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Genomic evidence for the degradation of terrestrial
organic matter by pelagic Arctic Ocean Chloroflexi
bacteria
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The Arctic Ocean currently receives a large supply of global river discharge and terrestrial

dissolved organic matter. Moreover, an increase in freshwater runoff and riverine transport of

organic matter to the Arctic Ocean is a predicted consequence of thawing permafrost and

increased precipitation. The fate of the terrestrial humic-rich organic material and its impact

on the marine carbon cycle are largely unknown. Here, a metagenomic survey of the Canada

Basin in the Western Arctic Ocean showed that pelagic Chloroflexi from the Arctic Ocean are

replete with aromatic compound degradation genes, acquired in part by lateral transfer from

terrestrial bacteria. Our results imply marine Chloroflexi have the capacity to use terrestrial

organic matter and that their role in the carbon cycle may increase with the changing

hydrological cycle.
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The Arctic Ocean accounts for 1.4% of global ocean volume
but receives 11% of global river discharge1. Up to 33% of
the dissolved organic matter in the Arctic Ocean is of

terrestrial origin and a major fraction of this terrestrial dissolved
organic matter (tDOM) originates from carbon-rich soils and
peatlands2,3. With thawing permafrost and increased precipita-
tion occurring across the Arctic4, increases in freshwater runoff
and riverine transport of organic matter to the Arctic Ocean are
predicted, which will increase tDOM fluxes and loadings5,6. The
additional tDOM may represent new carbon and energy sources
for the Arctic Ocean microbial community and contribute to
increased respiration, which would result in the Arctic being a
source of dissolved inorganic carbon to the ocean. Alternatively,
as it moves from its source of origin to the Arctic Ocean tDOM
could become more recalcitrant to bacterial metabolism and
represent a long-term sequestration of the newly released carbon
making the Arctic more carbon neutral7,8. However, an estimated
50% of Arctic Ocean tDOM is removed before being released to
the Atlantic, at least in part by microbial processes9. As input of
tDOM increases, knowledge on its microbial transformation will
be critical for understanding changes in Arctic carbon cycling.

The marine SAR202 is a diverse and uncultivated clade of
Chloroflexi bacteria that comprise roughly 10% of planktonic
cells in the dark ocean10–14. SAR202 is also common in marine
sediments and deep lakes15–17. It has long been speculated that
SAR202 may have a role in the degradation of recalcitrant organic
matter11,14, and the recent analysis of SAR202 single-cell-amplified
genomes (SAGs) lends support to this notion18. More generally,
Chloroflexi, including those in the SAR202 clade, are also present
in the upper layers of the Arctic Ocean19, leading to the
hypothesis that recalcitrant organic compounds present in high
Arctic tDOM could be utilized by this group.

Results
In this study, we analyzed Chloroflexi metagenome-assembled
genomes (MAGs) generated from samples collected from the
vertically stratified waters of the Canada Basin in the Western
Arctic Ocean (Fig. 1a). A metagenomic co-assembly was gener-
ated from samples originating from the surface layer (5–7 m), the
subsurface chlorophyll maximum (25–79 m) and a layer corre-
sponding to the terrestrially-derived DOM fluorescence (FDOM)
maximum previously described within the cold Canada Basin
halocline comprised of Pacific-origin waters (177–213 m)20. The
Pacific-origin FDOM maximum is due to sea ice formation and
interactions with bottom sediments on the Beaufort and Chukchi
shelves, which themselves are influenced by coastal erosion and
river runoff20. Binning based on tetranucleotide frequency and
coverage resulted in 360 MAGs from a diversity of marine
microbes (Fig. 1b). Six near-complete Chloroflexi MAGs were
identified. Based on 16S rRNA gene phylogeny, these MAGs
represented three distinct SAR202 subclades (SAR202-II, -VI,
-VII), the AncK29 clade and the TK10 clade (Fig. 2a). Estimated
MAG completeness ranged from 77 to 99%, while contamination
ranged from 0 to 2.3% (Table 1). All MAGs exhibited highest
coverage just below the subsurface chlorophyll maximum
(Fig. 2b) which is consistent with earlier findings on SAR202
distribution in the North Pacific Ocean12. However, the con-
centration and composition of the FDOM maximum in the
Canada Basin is significantly different compared to the North
Pacific Ocean21 and the North Atlantic Subtropical Gyre22. A
concatenated protein phylogeny demonstrated that the SAR202
MAGs were distinct from previously published MAGs from the
deep ocean18 and oxygen minimum zones23 (Supplementary
Figure 1). Fragment recruitment of 21 TARA Ocean metage-
nomic datasets spanning epipelagic to mesopelagic waters at 7

locations and 4 separate bathypelagic metagenomes indicated that
the Canada Basin Chloroflexi MAGs were not widely distributed
in the oceans (Fig. 2c, Supplementary Data 1). These findings are
evidence that the Chloroflexi MAGs represent genotypes that are
rare outside Arctic marine waters.

The Chloroflexi MAGs contained many genes implicated in the
degradation of aromatic compounds typically associated with
humic-rich tDOM (Supplementary Data 2). A single MAG
(SAR202-VII-2) from a previously undescribed clade (SAR202-
VII) exhibited a striking enrichment in these genes (Fig. 3a).
Partial pathways for the catabolism of aromatic compounds were
recently reported from deep ocean SAR202 SAGs18. To assess
whether the abundance and diversity of SAR202-VII-2 genes
involved in aromatic compound catabolism is unique to Arctic
Ocean MAGs or is a more broad characteristic of marine
Chloroflexi, we compared gene content between SAR202-VII-2
and two SAGs (SAR202-V-AB-629-P13 and SAR202-III-
AAA240-O15) reported in Landry et al.18 Of the 117 SAR202-
VII-2 orthologs implicated in aromatic compound degradation,
12 were identified in SAR202-III-AAA240-O15 and only one was
identified in SAR202-V-AB-629-P13, implying distinct and less
diverse pathways in deep ocean SAR202 compared to the Arctic
Ocean populations (Supplementary Data 2).

Proteins for the modification and degradation of monoaryl and
biaryl compounds were predicted, including a diversity of aro-
matic ring-cleaving dioxygenases24–26. A total of 42 ring-cleaving
dioxygenases targeting compounds related to catechol, proto-
catechuate and gentisate were present in the six MAGs, with 25
dioxygenases predicted in SAR202-VII-2 alone (Fig. 3a, b). Ring
demethylation, hydroxylation, and decarboxylation are important
prerequisite steps to prime diverse aromatic compounds for
downstream oxidative cleavage27,28. Thirty ring-demethylating
monooxygenases, ten ring-hydroxylating dioxygenases, and ele-
ven ring-decarboxylases were annotated in the SAR202-VII-2
MAG (Fig. 3c, Supplementary Data 2). Proteins involved in the
conversion of ring-cleavage products to central intermediates of
the citric acid cycle were also present in the SAR202-VII-2 MAG,
including dehydrogenases (i.e., 2,3-dihydroxy-2,3-dihy-
drophenylpropionate dehydrogenase), decarboxylases (i.e., oxa-
loacetate B-decarboxylase), aldolases (i.e., HMG aldolase and
4-carboxymuconolactone decarboxylase), hydratases (i.e., 4-
oxalmescanoate hydratase and 2-oxopent-4-enoate hydratase),
isomerases (i.e., mycothiol maleulpyruvate isomerase and
muconolactone isomerase) and hydrolases (i.e., 3-oxoadipate
enol-lactonase and β-ketoadipate enol-lactone hydrolase) (Sup-
plementary Data 2, Supplementary Figure 2). We note that we
were unable to identify a single complete reference pathway for
humic-like aromatic compound degradation. Since estimated
genome completeness for SAR202-VII-2 was 99%, it is unlikely
the genes were missed due to an incomplete genome. Another
explanation is that marine Chloroflexi genomes encode novel
pathway variants. Indeed, numerous metal-dependent hydrolases,
hydrolases of the HAD family and NAD(P)-dependent
dehydrogenase were clustered in genomic regions with the ring-
modifying oxygenases, decarboxylases, and demethylases descri-
bed above. In addition to the array of aromatic compound
degradation genes, the SAR202-VII-2 MAG also contained 34
copies of the flavin mononucleotide (FM)/F420-dependent
monooxygenase catalytic subunit (FMNO) proteins previously
implicated in activation of recalcitrant organic compounds in the
deep ocean18. These results are consistent with Chloroflexi in the
Arctic Ocean having the metabolic potential to access carbon and
energy available in aromatic compounds typically associated with
tDOM.

The diversity of SAR202-VII-2 genes implicated in aromatic
compound degradation lead us to hypothesize that they may have
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originated by lateral gene transfer from terrestrial bacteria. To test
this, we targeted aromatic compound degradation genes (the
ring-cleaving dioxygenases, specifically) in the Chloroflexi MAGs
for in-depth phylogenetic analyses. The genomic diversity of

marine Chloroflexi was expanded in our analysis by including
130 Chloroflexi MAGs recently assembled and binned from the
TARA Oceans project29. A number of the SAR202-VII-2 ring-
cleaving dioxygenase homologs were most closely related to
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proteins from the TARA Ocean Chloroflexi MAGs and other
marine originating genomes, particularly the catechol dioxy-
genases (Supplementary Figure 3), gentisate 1,2-dioxygenases
(Fig. 4) and methylgallate dioxygenases (Supplementary Figure 4)
indicating that aromatic compound degradation in Chloroflexi is
not restricted to the Arctic Ocean. However, lateral gene transfer
from terrestrial bacteria was also evident. For example, an

annotated gentisate dioxygenase gene was positioned within a
clade of terrestrial Actinomycetes (Fig. 4). Additional genes
involved in the degradation of structures related to catechol,
protocatechuate and gentisate were phylogenetically associated
with homologs from terrestrial Acidobacteria (Supplementary
Figure 5), Actinobacteria (Supplementary Figure 6), Armatimo-
nadetes (Fig. 4), Delta-proteobacteria (Supplementary Figures 3
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Table 1 Genomic characteristics of MAGs

Size (Mb) Cov (x) GC (%) Completeness (%) Contamination (%) N50 (kb) # of Contigs

SAR202-II-3 1.36 68 39 80 0 35 46
SAR202-II-177A 1.62 101 42 82 1 36 52
SAR202-VII-2 2.78 16 59 99 0 246 8
SAR202-VI-29A 1.52 16 46 97 2 59 2
TK10-74A 2.45 12 69 81 2.3 38 76
Anck29-46 1.11 11 32 77 0 75 22
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MAG SAR202-VII-2 (Ga0133547_10000004_0224)

Hydrothermal vent metagenome | Marine, Hydrothermal vent (A0A160V8U3)

Chloroflexi bacterium | Terrestrial, Soil (A0A1Q7QL69)

Betaproteobacteria bacterium | Freshwater, Groundwater (A0A1F3ZZ05)

Puniceibacterium sp. IMCC21224 | Marine, Coastal waters (A0A0J5QC59)

Pseudonocardia acaciae | Terrestrial, Acacia auriculiformis rhizosphere (UPI00048CFA4D)

Betaproteobacteria bacterium | Freshwater, Groundwater (A0A1F3ZF54)

Marinobacter algicola DG893 | Marine (A6F042)

Hydrogenophaga pseudoflava | (UPI00082636C0)

MAGSAR202-VII-2 (Ga0133547_10000002_0528)

Actinoplanes globisporus | Terrestrial, Soil (UPI00035C3EFA)

MAG SAR202-VII-2 (Ga0133547_10000360_0073)

Hydrothermal vent metagenome | Marine, Hydrothermal vent (A0A160V9N6)

Rhizobiales bacterium 6217 | Bioreactor (A0A1Q4BBC1)

Metallosphaera yellowstonensis MK1 | Freshwater, Thermal spring (H2C979)

Streptomyces avicenniae | Terrestrial, Avicennia mariana rhizosphere (UPI00069C8037)

Ca. Rokubacteria | Terrestrial, Soil (A0A1Q6Z3E1)

Mycobacterium sp. JS623 | Human, Soft tissue lesion (L0ITX6)

Photorhabdus temperata | Insect symbiont (W3V0B8)

Cohnella kolymensis | Terrestrial, Permafrost soil (A0A0C2QCW1)

Allosalinactinospora lopnorensis | Terrestrial, Tamarisk tree rhizosphere (UPI000623DDAE)

Conexibacter woesei | Terrestrial, Soil (D3FAR9)

Stigmatella aurantiaca | (A0A1H8DFG8)

Pusillimonas noertemannii | Freshwater, River water (UPI0002D6E76C)

TOBG EAC-693

TOBG SP-320

Deltaproteobacteria bacterium | Terrestrial, Soil (A0A1Q7J4E1)

Micromonospora rhizosphaerae | Terrestrial, Mangrove rhizosphere (A0A1C6SGZ1)

Deltaproteobacteria bacterium | Terrestrial, Soil (A0A1F9KR04)

Azohydromonas lata | (UPI000829F41D)

Solirubrobacter sp. URHD0082 | Terrestrial, Soil (UPI000422E0D1)

Paracoccus versutus | (A0A099FP16)

Actinoplanes globisporus | Terrestrial, Soil (UPI000371AF25)

Magnaporthe oryzae | Terrestrial (Q2KEQ4)

Chloroflexi bacterium | Terrestrial, Soil (A0A1Q8AAT0)

Deltaproteobacteria bacterium | Terrestrial, Soil (A0A1Q7JAY6)

TOBG NAT-93

Ca. Acidianus copahuensis | Freshwater, Acidic hot spring (A0A031LPX2)

Frankia sp. Iso899 | Terrestrial, Soil (UPI0003B34178)

MAG SAR202-VII-2 (Ga0133547_10000060_0179)

Burkholderiaceae arationis LMG 29324 | Terrestrial, Soil (A0A158B6L5)

Sulfitobacter geojensis | Marine, Coastal waters (UPI00046AA492)

Acidobacteria bacterium | Terrestrial, Soil (A0A1Q7MJD6)

Streptomyces sp. MnatMPM17 | Terrestrial, Soil (A0A1C5CS47)

TOBG SAT-91 

Acidobacteria bacterium | Freshwater, Groundwater (A0A1F2T6K4)

Armatimonadetes bacterium CSP13 | Freshwater sediments (A0A0T6ART8)

TOBG SP-253

Marine sediment metagenome | Marine sediments (A0A0F9CXY8)

Alphaproteobacteria bacterium | Terrestrial, Soil (A0A1Q7BII2)

Marine microorganism HF4000ANIW93N21 | Marine (B3T345)

MAG SAR202-VII-2 (Ga0133547_10000103_0019)

Nodosilinea nodulosa | Marine (UPI0003025B02)

Haloferax sp. | Experimentally validated (Q330M9)

Deltaproteobacteria bacterium | Freshwater, Groundwater (A0A1F8XVR5)

Chromobacterium sp. LK11 | Terrestrial (A0A0J6NGJ2)

Nocardia arthritidis | Human (UPI0007A3EF410)

Pseudonocardia sp. CNS139 | Marine, Sediment (A0A1Q9SZW9)
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and 6), Beta-proteobacteria (Supplementary Figure 7) and a clade
of diverse terrestrial phyla (Supplementary Figure 8). Addition-
ally, 2 gentisate 1,2-dioxygenase genes and 1 protocatechuate
dioxygenase ligB gene were phylogenetically associated to a
clade of genes from both terrestrial Delta-proteobacteria and
marine microbes (Fig. 4 and Supplementary Figure 8). These
putative gene acquisitions were unlikely due to contaminating
scaffolds because the genes were located on long scaffolds that
were assigned to Chloroflexi with high confidence based on tet-
ranucleotide frequencies and the phylogenetic identity of house-
keeping genes. Such a phylogenetic pattern supports the
hypothesis that marine Chloroflexi acquired the capacity for
aromatic compound degradation, at least in part, by lateral gene
transfer from terrestrial bacteria.

Conclusions
In total, these results are consistent with Chloroflexi having a role
in tDOM transformation in waters of the Arctic Ocean. This is
the first study to our knowledge to associate a specific microbial
group with tDOM metabolism in the Arctic Ocean and it expands
on recent studies contributing to our understanding of the
metabolic diversity of the abundant yet uncultivated marine
Chloroflexi18,23. Moreover, lateral gene transfer from terrestrial
bacteria appears to have contributed to the evolution of aromatic
compound degradation capabilities within marine Chloroflexi,
particularly in regions of the Arctic Ocean impacted by
terrestrial input.

The majority of MAGs were restricted to the humic-rich
Pacific-origin halocline of the Canada Basin, however it is the
surface waters that will be most immediately affected by increased
freshwater input1. Hence, our initial observations suggest a need
for further research on the distribution of tDOM-utilizing
microbes in other Arctic water masses with an aim to establish
how common and phylogenetically widespread tDOM metabo-
lism is in the Arctic Ocean. These water masses could include
coastal surface waters at the mouth of the Mackenzie River, as
well as regions of differing DOM composition such as the East
Siberian Sea20. Moreover, metagenomic studies such as this are,
in essence, hypothesis-generating and future work that includes
targeted cultivation, in situ gene expression analysis, and rate
measurement-based approaches are required to validate and
quantify microbial metabolic contributions to nutrient cycling.
Overall, it is likely that marine Chloroflexi have the capacity to
degrade tDOM, and their role in the Arctic carbon cycle may
increase as Arctic warming leads to greater inputs of terrestrial
organic matter.

Methods
Sampling and DNA extraction. Twelve samples for metagenomics were collected
in September 2015 during the Joint Ocean Ice Study cruise to the Canada Basin.
For each sample, 4–8 L of seawater was sequentially filtered through a 50 μm pore
mesh, followed by a 3 μm pore size polycarbonate filter and a 0.22 μm pore size
Sterivex filter (Durapore; Millipore, Billerica, MA, USA). Filters were preserved in
RNAlater and stored at −80 °C until processed in the laboratory. DNA was
extracted from the Sterivex filter using the following method: filters were thawed on
ice and RNAlater was removed. The Sterivex was then rinsed twice with a sucrose-
based lysis buffer, and filled with 1.8 mL of the lysis buffer. Filters were treated with
100 μL of 125 mgmL−1 lysozyme and 20 μL of 10 μg mL−1 RNAse A and left to
rotate at 37 °C for 1 h. After incubation, 100 μL of 10 mgmL−1 proteinase K and
100 μL of 20% SDS was added. Filters were left to rotate for 2 h at 55 °C. Lysate was
removed from the filters. Protein was precipitated and removed with 0.583 volumes
of MPC Protein Precipitation Reagent (Epicentre, Madison, WI, USA) and cen-
trifugation at 10,000×g at 4 °C for 10 min. The supernatant was transferred to a
clean tube. DNA was precipitated with cold isopropanol, and resuspended in low
TE buffer.

Metagenomic sequencing, assembly, annotation, and binning. DNA sequen-
cing of 12 samples was performed at the Department of Energy Joint Genome
Institute (Walnut Creek, CA, USA) on the HiSeq 2500-1TB (Illumina) platform.

Paired-end sequences of 2 × 150 bp were generated for all libraries. A metagenome
co-assembly of all raw reads was generated using MEGAHIT30 with kmer sizes of
23,43,63,83,103,123. Gene prediction and annotation was performed using the
DOE Joint Genome Institute’s Integrated Microbial Genomes (IMG) database tool
(version 4.11.0)31. Metagenomic binning was performed on scaffolds ≥10 kb in
length using MetaWatt32. Relative weight of coverage binning was set to 0.75 and
the optimize bins and polish bins options were set to on. The taxonomic identity of
MAGs was assessed using a concatenated phylogenetic tree based on 138 single
copy conserved genes as implemented in MetaWatt32. Visualization of the tree and
mapping of data on to taxa was performed with iTOL33. Estimation of MAG
completeness and contamination was performed using CheckM34. Six Chloroflexi
MAGs were selected for further analysis based on the presence of a 16S rRNA gene,
high completeness and low contamination. Manual curation of the six Chloroflexi
MAGs was performed and suspected contaminating scaffolds (single copy genes
most similar to non-Chloroflexi taxa) were removed prior to further analysis of
MAGs.

16S rRNA phylogenetic analysis. Chloroflexi diversity in the metagenomic
assembly was assessed by 16S rRNA gene analysis. All 16S rRNA genes in the co-
assembly were assigned to taxonomic groups using mothur35 and the Wang
method with a bootstrap value cutoff of 60%36. Chloroflexi 16S rRNA genes greater
than 360 bp were included in a phylogenetic analysis with Chloroflexi reference
sequences. A multiple sequence alignment was generated using MUSCLE (imple-
mented in MEGA6)37. Phylogenetic reconstructions were conducted by maximum
likelihood using MEGA6-v.0.6 and the following settings: general time reversible
model, gamma distribution model for the rate variation with four discrete gamma
categories, and the nearest-neighbor interchange (NNI) heuristic search method38

with a bootstrap analysis using 100 replicates.

Single protein and concatenated protein phylogenies. A concatenated protein
phylogeny was constructed using 30 Chloroflexi reference genomes and the
6 Canada Basin Chloroflexi MAGs. Orthologous genes in the 36 Chloroflexi
genomes were identified using ProteinOrtho38. Fifty orthologs present in at least
34 of the 36 genomes were selected for concatenated phylogenetic analysis (Sup-
plemetary Data 3). Each orthologous protein family was aligned using MUSCLE
(implemented in MEGA6) and alignment positions were masked using the prob-
abilistic masker ZORRO39, masking columns with weights <0.5. The concatenated
alignment consisted of 14,815 amino acid positions. Phylogenetic reconstructions
were conducted by maximum likelihood using MEGA6-v.0.6 and the following
settings: JTT substitution model, gamma distribution with invariant sites model for
the rate variation with four discrete gamma categories, and the nearest-neighbor
interchange (NNI) heuristic search method40 with a bootstrap analysis using 100
replicates.

For phylogenetic analysis of ring-cleaving dioxygenase sequences identified in
SAR202-VII-2, query sequences were searched against UniRef90 and 130
Chloroflexi MAGs constructed from the TARA Oceans dataset29. The TARA
Ocean Chloroflexi MAGs were used as is with no manual curation.
UniRef90 sequences and the top TARA Ocean MAG hits for each dioxygenase
were aligned with their respective SAR202-VII-2 homologs with MUSCLE
(implemented in MEGA6) and alignment positions were masked using the
probabilistic masker ZORRO39, masking columns with weights less than 0.5.
Phylogenetic reconstruction was conducted using the same settings as the
concatenated phylogeny.

Comparative genomics and metabolic reconstruction. The distribution of
orthologs across Arctic Ocean genomes, as well as the identification of orthologs
shared with the deep ocean SAGs, was determined using proteinortho38. Inference
of protein function and metabolic reconstruction was based on the IMG annota-
tions provided by the JGI, including KEGG, Pfam, EC numbers, and Metacyc
annotations. Metabolic reconstruction was also facilitated by generated pathway
genome databases for each MAG using the pathologic software available through
Pathway Tools41.

Metagenomic fragment recruitment. The distribution of the Canada Basin
MAGs in the global ocean was determined using best-hit reciprocal blast analysis
similar to Landry et al.18 Unassembled metagenomic data from 25 samples
(Supplementary Data 1) was first recruited to the six Canada Basin Chloroflexi
MAGS as well as two SAR202 SAGs originating from the deep North Pacific Ocean
from the Hawaiian ocean time series (HOTS) and the deep North Atlantic
Ocean18. Metagenomes from the TARA Ocean project used here were repre-
sentative of the surface, chlorophyll maximum and mesopelagic waters from the
North Atlantic, South Atlantic, North Pacific, Coastal North Pacific, South Pacific,
Coast of Brazil and the Antarctic peninsula. To reduce computational demand,
only part 1 (1 Gbp of a random subset of reads) of each metagenomic dataset
available at EBI was used (Supplementary Data 1). Additional bathypelagic
metagenomes from the North Pacific and South Atlantic Oceans (LineP P04, P12
and P26, and Knorr S15 2500 m) were also included. All hits from the initial blast
were then reciprocally queried against the Canada Basin Chloroflexi MAGs,
bathypelagic SAR202 SAGs, and 130 Chloroflexi MAGs constructed from the
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TARA oceans data. The best-hit was reported. Only hits with an alignment length
≥100 bp and a percent identity of 95% or more were counted (lower % identity cut-
offs did not alter the number of reads recruited in any significant manner). To
compare the results among the different datasets, the number of recruited reads
was normalized to total number of reads in each sample. The final coverage results
were expressed as the number of reads per kilobase of the MAG per gigabase of
metagenome (rpkg).

Data availability. The metagenomic data generated in this study are available in
the Integrated Microbial Genomes database at the Joint Genome Institute at
https://img.jgi.doe.gov, GOLD Project ID: Ga0133547. Metagenome-assembled
genome projects have been deposited at DDBJ/ENA/GenBank under the Bioproject
PRJNA471535 and accession numbers QGNM00000000 (for SAR202-II-3),
QGNN00000000 (for SAR202-II-177A), QGNO00000000 (for SAR202-VI-29A),
QEVV00000000 (for SAR202-VII-2), QGNP00000000 (for Anck29-46), and
QGNQ00000000 (for TK10-74A). The versions described in this paper are versions
QGNM01000000 (for SAR202-II-3), QGNN01000000 (for SAR202-II-177A),
QGNO01000000 (for SAR202-VI-29A), QEVV01000000 (for SAR202-VII-2),
QGNP01000000 (for Anck29-46), and QGNQ01000000 (for TK10-74A).
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