA segment as the primary pattern. Pairwise model negative log-

likelihoods for the members of each model are shown in the right columns.

RNA CV Likelihood PB2 PB1 PA HA NP NA M NS

PB2

PB2 NS PB1 NA 0.571 0.382 0.564 0.398

PB2 NP PA PB1 0.258 0.382 0.269 0.315

PB1

PB1 NS NA PB2 0.347 0.243 0.419 0.31

PB1 PA M PB2 0.16 0.243 0.202 0.171

PA

PA NS M HA 0.655 0.438 0.661 0.497 0.538

PA NA M NS 0.272 0.438 0.324 0.497 0.538

HA

HA PA M NS 0.869 0.914 1.232 0.545

HA NS PB2 M 0.317 0.336 1.232 0.545

NP

NP HA M NA 0.233 2.095 1.606 1.65

NP PB2 PA PB1 0.139 0.344 0.181 0.195

NA

NA PA NS M 0.272 0.311 1.099 0.3

NA PB1 PB2 NS 0.268 0.319 0.332 0.3

M

M NS HA PA 0.7 0.537 1.284 0.415

M PA NS NA 0.336 0.537 1.188 0.415

NS

NS HA PA M 0.705 0.626 0.456 0.437

NS PB2 M HA 0.340 0.343 0.288 0.289

https://doi.org/10.1371/journal.pcbi.1006199.t006
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Finally, to exclude the possibility that datasets directly measuring C1 and C2 (reactions L

and B, respectively) were biasing the network towards inclusion of those sets of vRNPs, we per-

formed a network analysis of a dataset where the measured likelihoods of these two clusters

was excluded. Removal of data derived from images of the sets of vRNPs in C1 and C2 (Fig 4E)

yielded networks that resemble Fig 4A, indicating that even in the absence of data from these

clusters, similar clusters will form during assembly. Removal of each cluster alone was recapit-

ulated by lower order interactions. Removal of C1 [HA, M, NA, NS] data resulted in the same

tree presented in Fig 4B, where HA, M, NA, NS form in two steps from a triplet and a single

vRNP segment. Exclusion of C2 [NP, PB1, PB2} result in a tree similar to Fig 4D, where C2

cluster forms from a pair and a single segment (Fig 4D). Removal of data was also combined

with the addition of noise to further test stability. Predominantly, the same networks were gen-

erated with and without noise. As noise levels increased in the exclusion constructions, a tree

with HA, M, NS, PB1 in place of C1 and NP, PA, PB2 in place of C2, where PB1 and PA were

not observed in the C1 or C2 original clusters respectively (Fig 4F). Together, these con-

structed networks suggest a primary interaction scheme that can be further experimentally

tested and the importance of triplet and quadruplet observations in predicting higher order

vRNP complexes. Other, very low frequency trees that were generated in the presence of high

levels of noise are located in the reproducible research archive.

Discussion

Influenza A vRNP segments selectively assemble within an infected cell to produce progeny

virions containing one copy of all eight segments. The mechanism driving selective assembly

is still largely unknown, but RNA-RNA interaction between the segments has been proposed

[14–16]. In this study, we have modeled the in vivo spatial dependencies of influenza A vRNP

Fig 3. Comparison of composite and observed model likelihoods for triplet and quadruplet models. To ensure that the recursion in our dynamic programming

scheme accurately predicts model likelihoods, we compared triplet and quadruplet observed likelihoods to those generated from only pairwise models (that include all

four possible models: vRNP pairs alone, vRNP pairs + nucleus, vRNP pairs + cell membrane, vRNP pairs + nuclear/cell membrane ratio) (a). We also compared

observed quadruplet likelihoods to those generated from pairwise and triplet models (using all 4 possible models) (b). Ideally, all points would fall on the red line,

matching observed and predicted values perfectly. The cluster in the lower left corner represent interactions that are predicted to occur with high likelihood but in

reality, do not. All points within this cluster contain the same four vRNA segments (PB1, PB2, NA, NS). Exclusion of this cluster from our analysis increases the

association between predicted and observed triplets and quadruplets.

https://doi.org/10.1371/journal.pcbi.1006199.g003
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segments using multi-color fluorescent in situ images to generate possible vRNP-vRNP inter-

action networks and propose a new perspective on genome packaging during viral replication.

By utilizing a rigorous statistical framework, we have extended the efforts of previous groups

and present a novel method for construction of vRNP interaction networks based on their pre-

cise spatial information within actively infected cells. Using spatial proximity as a proxy for

physical interaction, point process modeling in this study suggests clear spatial dependencies

between certain vRNP segments, and confirms our previous observations of subcomplex for-

mation during cytoplasmic transport (18).

Previous studies using in vitro transcribed RNA suggest multiple interactions between

vRNP segments are expected [3, 6, 14, 16, 28]. Similarly, the modeled likelihoods show poten-

tially multiple interactions for each vRNP segment. Electron tomography studies have revealed

a conserved ‘7+1’ supramolecular structure within the viral interior, where a center shaft is sur-

rounded by seven remaining segments [3, 6, 28], demonstrating an ordered process in genome

assembly.

Our results suggest two candidates for the center shaft or ‘master segment’: PA and PB1.

From the six constructed networks, PA is the most variable in that it is least often paired early

in assembly but, with the addition of noise and exclusion of data, may interact with both

primary observed clusters. This would be expected if a segment was evenly dependent on

most others, a possible signature of a core segment. PB1 also behaves similarly but to a lesser

Fig 4. Constructed interaction networks. Using dynamic programming, we constructed the single most likely set of interactions yielding a full genome. First, we used

all model likelihoods with and without nuclear and cell features (a) to build a master tree. Hotter edge colors correspond to more likely interactions. Since the images

contain only a subset of the possible triplets and quadruplet, we assessed how much this affected the master tree by removing all quadruplets (b) or both quadruplets and

triplets (c). To test the stability of the master tree, trees were constructed with random noise added to each observed model likelihood before performing the dynamic

programing. Multiple noise levels were tested up to 1/2 of the mean model likelihood with the noise level being the standard deviation of a Gaussian centered at 0. For

each level of noise, network construction was performed 100 times. Noise up to 1/4 mean likelihood always resulted in (a). Increasing noise levels yielded (a) on 40% to

60% of constructions. Given the two observed clusters in the master tree, we next asked whether the composite likelihood function could recapture their interactions

without actually observing them. Removing all models involving HA, M, NS, NA (C1) and NP, PB1, PB2 (C2) yielded (d). Adding noise up to 1/4 mean likelihood and

removing both clusters also generated (d). Removal with higher levels of noise generated (e) for 27% of constructions. In all stability analyses with noise greater than 1/4

mean likelihood, (f) was generated with frequency between 5% and 15%.

https://doi.org/10.1371/journal.pcbi.1006199.g004
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degree. Both PB1 and PA show the highest average pairwise model likelihood over all other

segments.

A few vRNP pairs were seen often in the most likely pairwise, triplet, and quadruplet mod-

els and in the final constructed network. PB1-PB2 and HA-M, show commutative relation-

ships, appearing in one of the top most likely triplet and quadruplet models for each vRNP

within the pair. Some non-commutative dependencies were also seen, most notably in NP

depending on PB2 in both triplet and quadruplet models with little PB2-NP dependence.

By using dynamic programming, we were able to generate the most likely interaction net-

work based on all models. While this network was surprising robust to the addition of noise to

the model likelihoods, subtle variations in the vRNP interaction network were observed with

the exclusion of higher order datasets, suggesting that there may exist multiple interaction

pathways all acting at once in a single cell. Some of the variation in our results may also be due

to the presence of some lower specificity vRNA-vRNA interactions also occurring during

genome assembly. This would explain some of the highly likely pairwise interactions observed

that were not included in the final interaction network, such as PB1 and HA. In addition,

vRNP networks could also change over the course of a viral infection when packaging fidelity

may be compromised [29]. Our current data set only considers one time point, eight hours

post infection, which represents the time of initial virion release from infected cells, and would

miss alternate networks present at later time points. Therefore, the analysis presented here

may only capture a snapshot of a dynamic assembly process that could change throughout an

infection. A system with multiple possible interaction networks could be potentially advanta-

geous in both ensuring packaging of a full genome in viral particles and in future reassortment

events. For example, reassortment of one vRNA segment during a coinfection may decrease

the binding efficacy necessary for a single interaction network but a second network may serve

to rescue viral viability while also increasing genetic diversity.

With this, we also point out the consistent presence of the PB2, PB1 and NP cluster. Since

these three proteins function together, with PA, to form the viral polymerase, which promote

vRNA replication and transcription, this cluster is potentially important. Viruses capable of

packaging complementary polymerase segments into progeny virions will have a fitness

advantage compared to viruses with polymerase mismatches. This phenotype has been

observed in experimental reassortment experiments between 2009 H1N1 pandemic and sea-

sonal H3N2 viruses[25, 27].

More generally, the computational pipeline presented may function as a useful tool in eluci-

dating spatial dependency over a wide range of biological phenomena observable through

microscopy. As we have demonstrated, point process models can capture key aspects of point

distributions while retaining a basis in probability. Network construction synthesizes the

results derived through modeling into a cogent, most-likely set of spatial interactions or

dependencies.

Future work in spatial modeling of influenza A packaging should incorporate a temporal

dimension through live cell imaging. Point process models have been adapted for spatiotem-

poral modeling [30]. Incorporation of intracellular markers important for influenza A vRNP

transport may increase the accuracy of models. Influenza A vRNP transport from the nucleus,

the site of vRNP synthesis, to the plasma membrane is a complex process utilizing a variety of

host proteins [31]. Rab11A-containing vesicles are thought to be the primary mode of trans-

port although there is evidence that a Rab11A-independent mechanism exists [32–34]. A

recent study has implicated the ER to mediating transport of vRNP segments through

anchored Rab11A proteins [35]. Novel methods in fluorescent multiplexing [36] present an

exciting opportunity for observing many cellular structures which will provide a holistic image

the spatial dependence of vRNP segments upon subcellular structures and to each other.
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Methods

Multi-color fluorescent in situ hybridization images

This study used previously published multi-color FISH images from [19] that were generated

at the National Institutes of Health. Briefly, MDCK cells were infected with recombinant

WSN/1933 H1N1 for 8 hours and then fixed and stained with FISH probes, obtained from

Biosearch technologies, against four distinct vRNP segments. DAPI was included as well to

label DNA. Multi-color FISH samples were imaged on an Leica SP5 white light laser to ensure

spectral separation of the five colors (Dapi, Alexa 488, Quasar 570, Cal Fluor Red 590, Quasar

670). The specificity of the probes and spectral separation between fluorophores was previ-

ously confirmed [19].

Image preprocessing, cell segmentation and point detection

All image preprocessing was performed in MATLAB, v. 2015a. Prior to point detection and

segmentation, image noise was removed by convolution with a Gaussian mask. Each image

channel was denoised individually. As described in [19], each image was captured with 0.17

um z-step size spanning the entire cell volume, defined for each cell using both the nuclear and

FISH staining to define the apical cell membrane. Each image was captured with a pixel size of

~50x50x168 nm.

Individual vRNP segments were identified by finding connected areas of signal within the

denoised image. The center of each object was taken as the maximum intensity pixel within,

yielding a set of point coordinates. Note that due to the thickness of the z sections, the apparent

distance between points may be an underestimate of the true distance, but this effect is

expected to average out when considering many points.

Since there was no fluorescent tag for cell membrane components, we estimated the cell

boundary using the vRNP images. We assumed that fluorescent signal would be denser within

the cell cytoplasm than in the surrounding area with cell-cell junctions subtly defined by ‘val-

leys’, curves of low signal density whose normal vectors point towards increasing density. The

gradient of point density over the image was then used to segment individual cells from both

the background and each other by the mean-shift algorithm [37]. Hand segmentation was also

used to ensure accurate cell membrane segmentation. In most cases, the convex hull of all

points within an identified cell region then defined the cell membrane. The nucleus was seg-

mented through simple thresholding and smoothing.

Point processes and patterns

Within each cell, the vRNP segments form a point pattern, x = {x1, x2, . . ., xn}, where n is the

number of observed points and xi is the 3-dimensional coordinate vector for point i. The point

pattern is defined over a bounded region, W, the segmented cell cytoplasm. x is then viewed as

a “realization” (an output) of some random point process X, the generating distribution for all

patterns of the particular vRNP identity. The process X then represents the culmination of bio-

logical factors that determines vRNP segment location, eg. nuclear export, directed transport

over the microtubule network, inhibition by other organelles, etc.

To model X, we first define its locational density, f, a function over the cytoplasm, where f(u) is

the probability of observing a point at position u. The simplest model for this density is the

Homogenous Poisson, characterized by complete randomness over space, or uniform probability:

f xjnð Þ ¼
1

Z
l
n

ð1Þ
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where λ determines point density, and Z a normalizing constant. In the point process literature, λ
is referred to as intensity, but we refer to it as point density to avoid confusion with fluorescence

intensity.

Characterizing spatial randomness

Hypothesis testing for spatial randomness, comparing an observed pattern to an expectation

under a Poisson assumption, was used as an initial motivation for further modeling. Ripley’s

K-function describes the number of neighboring points within a given distance (r) of each

observed point in a pattern, a measure of clustering or inhibition of points within space.

Under a Poisson assumption,

KpoiðrÞ ¼ pr
2 ð2Þ

The expected K-function value can then be used to measure the difference between a given

pattern and that of a Homogenous Poisson with an equal number of points. To assess this for

observed point patterns, we used the test statistic

T ¼
R rmax

0
ðK̂ðrÞ � KpoiðrÞÞ

2dr ð3Þ

where K̂ðrÞ is the estimated K-function for a given pattern and r a radius defining the point

neighborhood. To provide a background distribution for this statistic for a given cell geometry,

we generated 100 samples from a Homogenous Poisson process defined over its cell cytoplasm

and calculated the test statistic. We then obtained a p-value for the hypothesis that an observed

distribution was drawn from a homogenous Poisson process:

p ¼
1þ

Pm
i¼1

Iðtobs � tiÞ
mþ 1

ð4Þ

where m is the number of samples drawn. The p-values were averaged over all cells for a given

vRNP.

Modeling spatial dependence on cellular structures

An Inhomogenous Poisson Process, in its simplest form, is characterized by a spatially

dependent locational density. Per point “factors” (e.g., distance to cell membrane) are used

to determine the probability of a point occurring at a given location. As above, let X be

some point process with realization x, and define s(x), an n x k matrix where each si,j is some

factor j that can be calculated for each point xi. The Inhomogenous Poisson point density

function is:

lðxi; yÞ ¼ ðexpðy
TsðxiÞÞ

where θ is the k-dimensional parameter vector. The likelihood of the model given point

data is then defined by:

lðx; yÞ ¼
Yn

i¼1

lðxiÞ

 !

exp �
Z

W

lðuÞdu
 !

To quantify vRNP dependence on cellular structures, we defined the first factor (f1) as the

distance to the nearest point on the nuclear membrane, the distance to the nearest point on

the cell membrane, or the ratio of cell to nuclear distance.
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Modeling spatial dependence between vRNPs

The second factor, minimum inter-pattern point distance, was used to explore whether there

is vRNP-vRNP interaction between vRNPs of different types. For each observed vRNP seg-

ment of type l, and some other vRNP point pattern of type j, the minimum inter-pattern point

distance is:

f2ðx
l
ijl 6¼ tÞ ¼ min

j
dðxl

i; x
t
jÞ

For each vRNP type, we use a ‘one depends on all’ schema. That is, each model with the

same set of vRNPs is not equivalent but exclusively represents a single vRNP pattern (the pri-

mary pattern) depending on others (the secondary patterns). Models were constructed for

every unique pair, triplet, and quadruplet of vRNP types.

For each model, all instances of its unique components were gathered, all images with tags

for every vRNP in the model. Parameters of the model were then fit for each instance using the

maximum pseudolikelihood [38]. The basic idea is that a given set of parameters can be used

to calculate a value that is proportional to the likelihood (which is referred to as a pseudolikeli-

hood) of observing a point at a given position, and the parameters can then be adjusted to give

the highest total pseudolikelihood for available observations. Hold one out cross validation

was used to assess the quality of fit over all instances yielding cross-validated pseudolikelihood

estimated parameters and variances. These fitted parameters were then used to convert the

pseudolikelihood to a true model likelihood by estimating the proportionality constant as pre-

viously described (19).

There is some variation in the number of images in which different vRNPs were visualized

(S1 Table). This ranged from 4 for PB1 to 9 for M (the others were present 6 or 7 times). As

pointed out by a reviewer, this difference raises the possibility that a vRNP that was imaged

less frequently might be found to be underrepresented in the extent to which other segments

were found to depend upon it. As seen in Table 3, this did not turn out to be the case, as PB1

and M showed similar average likelihoods and more vRNPs showed strong dependence on

PB1 than on the others. Similarly, PB1 was not underrepresented in high scoring triples

(Table 5).

Interaction network assembly

We formulate the task of finding the most probable set of vRNA interactions yielding a full

genome as a graph problem. First, let the set of nodes in the graph be every possible combina-

tion of vRNAs ranging in size from a single vRNA to all 8 segments. Directed edges in the

graph connect subset to superset nodes. We weight each edge of the graph by the likelihood of

the most likely model (chosen from models with only vRNP dependencies, and those with

additional dependencies on either nuclear distance, cell membrane distance, or cell to nuclear

distance ratio) that results in the superset and contains the subset as a primary or secondary

segment (Fig 1). Edges that represent models that have not been observed remain unweighted.

From this graph, a set of interactions yielding the full genome is a tree with leaves as the

vRNA singletons and root as the full 8-mer of vRNA segments. In these trees, we require each

node to have at least two incoming edges, barring the leaf nodes. The set of incoming edges to

a given node must emanate from nodes whose labels, when combined, exactly equal the given

node. A set of incoming edges essentially ‘combines’ nodes, directly corresponding to the

physical event of vRNP segments binding. The most likely set of interactions is also the most

highly weighted tree. The problem of finding the most probable interaction network then

reduces to finding the highest weighted tree in the graph. This problem can easily be solved
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through dynamic programming within a paradigm often used in evolutionary tree construc-

tion [24].

The likelihoods of models involving multiple vRNP segments can be taken as a measure of

spatial dependence of primary segments on secondary segments. vRNP segments that truly

interact are expected to be highly dependent either unidirectionally or bidirectionally. The

cross validated model likelihoods can be used to weight groups of edges in the graph. Since the

graph also has edges that were not observed in actual images (eg: any complex of more than 4

vRNAs), composite or inferred likelihoods were generated through recursion in a dynamic

programming scheme. For each unobserved complex, we took the most likely set of observed

models that could generate the complex.

For a given unobserved complex N = {N1,N2,N3,. . .},

LðNÞ ¼ maxðLðN1jN2;N3; . . .Þ; LðN2jN1;N3; . . .Þ; . . .Þ

Then for some likelihood in the above, L(N1|N2) where N1 = (n1
1, . . . n1

k) and N2 = (n2
1,

. . . n2
l), |N1| = k, |N2| = l,

LððN1jN2ÞÞ ¼
Xk

i¼1

average
N2
j 2all unique sets of N2

ðLðn1

i jN
2

j ÞÞ

Interaction network stability analysis

To assess the stability of the generated interaction network, two procedures of perturbation

were performed: introduction of noise and removing certain high likelihood models. We sim-

ulated noise as a normal random distribution centered at 0 with varying standard deviations,

termed the noise levels. Under increasing noise levels, each observed model likelihood was

amended with a noise value drawn from this distribution prior to interaction network con-

struction. For each noise level, we simulated 100 trials and tallied the proportion of output

trees that contained each possible edge. Trees that align with the non-noisy assembly signal

stability while highly variable trees signal instability.

Reproducible research archive

All images, derived data and source code are available at http://murphylab.cbd.cmu.edu/

software.

Supporting information

S1 Table. FISH imaging probe sets. The leftmost column is the experiment label with the

right 4 columns showing which vRNA segments were tagged. Each experiment also used

DAPI staining.

(CSV)

S2 Table. Observed triplets within the reaction set. 32 of 56 possible triplets were observed.

(CSV)

S3 Table. Cross validated log-variances for pairwise interaction models shown in Table 3.

(CSV)

S4 Table. Variance in the cross validated negative log-likelihoods for pairwise interaction

models with cell-to-nuclear distance ratio shown in Table 4. The row label indicates the

independent variable, the vRNP upon which a model predicting the column label (dependent
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variable) was constructed.

(CSV)

S5 Table. Cross validated log-likelihoods for all observed triplets.

(CSV)

S6 Table. Cross validated log-likelihoods for all observed quadruplets.

(CSV)
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