
Amino Acid Intakes Are Associated With Bone Mineral
Density and Prevalence of Low Bone Mass in Women:
Evidence From Discordant Monozygotic Twins
Amy Jennings,1 Alexander MacGregor,1 Tim Spector,2 and Aed�ın Cassidy1

1Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
2Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK

ABSTRACT
Although a higher protein intake, particularly from vegetable sources, has been shown to be associated with higher bone mineral
density (BMD) the relative impact of specific amino acids on BMD and risk of osteoporosis remains to be determined. Mechanistic
research suggests that a number of specific amino acids, including five nonessential amino acids—alanine, arginine, glutamic acid,
glycine, and proline—may play a role in bone health, principally through improved production of insulin and insulin-like growth
factor 1 and the synthesis of collagen and muscle protein. However to date, no previous studies have examined the associations
between habitual intake of amino acids and direct measures of BMD and prevalence of osteoporosis or osteopenia, and no studies
have examined this relationship in discordant identical twin-pairs. In these analyses of femalemonozygotic twin-pairs discordant for
amino acid intake (n¼ 135), twins with higher intakes of alanine and glycine had significantly higher BMD at the spine than their
co-twins with within-pair differences in spine-BMD of 0.012 g/cm2 (SE 0.01; p¼ 0.039) and 0.014 g/cm2 (SE 0.01; p¼ 0.026),
respectively. Furthermore, in cross-sectional multivariable analyses of 3160 females aged 18 to 79 years, a higher intake of total
protein was significantly associated with higher DXA-measured BMD at the spine (quartile Q4 to quartile Q1: 0.017 g/cm2, SE 0.01,
p¼ 0.035) and forearm (Q4 toQ1: 0.010 g/cm2, SE 0.003, p¼ 0.002). Intake of six amino acids (alanine, arginine, glutamic acid, leucine,
lysine, and proline) were associated with higher BMD at the spine and forearm with the strongest association observed for leucine
(Q4 to Q1: 0.024 g/cm2, SE 0.01, p¼ 0.007). When intakes were stratified by protein source, vegetable or animal, prevalence of
osteoporosis or osteopenia was 13% to 19% lower comparing extreme quartiles of vegetable intake for five amino acids (not
glutamic acid or proline). These data provide evidence to suggest that intake of protein and several amino acids, including alanine
and glycine, may be beneficial for bone health, independent of genetic background. © 2015 The Authors. Journal of Bone andMineral
Research Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
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Introduction

There is currently no clear consensus on the role of protein in
bone health because proteinmay have competing effects on

bone. Higher protein intake is thought to beneficially affect
bone health through a number of mechanisms, including its role
in maintaining bone structure and increasing insulin-like growth
factor 1 (IGF-1), an important mediator of osteoblastic activi-
ty.(1,2) Conversely, dietary protein is a source of metabolic acid
that may lower the pH of urine and increase urinary calcium
excretion, which could lower bone mass,(3) although a meta-
analyses of randomized trials reported that higher protein
intakes are not detrimental to calcium retention or bonemineral
loss.(4) A systematic review on the relationship between protein
and bone health reported no adverse associations between

protein intake and bone mineral density (BMD) and a meta-
analysis of six randomized controlled trials showed a beneficial
effect of protein supplementation (40mgofmilk basic protein or
20.4 g total protein) on lumbar spine BMD of 0.02 g/cm2.(5) A
number of cross-sectional and prospective studies have also
reported associations between higher total protein intake and
higher BMD in women.(6–9) Data indicate that protein source
(animal or vegetable) may influence the relationship between
protein intake and bone health because protein from animal
sources is high in acidic amino acids such as cysteine and
methionine,(3) although these acidic amino acids are also found
in plant-based sources such as nuts. Three recent studies have
shown that vegetable protein, but not animal protein, is
associated with increased BMD in women.(10–12) Conversely, in a
study of 562 women, increased intake of 15 g animal protein per
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day was associated with increased BMD at the hip (0.016 g/cm2)
and femoral neck (0.012 g/cm2), and a 15 g/day increase in
vegetable protein intake was associated with lower BMD at
the hip (–0.013 g/cm2) and femoral neck (–0.010 g/cm2),(13) and
in a study of post-menopausal women the relative risk of hip
fracture was found to decrease significantly across increasing
quartiles of animal protein intake (1.00 [reference]; 0.59 [95% CI,
0.3 to 1.3]; 0.63 [95% CI, 0.3 to 1.4]; and 0.31 [95% CI, 0.1
to 0.9]).(14)

To date, no human studies have looked at the potential
impact of specific intakes of amino acids on bone health;
however, mechanistic evidence suggests that a number of
amino acids, including five of the nonessential amino acids, may
be associated with BMD. In particular, arginine, lysine, alanine,
proline, leucine, and glutamine have been shown in vitro to
stimulate insulin secretion, which promotes osteoblast growth
and differentiation.(15,16) Arginine has also been shown to
stimulate growth hormone secretion thereby promoting
production of IGF-1,(17) whereas arginine, lysine, and glycine
have been associated with an improvement in collagen
formation or synthesis.(18,19) Leucine has a direct effect on the
initiation of mRNA translation and is thought to be the most
efficient of the branched-chain amino acids at increasingmuscle
protein synthesis, which is critical for the maintenance of
adequate bone strength and density.(20)

Therefore, we examined for the first time the relationship
between intakes of seven specific amino acids with known
mechanistic links to bone health, BMD, and prevalence of
osteoporosis or osteopenia in a cohort of 3020 healthy women
aged 18 to 79 year. Furthermore, we assessed if the dietary
source of the amino acids, vegetable or animal, were
differentially associated with these outcomes. As genetic factors
are strong determinants of BMD, with estimates of heritability
in this cohort at 46% to 84%,(21) we used the discordant
monozygotic twin model to examine associations between
intake of amino acids and BMD independently of genetic and
shared environmental factors. On the basis of previous research,
it was hypothesized that participants with higher intakes of
amino acids that have been shown in vitro to be associated with
bone health (alanine, arginine, glutamic acid, glycine, leucine,
lysine, and proline) would be associated with a lower prevalence
of osteoporosis and higher BMD.

Subjects and Methods

Study population

The current study used data collected from study participants in
the TwinsUK registry, a nationwide registry that consists of adult
twin volunteers recruited from the general population through
national media campaigns in the UK.(22) All participants were
unaware of the specific hypotheses being tested, and were not
selected on the basis of the variables being studied. Informed
consent was obtained from all participants and ethical approval
for the study was gained from St Thomas’s Hospital Research
Ethics committee. The participants included in this analyses
were female, aged 18 to 75 years, and were a sample of the total
population group who had completed both food frequency
questionnaires (FFQs) and attended for clinical assessment of
BMD between 1996 and 2000. Of the 5119 participants who
completed an FFQ, 36% (n¼ 1857) were excluded for having an
incomplete FFQ (answers for more than 10 food items were left
blank) or implausible energy intake (the ratio of energy intake to

estimated basal metabolic rate was�2 SD above the population
mean(23)). A further 2% (n¼ 102) did not attend a clinical session
for BMD assessment, resulting in 3160 participants being
included in the current analyses. This population has been
shown to be representative of the general population in terms of
BMD and dietary intake.(22,23)

Assessment of BMD

Central BMD was measured at the lumbar spine (L1 to L4) and
femoral neck and peripheral BMD at the forearm by dual-energy
X-ray absorptiometry (DXA) using standard protocols (QDR-
2000W; Hologic, Bedford, MA, USA. Osteoporosis was defined
as a T-score of < –2.5 SD below peak female bone mass and
osteopenia as a T-score between –1 and –2.49 SD. Following the
guidelines of the National Osteoporosis Society these were only
defined for postmenopausal women aged over 50 years.(24)

Assessment of amino acid intakes

Participants completed a 131-item validated FFQ.(25,26) Intakes of
amino acids were derived predominantly using UK food
composition data but with additional data from the U.S.
Department of Agriculture.(27,28) Values for 18 individual amino
acids were assigned to each of the foods listed in the FFQ and for
we assigned values for each ingredient in the mixed dishes.
When values for total protein from the amino acid database and
the latest UK food composition tables differed, the amino acid
composition of the food items were modified to match themost
up-to-date data.(29) Intakes of individual amino acids were
calculated as the frequency of each food multiplied by the
amino acid content of the food for the appropriate portion
size.(30) All foods were classified as either animal or vegetable
origin, and for mixed dishes the proportions contributed from
animal and vegetable sources were calculated by breaking
down the ingredients into foods that were attributable to a
single source.

Assessment of covariates

Zygosity was ascertained by questionnaire and confirmed via
subsequent genotyping as part of genomewide association
studies. Intake of energy and nutrients associated with BMD
were determined from the FFQ as described in the assessment of
amino acid intakes section. Height was measured to the nearest
0.5 cm with the use of a wall-mounted stadiometer and weight
(light clothing only) was measured to the nearest 0.1 kg with
digital scales. Information on medication and supplement use,
lifestyle, and demographic variables were obtained by stan-
dardized nurse-administered questionnaire. Physical activity
was classified as inactive, moderate, and active during work,
home, and leisure time using a questionnaire strongly correlated
with more in-depth assessment of time spent in physical activity
in this cohort.(31) The mean time spent in physical activity per
week for each physical activity level was as follows: inactive,
16min; light activity, 36min; moderate activity, 102min; and
heavy activity, 199min. Underreporting of energy intake was
assessed by calculating the ratio of reported energy intake
to estimated energy requirements, based on the Institute
of Medicine equations.(32) A 95% CI for the accuracy of
these values was then calculated by taking into account the
amount of variation inherent in the methods used to assess
energy intake and energy requirements.(33) Because excluding
participants who underreport can introduce considerable bias,
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underreportingwas considered as a covariate in all multivariable
models.(34)

Statistical analysis

Statistical analyses were performed with Stata statistical
software version 11.2 (StataCorp, College Station, TX, USA). First,
we used the entire sample, treating twins as individuals while
accounting for twin pair clustering. Quartiles (Q1 to Q4) of intake
were calculated for total protein and the seven amino acids with
known mechanistic links to bone health. Analysis of covariance
(ANCOVA) was used to calculate adjusted means and evaluate
statistical trends in BMD across quartiles and prevalence ratios
for low bone mass (osteoporosis and osteopenia combined)
were estimated using Poisson regression. There was a significant
interaction between amino acid intake and protein source, so all
analyses were stratified by source (all, vegetable, animal). All
models were adjusted for age (years), current smoking (yes, no),
physical activity (inactive,moderately active, active), weight (kg),
height (cm), use of hormone replacement therapy (yes, no), use
of calcium or vitamin D supplements (yes, no), menopausal
status (premenopausal, postmenopausal), underreporting (yes,
no), and intakes of alcohol (g), calcium (mg), magnesium (mg),
and phosphorous (mg). The intakes of individual amino acids
were additionally adjusted for total protein intake (g).

In further analyses we studied monozygotic twin pairs who
were discordant for energy-adjusted intakes of total protein and
bone protective amino acids (defined as a within-pair difference
of at least 1 SD) and compared BMD levels in the twins with
higher intake versus lower intake using paired sample t tests. To
eliminate other known environmental influences on BMD we
ensured all twin pairs were concordant for menopausal status
and there were no significant differences between the higher
and lower intake pairs for smoking status, alcohol intake,
physical activity, weight, or use of hormone replacement
therapy. All analyses were conducted with total protein and
amino acids expressed as a percentage of energy in order to best
present the data relative to total dietary intake.

Results

The baseline characteristics of the population of 3160 female
participants are presented in Table 1. The average age of
participants was 48 years (SD 12.7), 18.5% smoked, and 24%
were physically active. Total daily protein intake was 80.5 g (SD
21.6) and contributed 16.5% (SD 2.64) to total energy intake. Of
the amino acids under study, glutamic acid (19.8% SD 1.1) and
leucine (7.9% SD 0.2) made the greatest contribution to total
protein intake, with intakes of 3.2% (SD 0.5) and 1.3% (0.2) of
total energy intake, respectively. Of the six amino acids
investigated, vegetable sources made the greatest contribution
to glutamic acid intake (43% of intake) and the least to intakes of
lysine (26% of intake). As expected, all the amino acids were
significantly correlated with protein intake, with coefficients
ranging from 0.20 for glycine intake to 0.70 for leucine intake
(data not shown). Of the postmenopausal participants aged over
50 years (n¼ 1120) 18% were classified as having osteoporosis
and 45% as having osteopenia.

As shown in Table 2, in multivariable analyses a higher intake
of total protein was significantly associatedwith a higher BMD at
the spine (Q4 to Q1: 0.017 g/cm2, SE 0.01, p trend 0.035), and
forearm (Q4 to Q1: 0.010 g/cm2, SE 0.003, p trend 0.002), with no
associations observed for BMD at the femoral neck (p trend

¼ 0.83) or with prevalence of osteoporosis or osteopenia
(Table 3, p trend¼ 0.75) Higher intake of vegetable protein
was not associated with BMD at any site, although the
prevalence (PR) of osteoporosis or osteopenia was 13% lower
in Q4 of vegetable protein intake compared to Q1 (PR 0.87;
95% CI, 0.8 to 1.0; p trend 0.029). No associations with BMD or
prevalence of osteoporosis or osteopenia were observed for
animal protein.

Higher intakes of six of the bone-protective amino acids were
significantly associated with higher BMD at the spine and
forearm (only glycine intake was not associated; Table 2). At the
spine the magnitudes of association ranged from 0.019 g/cm2

(SE 0.008, p trend 0.018) for proline to 0.025 g/cm2 (SE 0.008,
p trend 0.018) for leucine, when comparing extreme quartiles
of intake. For forearm BMD, a difference of 0.009 g/cm2 was
observed between extreme quartiles of alanine (SE 0.003,
p trend 0.017), arginine (SE 0.003, p trend 0.007), and glutamic
acid (SE 0.003; p trend 0.013) intake. The remaining three amino
acids, leucine, lysine, and proline, were associated with
0.012 g/cm2 (SE 0.003, p trend 0.001), 0.011 g/cm2 (SE 0.003,
p trend 0.003), and 0.007 g/cm2 (SE 0.003, p trend 0.031)
differences in forearm BMD, respectively, comparing extreme
quartiles of intake.

There were no notable associations between intakes of these
seven amino acids and BMD when stratified by vegetable or
animal sources. However, the prevalence of osteoporosis or
osteopenia was significantly lower in the highest compared to
the lowest quartile of amino acid intake from vegetable sources
for five of the seven bone-protective amino acids including
alanine, arginine, glycine, leucine, and lysine. The results
indicated a 13% to 19% lower prevalence of low bone mass
in the highest compared to the lowest quintile of vegetable
intake for alanine (PR 0.86; 95% CI, 0.8 to 1.0; p trend 0.027),
arginine (PR 0.81; 95% CI, 0.7 to 0.9; p trend 0.001), glycine (PR
0.86; 95% CI, 0.8 to 1.0; p trend 0.009), leucine (PR 0.87; 95% CI,
0.8 to 1.0; p trend 0.026), and lysine (PR 0.85; 95% CI, 0.8 to 1.0;
p trend 0.013).

In our co-twin case control analyses we examined monozy-
gotic twin pairs discordant for protein and amino acid intake and
concordant for menopausal status. Intakes of total protein
differed by 32% (14.6% energy [SD 2.3] versus 19.3% energy [SD
2.7]) between the higher-intake and lower-intake twins and
intakes of the amino acids differed by 28% for glutamic acid
(2.9% energy [SD 0.4] versus 3.7% energy [SD 0.5]) to 44% for
lysine (1.0% energy [SD 0.2] versus 1.4% energy [SD 0.3]).
Compared to the twins with lower intakes, twins with higher
intakes of alanine and glycine had significantly higher BMD at
the spine than their co-twins (Fig. 1). Specifically, there were
differences in BMD of 0.012 g/cm2 (SE 0.01; p¼ 0.039) for alanine
and 0.014 g/cm2 (SE 0.01; p¼ 0.026) for glycine. There were no
significant differences in spine BMD between the higher-intake
and lower-intake twins for total protein (0.009 g/cm2; SE 0.01;
p¼ 0.07), arginine (0.009 g/cm2; SE 0.01; p¼ 0.11), glutamic acid
(0.002 g/cm2; SE 0.01; p¼ 0.38), leucine (0.009 g/cm2; SE 0.01;
p¼ 0.07), lysine (0.009 g/cm2; SE 0.01; p¼ 0.07), or proline
(0.005 g/cm2; SE 0.01; p¼ 0.73).

Sensitivity analyses in our cross-sectional analyses replacing
intake of the individual amino acids with intake of total protein
as a covariate did not markedly change our results. Furthermore,
substituting menopausal status with years since menopause did
not change the direction or magnitude of the associations
reported, although significance was lost for the association
between total protein intake and spine BMD (Q5 to Q1: 0.02;
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SE 0.01; p trend¼ 0.06) and proline intake and forearm BMD (Q5
to Q1: 0.01; SE 0.003; p trend 0.07).

Discussion

To our knowledge, this is the first cross-sectional study to
examine associations between dietary intakes of amino acids,
which have previously been linked in mechanistic research to
bone health, BMD, and prevalence of osteoporosis or
osteopenia. The twin population provided the unique oppor-
tunity to control for potentially confounding genetic influences
by comparing identical twins who were discordant for protein
or amino acid intake. The monozygotic twins with higher
intakes of alanine and glycine had significantly higher BMD at
the spine than their co-twins. Specifically, there were differ-
ences in BMD of 0.012 g/cm2 (SE 0.01; p¼ 0.039) for alanine and
0.014 g/cm2 (SE 0.01; p¼ 0.026) for glycine. For comparison, the
magnitude of these associations equated to the coefficients for

spine BMD we observed in our multivariable adjusted models
for a 5-year increase in age (–0.011 g/cm2), smoking versus not
smoking (–0.008 g/cm2), and physical inactivity versus activity
(–0.003 g/cm2).

Our novel data also show in this population of middle aged
females that as well as a protective effect for total protein intake,
higher intake of six bone-protective amino acids (alanine,
arginine, glutamic acid, leucine, lysine, and proline) were
significantly associated with higher BMD at the spine and
forearm. These associations were independent of established
lifestyle factors and medications that are known to be related to
bone health as well as other dietary factors including alcohol,
calcium, phosphorous, and magnesium intakes.

Women in the highest quartile of protein intake (19.9%
energy) had significantly higher BMD in the spine (0.017 g/cm2)
and forearm (0.010 g/cm2) compared to those in the lowest
quartile (13.3% energy). This result confirms previous cross-
sectional and prospective findings of a positive relationship
between higher total protein intake and higher BMD in

Table 1. Characteristics and Dietary Intakes of the 3160 Female Participants From the Twins UK Study

IQR

Characteristics
Age (years), mean� SD 48.2� 12.7 40.0–58.0
Height (cm), mean� SD 162� 6.12 158.0–166.0
Weight (kg), mean� SD 66.3� 12.0 57.9–72.1
Current smoker (yes), n (%) 585 (18.5) –
Physically active (yes), n (%) 758 (24.0) –
Hormone replacement therapy use (yes), n (%) 552 (17.5) –
Calcium or vitamin D supplement use (yes), n (%) 96 (3.0) –
Menopausal status (postmenopausal), n (%) 1509 (47.8) –

Bone health
Lumbar spine BMD (g/cm2), mean� SD 0.993� 0.14 0.898–1.083
Femoral neck BMD (g/cm2), mean� SD 0.807� 0.13 0.716–0.892
Forearm BMD (g/cm2), mean� SD 0.555� 0.06 0.523–0.592
Osteoporosis (yes), n (%)a 202 (18.0) –
Osteopenia (yes), n (%)a 502 (44.8) –

Dietary intake
Energy (kcal/day), mean� SD 1980� 527 1607–2315
Protein (g/day), mean� SD 80.5� 2.6 14.7–18.0
Alanine (g/day), mean� SD 3.9� 1.1 3.1–4.5
Arginine (g/day), mean� SD 4.4� 1.2 3.6–5.1
Glutamic acid (g/day), mean� SD 15.9� 4.3 12.9–18.7
Glycine (g/day), mean� SD 3.2� 0.9 2.6–3.8
Leucine (g/day), mean� SD 6.4� 1.7 5.2–7.4
Lysine (g/day), mean� SD 5.4� 1.6 4.3–6.4
Proline (g/day), mean� SD 5.5� 1.5 4.5–6.5
Protein, vegetable sources (g/day), mean� SD 30.6� 10.2 23.4–36.0
Alanine, vegetable sources (g/day), mean� SD 1.3� 0.5 1.0–1.6
Arginine, vegetable sources (g/day), mean� SD 1.8� 0.6 1.4–2.1
Glutamic acid, vegetable sources (g/day), mean� SD 6.8� 2.5 5.1–8.3
Glycine, vegetable sources (g/day), mean� SD 1.3� 0.4 1.0–1.5
Leucine, vegetable sources (g/day), mean� SD 2.2� 0.7 1.7–2.6
Lysine, vegetable sources (g/day), mean� SD 1.4� 0.5 1.1–1.7
Proline, vegetable sources (g/day), mean� SD 2.4� 0.9 1.8–2.9
Alcohol (g/day), mean� SD 9.7� 13.5 1.19–13.3
Calcium (mg/day), mean� SD 1135� 374 868–1357
Magnesium (mg/day), mean� SD 343� 92.7 278–398
Phosphorous (mg/day), mean� SD 1521� 409 1224–1784

Values are mean� SD or n (%); n¼ 3160.
aPostmenopausal participants aged over 50 years; n¼ 1120.
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women.(6–9) We found no association between intake of
vegetable protein and BMD, contradicting some previous
studies,(10–12) but we did observe a clear association between
intake of vegetable protein and prevalence of low bone mass
(osteoporosis or osteopenia). The prevalence of osteoporosis or
osteopenia for postmenopausal women in the highest quartile
of vegetable protein intake was 67.2%, compared to 73.2% in
the lowest quartile. Vegetable food sources are known to
provide base rather than acid precursors and an acid-forming
diet has been shown to increase urinary calcium excretion,

stimulate osteoclast action, and inhibit osteoblastic action.(35,36)

We acknowledge, however, that cereal products, which made a
significant contribution to intakes of amino acids from vegetable
sources in this cohort, are associated with a higher acid-base
load.(37) It was not possible, in this exploratory analyses, to
understand the mechanisms for these opposing findings for
BMD and prevalence of low bone mass, and therefore it will be
important for future studies to estimate both parameters when
investigating relationships with amino acid intakes.

Findings for the individual amino acids we investigated were
of a similar magnitude to those for total protein and are
consistent with mechanistic research that links intake of specific
amino acids to parameters of bone health. For example, in
animalmodels a low protein diet induced a decrease in BMD and
subsequent administration of dietary essential amino acid
supplements, in the same relative proportions as casein, were
found to cause an increase bone strength as a result of increased
urinary deoxypyridinoline excretion, reflecting increased bone
resorption, and plasma IGF-1 levels.(38) Furthermore, supple-
mentation with L-arginine (2 g/day) for 2 years increased BMD
by 11.6% in 150 osteoporotic postmenopausal women(39); this
dose reflected 45% of mean arginine intakes in the current
study. Interestingly, in comparison to branched chain amino
acids, aromatic amino acids, which were not investigated in the
current research, were also found to increase IGF-1 and calcium
absorption.(40)

The magnitude of the associations we observed ranged from
0.019 g/cm2 to 0.024 g/cm2 (2.4% ofmean BMD) at the spine and
0.009 g/cm2 to 0.012 g/cm2 (2.2% of mean BMD) at the forearm.
The size of these associations corresponds to those previously
reported for a 100-mg increase in magnesium (0.020 g/cm2; 2%
of mean BMD) or vitamin C (0.017 g/cm2) and supplementation
with calcium (1.66% increase in mean BMD for lumbar spine;

Table 3. Prevalence Ratios of Osteoporosis or Osteopenia byQuintile of Total Protein and Bone-Protective AminoAcids, by Food Source,
in 1120 Postmenopausal Females Aged Over 50 years

Protein Alanine Arginine Glutamic acid Glycine Leucine Lysine Proline

All
Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.0 (ref)
Q2 1.01 (0.9–1.1) 0.98 (0.9–1.1) 0.99 (0.9–1.1) 1.00 (0.9–1.1) 0.97 (0.9–1.1) 0.98 (0.9–1.1) 1.00 (0.9–1.1) 1.03 (0.9–1.2)
Q3 1.15 (1.0–1.3) 1.04 (0.9–1.2) 1.01 (0.9–1.1) 1.01 (0.9–1.2) 1.04 (0.9–1.2) 1.06 (0.9–1.2) 1.04 (0.9–1.2) 1.00 (0.9–1.1)
Q4 1.00 (0.9–1.1) 0.94 (0.8–1.1) 0.93 (0.8–1.1) 0.94 (0.8–1.1) 0.96 (0.8–1.1) 0.97 (0.8–1.1) 0.99 (0.9–1.1) 0.95 (0.8–1.1)
p trend 0.747 0.468 0.362 0.418 0.720 0.795 0.973 0.395

Vegetable
Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)
Q2 0.92 (0.8–1.0) 0.89 (0.8–1.0) 0.88 (0.8–1.0) 0.92 (0.8–1.0) 0.94 (0.8–1.0) 0.92 (0.8–1.0) 0.89 (0.8–1.0) 0.92 (0.8–1.0)
Q3 0.92 (0.8–1.0) 0.89 (0.8–1.0) 0.89 (0.8–1.0) 0.94 (0.8–1.1) 0.87 (0.8–1.0) 0.91 (0.8–1.0) 0.92 (0.8–1.0) 0.94 (0.8–1.0)
Q4 0.87 (0.8–1.0) 0.86 (0.8–1.0) 0.81 (0.7–0.9) 0.92 (0.8–1.0) 0.86 (0.8–1.0) 0.87 (0.8–1.0) 0.85 (0.8–1.0) 0.92 (0.8–1.0)
p trend 0.029 0.027 0.001 0.241 0.009 0.026 0.013 0.283

Animal
Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)
Q2 1.07 (1.0–1.2) 1.06 (0.9–1.2) 1.03 (0.9–1.2) 1.02 (0.9–1.1) 1.10 (1.0–1.2) 1.05 (0.9–1.2) 1.08 (1.0–1.2) 1.02 (0.9–1.1)
Q3 1.05 (0.9–1.2) 1.09 (1.0–1.2) 1.08 (1.0–1.2) 1.07 (1.0–1.2) 1.11 (1.0–1.2) 1.08 (1.0–1.2) 1.05 (0.9–1.2) 1.04 (0.9–1.2)
Q4 1.06 (0.9–1.2) 1.09 (1.0–1.2) 1.06 (0.9–1.2) 1.01 (0.9–1.2) 1.09 (1.0–1.2) 1.06 (0.9–1.2) 1.11 (1.0–1.2) 1.01 (0.9–1.2)
p trend 0.471 0.177 0.277 0.709 0.211 0.354 0.152 0.921

Values are the adjusted prevalence ratios (95%CI) for lowbonemass (osteoporosis and osteopenia combined). Low bonemasswas defined as a T-score
less than –1 at the spine, hip or forearm. Prevalence ratios were adjusted for age, current smoking, physical activity, weight, height, use of hormone
replacement therapy, use of calcium and vitamin D supplements, underreporting, and intakes of alcohol, calcium, magnesium, and phosphorous.
The intakes of individual amino acids were additionally adjusted for absolute intakes of the other amino acids and intake of total protein and amino acids
from vegetable and animal sources were mutually adjusted for one another. p trend was calculated using Poisson regression with robust variance.
Q1–Q4¼quartiles 1 to 4.

Fig. 1. Spine BMD in monozygotic twins discordant for intakes of total
protein and bone-protective amino acids. Discordance was defined as a
within-pair difference in intake of at least 1 SD. Data are means� SE of
spine BMD in twin 1 with lower intake and twin 2 with higher intake. The
data values on the graph represent the percentage difference in intake
between the lower-intake and higher- intake twin. �p< 0.05 calculated
using paired sample t tests comparing higher-intake and lower-intake
twin-pairs.
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1.64% increase in mean BMD for hip).(41–43) The greatest
difference in BMD of 0.024 g/cm2 was observed between
extreme quintiles of leucine intake; this corresponded to a
difference in intake of 0.6% energy or 1.4 g. This intake could
readily be incorporated in the diet through animal sources,
eg, one salmon steak (80 g) contains 1.6 g leucine, or through
a variety of vegetable sources, eg, one medium avocado
(145 g¼ 0.2 g leucine), or an average portion of brown rice
(180 g¼ 0.3 g leucine), almonds (40 g¼ 0.5 g leucine), or high
fiber breakfast cereal (40 g¼ 0.3 g leucine). These findings show
that the associations we observed in the current study are
related to dietary achievable intakes of amino acids; however,
further research is required before recommendations on amino
acid intakes in relation to bone health can be made.
It has been proposed that the relationship between increased

dietary protein and bone health is strengthened in the presence
of calcium sufficiency and adequate intakes of potassium and
fruit and vegetables, which are alkalinogenic and therefore
decrease urinary calcium excretion.(44) In terms of calcium
intake, previous data from the Framingham cohort have shown
that calcium intake modifies the association between protein
intake and the risk of hip fracture, and a ratio greater than 20 g
calcium per 1 g protein has been suggested as sufficient for
bone protection.(12,45,46) In the current study less than 5% of the
cohort were found to have a ratio of calcium to protein at or
above 20 (mean 14.0, SD 3.1; data not shown) and it is therefore
reasonable to suggest that our findings may have been
strengthened with higher calcium intakes. It was also notable
that these findings were observed in a cohort of women with a
wide age range and who reported high levels of physical activity
because we would expect changes in BMD to be less
pronounced in this group. There were inconsistencies in our
findings at different BMD sites with no associations observed at
the femoral neck. The femoral neck contains high levels of
cortical bone, as compared to the spine and forearm, which are
higher in trabecular bone. Trabecular bone may be more
sensitive to dietary changes than cortical bone, and dietary
protein intake has been shown to be positively correlated with
trabecular but not cortical bone status.(47)

Strengths of the current study include the large sample of
well-characterized participants, objective assessment of bone
density by DXA, the gold standard formeasurement of BMD, and
by specifically studying monozygotic twins, the examination of
associations independent of genetic confounding. Our findings
relate to women of a wide age range, although our analyses of
osteoporosis prevalence in postmenopausal women also
showed associations among women who had reached peak
bone mass. It was notable that the associations observed in the
current analyses were in a population with only 18% classified as
osteoporotic and it is plausible that these associations would be
more pronounced in a cohort containing a higher proportion of
at risk participants. These participants have been shown to be
representative of the general population in terms of BMD and
diet,(22,23) and these data have been used in previous studies of
dietary exposure and BMD.(48) The FFQ used in the current study
was previously validated against 24-hour recalls and was shown
to classify over 85% of participants into the same or adjacent
quintile of protein intake, demonstrating its ability to rank
participants according to their habitual protein intake.(49)

Furthermore, the FFQ has been shown to be a valid tool to
rank participants according to high and low intakes of amino
acids, and the correlations with intakes from weighted dietary
records are in line with those for other macronutrients.(50)

The limitations of the current study include the cross-sectional
design, which meant we were unable to infer causality, and
we cannot exclude the possibility of residual confounding.
However, given the detailed adjustment for a range of dietary
and lifestyle confounder variables (such as age, smoking,
physical activity, BMI, supplement use, and intake of other
nutrients associated with bone health including alcohol,
calcium, magnesium, and phosphorous) it is unlikely that these
would account for the observed results. Validated biomarkers,
such as 24-hour urine nitrogen, are available for total protein
intake but they were not measured in the current study and
may have reduced potential measurement error.(51) Finally, our
results relate only to women and because of the differences in
rates of bone loss between men and women these findings
cannot be extrapolated to other population groups.

In conclusion, these novel data suggest a beneficial role for
selected amino acids on BMD and prevalence of low bone mass,
with significant associations observed for BMD similar in
magnitude to those previously reported for other nutrients
including magnesium, calcium, and vitamin C.(41–43) Further-
more, consuming a higher proportion of amino acids from
vegetable sources than from animal sources was beneficial in
terms of the prevalence of osteoporosis or osteopenia, and
intakes of the amino acids associated with the current findings
could be incorporated into the diet from readily available
vegetable sources.
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