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The profound impact that vision loss has on human activities and quality of life
necessitates understanding the etiology of potentially blinding diseases and their clinical
management. The unique anatomic features of the eye and its sequestration from
peripheral immune system also provides a framework for studying other diseases in
immune privileged sites and validating basic immunological principles. Thus, early studies
of intraocular inflammatory diseases (uveitis) were at the forefront of research on organ
transplantation. These studies laid the groundwork for foundational discoveries on how
immune system distinguishes self from non-self and established current concepts of
acquired immune tolerance and autoimmunity. Our charge in this review is to examine
how advances in molecular cell biology and immunology over the past 3 decades have
contributed to the understanding of mechanisms that underlie immunopathogenesis of
uveitis. Particular emphasis is on how advances in biotechnology have been leveraged in
developing biologics and cell-based immunotherapies for uveitis and other
neuroinflammatory diseases.
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INTRODUCTION

The vertebrate immune system is comprised of the adaptive and innate immune systems and the
two limbs have unique as well as overlapping functions that are seamlessly integrated (1). During
antigen priming in secondary lymphoid or peripheral tissues, innate immune cells such as dendritic
cells (DC) secrete cytokines that instruct the naïve lymphocyte to differentiate and generate effector
lymphocyte subsets that orchestrate humoral or cell-mediated immunity to pathogens (2). The
immense capacity of lymphocyte response to diverse antigens derives from diversity of their cell
surface antigen receptors and a critical function of the immune system is to establish tolerance
against self-antigens while allowing selective immunity to pathogens (3, 4). Thus, exuberant effector
immune responses that cause pathogenic autoimmunity are restrained or prevented by specialized
regulatory cells that secrete immune-suppressive cytokines (5). Defects in central and/or peripheral
tolerance mechanisms can result in autoimmune diseases such as uveitis, the focus of this review.
Uveitis is a group of potentially blinding intraocular inflammatory diseases of infectious or
autoimmune etiology and accounts for more than 10% of severe visual handicaps in the United
States (6, 7). Although steroids and other anti-inflammatory drugs are effective therapies, renal
toxicity and other adverse effects preclude their prolonged usage. Development of effective and safe
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therapies thus requires a better understanding of molecular and
cellular mechanisms that maintain ocular immunity and how
dysregulation of these pathways contribute to pathogenesis of
uveitis. In this review, we highlight recent advances in
understanding of mechanisms that underlie susceptibility to
uveitis and summarize emerging therapeutic approaches that
show promise in suppressing ocular inflammation and uveitis.
THE VERTEBRATE EYE

The eye is segregated from the peripheral immune system and is
arguably one of the most anatomically complex organs in
mammals (Figure 1). It is composed of: (i) the outer coat of
the eye comprised of the opaque sclera (outer white layer of the
eyeball) and the transparent cornea which is a continuation of
the sclera; (ii) The retinal pigment epithelium (RPE) is a single
layer of hexagonal pigmented cells overlying the retina and
attached to the underlying choroid. It functions in
phagocytosis of photoreceptor outer segment membranes, light
absorption, epithelial transport and nourishment of visual cells
of the neuroretina. (iii) The Mueller/Glia cell is a specialized glial
cell type that supports and supplies nutrients and oxygen to
retinal neurons and serves in maintaining the functional stability
of retinal cells. The Mueller cell also insulates neurons from each
other, uptakes neurotransmitters and regulates the extracellular
environment. (iv) The uvea is the pigmented middle layer of the
eye beneath the cornea and sclera and is comprised of the
vascularized choroid, iris and ciliary body. It performs most
visual functions of the eye including focusing on objects at
various distances to the retina and changing the pupil size in
response to light intensity. (v) The neural retina is the innermost,
light-sensitive layer consisting of five types of neurons that
receive photons transmitted through the cornea and lens. It
consists of the photosensitive ganglion cells, amacrine cells,
bipolar cells, horizontal cells and photoreceptors (rods and
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cones). They generate two-dimensional image of an object and
converts it to electrical signals that are then transduced to the
brain to create visual perception. The embryonic vertebrate
retina and optic nerve derive from the diencephalon of the
developing brain and are considered part of the CNS. Similar
to brain, the retina is an immune privileged tissue.
THE EYE AS AN IMMUNE PRIVILEGED SITE

Developments in ocular immunology led to appreciation of the
special relationship between the eye and the immune system and
this foundational research led to our current concept of immune
privilege. Sir Peter Medawar who shared the 1960 Nobel Prize in
physiology and medicine with Sir Frank Macfarlane Burnet coined
the term “Immune Privilege” based on studies showing that tumor
or skin allograft when placed in the anterior chamber of the eye is
not rejected (8). Immune privilege was then viewed as a unique
feature of the eye and failure to reject an allograft or alloantigen was
attributed to the lack of blood vessels in retina (9). A modern
explanation of immune privilege is that proteins in immune
privileged tissues of the CNS are sequestrated from the
peripheral immune system by the blood-retina barrier (BRB),
blood-brain-barrier (BBB) and the neurovascular unit (NVU)
comprised of pericytes, perivascular macrophages, neuronal
dendrites, glia limitans of the Müler/microglia and tightly bound
endothelial cells that surround the NVU (10, 11). The avascular
immunosuppressive environment of the retina lacks lymphatic
drainage, contains resident regulatory cells that secrete
neuropeptides and anti-inflammatory cytokines and also
contributes to immunological sequestration of the retina (10). In
addition, the RPE and resident retinal cells that express inhibitory
cell surface associated proteins (TGF-b, FAS/FAS ligand, CD46
and CD59) limit inflammation in the retina by inactivating
lymphocytes (12–14). Normal development of the gut
microbiome during early infancy is now recognized to play
FIGURE 1 | Structure of the Vertebrate Eye. The eye is composed of: (i) the outer tunic of the eye comprised of the sclera and cornea (ii) the uvea comprised of the
choroid, the iris and the ciliary body; (iii) the neural retina comprised of five types of neurons (ganglion cell, amacrine cells, bipolar cells, horizontal cells and
photoreceptors (rods and cones); (iv) Muller cell; (v) RPE.
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important roles in establishing the BBB or BRB (15) and studies in
mice with defective gut microbiome have established a link
between dysbiosis and susceptibility to inflammatory diseases
including, acute anterior uveitis (AAU) (16, 17). Despite these
safeguards, intense and persistent inflammation can still
overwhelm the multilayered barriers and peripheral tolerance
mechanisms that maintain immune privilege. Th17 cells play
important roles of in early events that initiate pathogenesis of
inflammatory diseases (18–20). They produce granzyme B that
promotes disruption of the BBB and initiate CNS autoimmune
diseases including multiple sclerosis and experimental
autoimmune encephalomyelitis (EAE) (21). Similar to other CNS
autoimmune diseases, adoptive transfer studies have shown that as
few as 1x107 uveitogenic Th1 and Th17 cells also promote
breakdown of the BRB and the retinal NVU, resulting in the
recruitment of bystander lymphocytes and myeloid cells that
exacerbate uveitis (20). However, individuals with intact immune
system eventually re-establish immune privilege via induction of
regulatory T cells (Tregs, Tr1, Tr3) and B cells (Bregs) that secrete
immune-suppressive cytokines in the retina and lymphoid tissues.
HUMAN UVEITIS

CNS inflammatory diseases present unique challenges because
the need to eliminate a pathogen is as important as avoiding
exuberant inflammatory response associated with photoreceptor
cell deficit and development of severe uveitis. A cross-sectional
study in California documented an incidence rate of 25.6 /100,000
person-years and prevalence rate of 69 cases/100,000 persons (22).
However, infectious uveitis accounts for less than 20% of uveitis/
scleritis, with incidence rate of 18.9/100,000 and prevalence of
60.6/100,000 persons (23). Uveitis is classified as anterior,
intermediate, posterior or pan uveitis depending on the
anatomic location (24). Anterior segment uveitis is the most
common form and manifests as iritis or iridocyclitis while
Intermediate uveitis is characterized by vitritis and peripheral
retinal vasculitis. Posterior uveitis is a disease of the posterior
segment (retina, choroid and vitreous) and symptoms include
blurred vision, photophobia, retinal neovascularization, retinal
detachment and macular edema. Although the precise etiology
of most uveitis is difficult to ascertain, Fuchs’ heterochromic
iridocyclitis, birdshot retinochoroidopathy, multifocal
choroiditis, pars planitis and sympathetic ophthalmia are
thought to be of autoimmune etiology (24). Uveitis can also be
associated with systemic diseases such as sarcoidosis, psoriatic
arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis
(JRA), MS, Vogt-Koyanagi-Harada’s disease, Behçet’s disease,
systemic lupus erythematosus (SLE) and collagen vascular
diseases (24).
ANIMAL MODELS OF UVEITIS

Animal models of human uveitis have contributed to
understanding of immunopathogenic mechanisms of uveitis.
Frontiers in Immunology | www.frontiersin.org 3
Two of the best characterized models of anterior uveitis are
endotoxin-induced uveitis (EIU) (25) and experimental
autoimmune anterior uveitis (EAAU), also called experimental
melanin-induced uveitis (EMIU) (26, 27). Posterior uveitis poses
the greatest risk of blindness and the best characterized model of
posterior uveitis is experimental autoimmune uveitis (EAU) (28–
30). Study of EAU using a variety of genetically modified mouse
strains have identified critical pathways that mediate posterior
uveitis. These studies have identified transcription factors
(STAT3, IRF4, IRF8), regulatory proteins (SOCS1, SOCS3) or
cytokine signaling pathways that regulate EAU and can serve as
potential therapeutic targets for ameliorating uveitis (20, 31–35).
Of particular interest is a transgenic mouse strain expressing a
TCR specific for IRBP161−180 that develops spontaneous ocular
autoimmunity. Analysis of EAU in these mice has revealed that
gut commensals might be a source of signals that prime
autoreactive retina-specific T cells to trigger uveitis (36).

Experimental Models of Anterior Uveitis
Endotoxin-induced uveitis (EIU) is a rodent model of acute
anterior segment inflammation induced by subcutaneous
or intraperitoneal injection of lipopolysaccharide (LPS)
and is characterized by infiltration of inflammatory cells
into the anterior segment (37). Although EIU exhibits
immunohistopathologic features of human anterior uveitis,
duration of the inflammatory response is relatively short
(< 72h) and does not cause lasting tissue damage (37). On the
other hand, EAAU is induced by peripheral administration of
proteins bound to melanin granules and the inflammatory
response is more representative of human anterior uveitis (26,
27, 38). EAAU is characterized by massive infiltration of
mononuclear and polymorphonuclear cells into the anterior
chamber, iris and ciliary body vessels, with limited posterior
segment involvement. Although none of these models manifest
full spectrum of clinical and histopathological features of human
uveitis, each contributes to understanding of particular aspects of
the disease process.

Experimental Autoimmune Uveitis: Model
of Posterior Uveitis
Experimental autoimmune uveitis (EAU) is a T-cell-mediated
intraocular inflammatory disease induced in susceptible species
by active immunization with ocular-specific proteins or peptides
in an emulsion containing Complete Freund’s Adjuvant (CFA).
Full-blown disease requires coadministration of pertussis toxin
and heat-killed tuberculosis bacteria, which activate bacterial
pattern recognition receptors on innate immune cells (28).
Commonly used retinal protein for inducing EAU in mice and
rats are S-Antigen (S-Ag or arrestin) and interphotoreceptor
retinoid-binding protein (IRBP) (39, 40). EAU is considered a
use fu l mode l o f pos t e r io r uve i t i s because o f i t s
immunopathologic features that include iritis, choroiditis,
vitritis, retinal vasculitis, destruction of photoreceptor cells and
retinal edema (20). The disease is transferable to naive syngeneic
animals by injection of in vitro activated CD4+ T cells specific to
retinal antigens (28–30).
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CELLULAR AND MOLECULAR
MECHANISMS THAT DETERMINE
SUSCEPTIBILITY OR RESISTANCE
TO UVEITIS
Although lymphocytes fromuveitis patients respond to retinal S-Ag
in vitro and a number of retinal antigens induce disease in rodents
and non-human primates, the putative retinal antigens involved in
humanuveitis have not beendefined.On the otherhand, it has been
suggested that the response to S-Ag might be secondary to retinal
tissue damage induced by inflammation. Nevertheless, animal
models of uveitis exhibit essential immunopathogenic features of
human uveitis. In this section of the review, we summarize what we
know of the molecular pathogenesis of uveitis with particular focus
on: molecular basis of susceptibility to autoimmune uveitis and
source of the autoreactive memory T cells that mediate relapsing-
remitting inflammation that characterize potentially blinding
chronic uveitis.
Frontiers in Immunology | www.frontiersin.org 4
Defects in Central Tolerance Mechanism
and Susceptibility to Uveitis
The mature T lymphocyte derives from bone marrow
hematopoietic stem cells (HSC) and acquires capacity to
mediate immunological responses following maturation in the
thymus. At very early stages of its development, bone marrow-
derived lymphoid-primed multipotent progenitor (LMPP) and
common lymphoid progenitor (CLP) enter the thymic cortex
and undergo positive and negative selection processes (central
tolerance) that endows the developing T cell with the capacity to
discriminate between self and non-self-antigens (41, 42). T cells
that express a functional TCR and develop tolerance for self-
antigens encountered in the thymus exit the thymus to enter
secondary lymphoid organs and the peripheral circulation
(Figure 2). The AIRE transcription factor (autoimmune
regulator) plays a critical role in central tolerance mechanism
by promoting the expression of self-proteins on medullary
thymic epithelial cells (mTEC) at levels detectable by the
A B C

FIGURE 2 | Immunopathogenic Mechanisms of experimental autoimmune uveitis (EAU). (A) Central tolerance mechanism: Bone marrow derived lymphoid-primed
multipotent progenitors (LMPPs) and common lymphoid progenitors (CLPs) enter the thymus near the cortico-medullary junction. Thymus-settling progenitors cells
give rise to early T cell progenitors (ETPs), double negative 1 (DN1), DN2 and DN3 thymocytes that then migrate to the subcapsular zone for further development
(42). DN3 thymocytes that express functional pre-T cell receptor and CXCR4 receive survival signals that promote proliferation and eventual differentiate to DN4 and
then double positive (DP) thymocytes. The DP thymocytes (CCR9Hi) undergoing positive selection interact with self-peptide/MHC complexes on cortical thymic
epithelial cells, upregulate CCR7 and mature into single positive (SP) mature T cells that migrate to the thymic medulla (42). The medullary thymic epithelial cells
(mTEC) in collaboration with the AIRE transcription factor (autoimmune regulator) in the medulla, promiscuously express tissue-restrictive antigens of major proteins in
peripheral tissues. AIRE also contributes to mechanism of negative selection, which eliminates self-reactive T cells that would cause autoimmune diseases. T cells
with normal low affinity/avidity recognition of self-antigens are induced to upregulate sphingosine-1-phosphate receptor 1 (S1P1), exit the thymus and enter the blood
and peripheral lymphoid tissues. (B) Peripheral tolerance mechanisms mediated by nTregs render potentially autoreactive T cells anergic or “ignorant”. Naïve T cells
that enter the circular or peripheral tissues differentiate to various T-helper subsets in response to PAMPs (pathogen associated molecular patterns) or molecular
mimicry mechanism. During EAU, active immunization with ocular antigens (e.g. IRBP or S-Ag) in CFA emulsion induces clonal expansion of Th1 and Th17 resulting
in disease by day 14-20 followed by Treg and Breg-mediated resolution of the acute inflammatory response between days 25-32 after disease induction. However,
few autoreactive memory T cells expressing IL-7Ra persist and they eventually migrate to the bone marrow (BM) where they reside and can be reactivated to
mediate recurrent uveitis. (C) Schematic representation of early events associated with loss of immune privilege of the eye and induction of retinal protective
mechanism in rodent model of uveitis. Effector molecules such as Granzyme B and proinflammatory cytokines secreted by Th17 cells facilitate breakdown of blood
retina barrier (BRB), resulting in the influx of other inflammatory cells such as Th1, Th2, and monocytes. The inflammatory cells entering the eye encounter hostile
environment of the neuroretina consisting of anti-inflammatory molecules as well as regulatory T and B cells secreting IL-10 and/or IL-35. RPE, retinal pigment
epithelium; OPN, optic nerve; CON, control retina; EAU, OCT image of mouse with uveitis.
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maturing T cells. T cells with very high affinity for cognate self-
protein are eliminated because they pose danger of pathogenic
autoimmunity (1, 43). However, some T cells that detect cognate
antigens just below the threshold required for tolerance
induction are not eliminated and these renegade autoreactive T
cells are thought to be the cause of organ-specific autoimmune
diseases (44). In immune-competent hosts, these potentially
autoreactive T cells are maintained at low levels by an
immune-suppressive T cell subset that also develops in the
thymus (45). These specialized Foxp3+ T cells are called
natural regulatory T cells (nTregs) and they constitutively
secrete IL-10, an immune-suppressive cytokine that suppresses
autoreactive T cells and inflammation (5). These nTregs also
migrate from the thymus into peripheral tissues and play critical
roles in peripheral tolerance.

A major contribution of ocular immunology and uveitis to
our current understanding of the molecular basis of resistance or
susceptibility to organ-specific autoimmune diseases derived
from a series of EAU studies performed in the late nineties.
Genetic and molecular studies of the thymus of mouse strains
(B10RIII, B10A, C57BL/6 and BALB/c) and rat strains (Lewis
and Brown-Norway) that vary in their relative susceptibility to
EAU provided direct evidence that ocular proteins are not
sequestered from the peripheral immune system and are
accessible for tolerance induction in the thymus (43). These
studies showed that ocular proteins are expressed in the thymus,
but the level of expression varied even among animals of the
same species including mice, rats and non-human primates (43,
46, 47). High level expression of ocular proteins (IRBP or
S-Antigen) in the thymus correlated with resistance to EAU
development while low levels correlated with susceptibility to
uveitis. This observation was subsequently validated in a mouse
model of PLP-induced EAE (48) and in human studies showing
that transcription levels of the insulin gene in the thymus
correlated with susceptibility to type 1 diabetes (49). This
seminal discovery from EAU studies thus provided
mechanistic explanation for differential susceptibility to
autoimmune uveitis and suggested that resistance to uveitis is
regulated at least in part by capacity to establish central tolerance
to retinal autoantigens (43).

Pro-inflammatory T-Helper Cells Mediate
Acute and Chronic Relapsing-
Remitting Uveitis
Uveitis correlates with HLA class I or class II genes, with HLA-
DR4 strongly associated with sympathetic ophthalmia or VKH
while HLA-A29 is strongly associated with birdshot
retinochoroidopathy (50, 51). On the other hand, HLA-B27 is
strongly associated with anterior uveitis and patients with acute
anterior uveitis and ankylosing spondylitis (52). Similar to
humans, susceptibility of mice to uveitis is linked to certain
genetic loci, with strong correlations to certain MHC class II
haplotypes (53). Among mouse strains the most susceptible is
B10.RIII with decreasing susceptibility: B10.RIII (H-2r)> B10.BR
(H-2k) >C57BL/6 (H-2b) (53). However, the genetic influences
of the MHC molecules are not the only predisposing factors.
Frontiers in Immunology | www.frontiersin.org 5
The heterodimeric IL-12 family of cytokines play critical roles
during Ag-presentation in developmental decisions of
differentiating naïve lymphocytes and in determining the
intensity, duration and nature of the inflammatory response
(54). The family is comprised of IL-12 (IL-12p35/IL-12p40),
IL-23 (IL-23p19/IL-12p40), IL-27 (IL-27p28/Ebi3), IL-35
(IL-12p35/Ebi3), and IL-39 (IL-23p19/Ebi3) (54, 55). Studies in
the late nineties demonstrated that IL-12 skewed the uveitogenic
T cell response towards the Th1 developmental pathway while
IL-12p40-deficient mice were found to be resistant to EAU,
leading to the suggestion that Th1 cells mediated EAU (56).
Subsequent discovery of IL-23 that shares the IL-12p40 subunit
with IL-12 led to appreciation of the role of IL-23 in several
autoimmune diseases and eventual identification of the Th17 as
the lymphocyte subset that mediated these diseases (19). IL-12
was subsequently shown to confer protection against EAU (57),
leading to the revised conclusion that IL-23 rather than IL-12 is
critical for the development of EAU induced by immunization
with IRBP in CFA (58). Soon after the discovery of Th17, its role
in EAU was established (59). This was confirmed by studies
showing that mutant mice with targeted deletion of STAT3 in the
CD4 T cell compartment do not develop EAU because their T
cells cannot differentiate into Th17 cells (31). The EAU-resistant
CD4-STAT3KO mice exhibited exaggerated increase of Th1 cells
and elevated levels of IFN-g, providing suggestive evidence that
increase in Th1 cells does not cause EAU (31). Subsequent
studies revealed that Th1 expansion during EAU antagonized
Th17 responses through IFN-g/STAT1-dependent expression of
IL-27 cytokine, an immune-suppressive member of the IL-12
family (59). It is notable that involvement of Th17 cells in a
human autoimmune disease was first demonstrated in study of
uveitis and scleritis patients. Blood of patients with active uveitis
or scleritis contained elevated levels of Th17 which correlated
with increase in IL-2 (59).

Organ-specific CNS autoimmune diseases such as uveitis and
multiple sclerosis are characterized by repeated cycles of
remission and recurrent inflammation and it is not known
where the auto-reactive memory T cells that initiate recurrent
uveitis or MS reside during periods of disease remission. This
age-old question was addressed in a chronic uveitis model by
monitoring IRBP-specific autoreactive memory T cells
(IL-7RaHighLy6CHighCD4+) for 6 months and showing that the
uveitogenic T cells relocated from the retina and peripheral
lymphoid tissues into the bone marrow (BM) (20) (Figure 2).
The autoreactive memory T cells resided in a resting state in the
BM and upon restimulation converted to Th17 effector cells (IL-
7RaLowLy6CLowCD4+). It is notable that while BM cells from
WT EAU mice transferred uveitis to naive mice, IRBP-specific
autoreactive memory T cells of CD4-STAT3KO mice could not
traffic to the BM and BM cells from the IRBP-immunized CD4-
STAT3KO mice could not transfer EAU upon reactivation (20).
These studies identified BM as a niche for IRBP-specific memory
T cells that caused recurrent uveitis and suggested that BM
stromal cells provide survival signals to autoreactive memory T
cells through STAT3-dependent mechanisms (20). Taken
together, analysis of mouse uveitis model and the blood of
April 2021 | Volume 12 | Article 623725
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human uveitis patients identified roles of Th17 cells and STAT3
pathway in uveitis and that STAT3 pathway is a potential target
for treatment of uveitis.
TREATMENT OF UVEITIS

Topical or systemic steroids are effective therapies for uveitis.
While topical corticosteroid is effective for anterior uveitis, severe
intermediate or posterior uveitis might require periocular
corticosteroid injections. On the other hand, standard of care
for vision-threatening uveitis, especially if accompanied by
cystoid macular edema is systemic immunosuppression with
oral corticosteroid (prednisone). If ineffective, low dose
prednisone in combination with cyclosporin A, antimetabolites
(methotrexate, azathioprine) or anti-inflammatory (colchicine)
is indicated. When combination of corticosteroid with these
second line drugs are ineffective, alkylating agents such as
cyclophosphamide or chlorambucil which are associated with
significant adverse effects are employed as a last resort.
Nonetheless, prolonged use of systemic corticosteroids
increases risk of infections, malignancy and decreased lifespan.
Thus, the adverse effects of prolonged use of corticosteroids,
alkylating agents and immunosuppressive drugs such as
cyclosporin A, FK-506 or rapamycin are impetus to develop
less toxic and more specific therapies for uveitis.
POSTERIOR UVEITIS THERAPY

Targeting Cytokines and
Cytokine Receptors
Commonly used therapies for posterior uveitis are steroids and
although they are effective in suppressing ocular inflammation,
they do not directly target memory autoreactive T cells that
perpetuate cycles of recurrence and remission that characterize
blinding posterior uveitis.

Besides steroids, biologics that target T cell receptors or
effector functions are gaining acceptance although
Adalimumab (Humira) is the only FDA approved biologic for
uveitis. Other biologics include: (i) Blockage of T cell signaling
pathways (cyclosporine, FK-506 and rapamycin); (ii) Anti-CD4
T cell function (anti-IL-2R, anti-IFN-g Abs; (iii) Targeting
TNF-a (Etanercept (Enbrel®), Infliximab (Remicade®),
Thalidomide); (iv) Biologics that target immune modulatory
molecules (adhesion, co-stimulatory molecules) (60–63). This
section of the review will focus on new therapeutic strategies
that target signal transduction pathways utilized by
pathogenic lymphocytes.

Targeting Janus Kinases
The JAK/STAT pathway regulates growth and survival of
mammalian cells and signal transduction through this
evolutionarily conserved pathway is mediated by Janus kinases
(Jak1, Jak2, Jak3 and Tyk2) and Signal Transducers and Activators
of Transcription (STAT1, STAT2, STAT3, STAT4, STAT5a,
Frontiers in Immunology | www.frontiersin.org 6
STAT5b, and STAT6), a 7-member family of latent cytoplasmic
transcription factors (64). Immunoregulatory cytokines secreted
by innate cells (IL-12, IL-23, IL-27) or lymphocytes (IFN-g, IL-2,
IL-4, IL-6, IL-10, IL-21) mediate their biological activities through
receptor-associated Janus kinases (Jaks) and Stat proteins (65).
Cytokine-binding to its cognate receptor selectively activates Jaks
by transphosphorylation of specific tyrosine residues, followed by
recruitment of cytokine-specific Stats to the receptor complex (66).
Tyrosine-phosphorylated Stats form homo- or hetero-dimers,
translocate into the nucleus and mediate transcription of
cognate genes. Thus, cytokine-mediated activation of Jak/Stat
pathway provides a rapid membrane to nucleus mechanism for
regulating gene expression and altering behavior of the cell (66).
Because persistent activation of Jak/Stat signals dysregulate the
immune system and cause many autoimmune diseases and cancer,
cytokine responses are under stringent regulation. Thus,
pharmacological regulation of Jak kinase activities has been
exploited for treatment of autoimmune and neoplastic diseases
(67–71). Of note, Jak inhibitors have been found to be effective in
treating anterior uveitis and associated macular edema (72).

Targeting Stat3 Pathway Utilized by Th17 Cells
Most cytokines that regulate lymphocyte growth, development,
survival or effector functions activate STAT3 pathway (73, 74).
CD4-STAT3KO mice do not develop EAU because of defect in
generating Th17 cells (31), suggesting that STAT3 is a potential
therapeutic target for modulating uveitis. Surprisingly, mice with
loss of STAT3 in the CD19 B cell compartment (CD19-
STAT3KO) have exacerbate EAU (32), suggesting that intrinsic
functions of STAT3 are diametrically opposite in T and B cells.
Another target of Stat3 that promotes ocular inflammation is
miR-155-5p (miR-155). Stat3 activates miR-155 and the Stat3/
miR-155 axis mediate severe uveitis by promoting the expansion
of pathogenic Th17 cells (75). Inflammatory cytokines have also
been shown to induce expression of miR-155 in human RPE cells
(76), further suggesting that Stat3 is a potential therapeutic target
for treating uveitis. We describe here strategies that have been
successful in targeting Stat pathway and suppressing uveitis
in mice.

Synthetic STAT3 Inhibitors
ORLL-NIH001 is a synthetic 406-kDa small chemical compound
that targets STAT3 (Figure 3) by antagonizing Th17 cells, down-
regulating a4;b1, a4b7, CCR6 and CXCR3 and inhibiting
trafficking of lymphocytes into the retina (77). However, a
drawback to therapeutic use of ORLL-NIH001 is its relatively
poor bioavailability and frequent administration of the drug is
required. Although delivery of the drug by intravenous injection
is effective, oral administration or subcutaneous injection may be
attractive alternatives.

Suppressor of Cytokine Signaling and
SOCS Mimetic Peptide Therapy
Suppressor of cytokine signaling (SOCS) are an 8-member family
of intracellular proteins that are rapidly induced in many cell
types in response to cytokines (IFN-g, IL-2, IL-4, IL-6, IL-10, IL-
12, IL-21, IL-23, IL-27) or growth factors (CNTF, LIF, FGF, IGF-
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1, insulin). However, unabated stimulation of Stat signaling
pathway during chronic inflammation or cellular stress induces
SOCS proteins, particularly SOCS1 and SOCS3 that function as
components of a negative feedback loop that regulate the
initiation, intensity and duration of inflammatory cytokine
responses (78). Their inhibitory effects derive from direct
interaction with cytokine/growth-factor receptors, STAT
proteins and Jak kinases, leading to proteasomal degradation of
target proteins or receptor complex and termination of the signal
(79, 80). SOCS1 and SOCS3 are well established as important
regulators of inflammatory diseases including allergy,
autoimmune diseases, diabetes, metabolic syndrome and
cancer (79, 80). In context of potential involvement of SOCS
proteins in uveitis, transgenic rats and mice with targeted
overexpression of SOCS1 in the retina are protected from
severe uveitis and scleritis patients exhibit a defect in SOCS1
expression as their lymphocytes could not induce SOCS1 in
response to IL-2 (81). These observations suggest that enhancing
SOC1 levels in the retina can be used to suppress uveitis.
Frontiers in Immunology | www.frontiersin.org 7
However, a major impediment to use of SOCS1 or SOCS3 for
therapy is that they are intracellular proteins and the lack of
efficient means to deliver these proteins into cells. A promising
new approach is the development of SOCS1 and SOCS3 mimetic
peptides that incorporate an N-terminal or carboxy-terminal
lipid moiety, which then allows SOCS mimetic peptides to be
delivered directly into cells.

Topical SOCS1 Mimetic Peptide Therapy
The SOCS1 protein possesses a kinase inhibitory region (KIR)
and binding of the KIR to activated Jak1 or Jak2 suppresses their
kinase activities (82). SOCS1 mimetic peptide of varying length
have been shown to be effective in inhibiting Stat1/Stat3 signaling
(83, 84). Topical administration of a formulation consisting of
membrane-penetrating 16 amino acid SOCS1 peptide, with a
lipophilic palmitoyl-lysine group attached to its NH2-terminus
(SOCS1-KIR), was effective in suppressing uveitis in mice EAU
(Figure 3) (85). The SOCS1-Mimetic ameliorated uveitis by
suppressing the expansion of pathogenic Th17 cells and
FIGURE 3 | Emerging Therapies for Uveitis. (A) Regulation of STAT3 pathway. Cytokines such as IL-6 or IL-23 bind their cognate receptor on lymphocytes and
activate receptor-associated JAK kinases. Following the recruitment of latent STAT3 proteins to the activated receptor complex, the STAT3 protein is Tyrosine-
phosphorylated, forms pSTAT3:pSTAT3 homodimers that translocate to the nucleus and activate STAT3-responsive genes. SOCS (SOCS1, SOCS3) proteins
are immediate early genes activated by pSTAT3 and they are negative feedback regulators of JAK/STAT pathway. They inhibit or terminate JAK/STAT signals by
binding to Tyrosine-phosphorylated JAKs or cytokine receptors, targeting them for degradation in the proteosome. PIAS3 protein also inhibits STAT3
transcriptional activities by binding STAT3 DNA binding domain and physically preventing STAT3 binding to target genes. (B) Other emerging therapies for the
treatment of uveitis include: (i) Immunotherapy with IL-35-producing Breg cells (i35-Breg) (ii) Administration of biologics (IL-35, IL12p35); (iii) Exosome treatment
with IL-35-containing exosomes (i35-Exosomes).
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trafficking of inflammatory cells into the neuroretina during
EAU. Photopic and scotopic electroretinograms confirmed the
neuroprotective effects of the SOCS1-KIR in uveitis (85).
Importantly, the SOCS1-Mimetic is non-toxic, indicating that
topical administration of SOCS1-Mimetics can be exploited as a
non-invasive treatment for uveitis.
EMERGING THERAPIES FOR UVEITIS

Therapeutic Cytokines
The IL-12 family of cytokines is comprised of proinflammatory
(IL-12, IL-23, IL-39) and immunosuppressive members (IL-27
and IL-35) (54). In mouse models of uveitis, the increase of IL-12
or IL-23 during antigen priming in LN or the eye promotes
uveitis (86) while increased secretion of IL-27 by microglial cells
or lymphocytes during EAU suppressed EAU (59, 87, 88). These
reports suggest that identifying factors that induce the immune-
suppressive IL-27 and IL-35 cytokines or enhance their biological
activities in vivo might be potential therapeutic targets that can
be exploited to suppress human ocular inflammatory diseases.

Interleukin 35 Therapy
Following discovery that IL-35-producing Treg cells (iTR35)
suppressed colitis in the mouse (89), Wang et al. showed that
treatment of mice with recombinant IL-35 suppressed EAU by
inhibiting Th-17 responses and inducing expansion of regulatory
B cells (Breg) that produce IL-10 (B10) or IL-35 (i35-Bregs) (90).
Adoptive transfer of ex-vivo generated i35-Bregs cells was also
shown to suppress EAU, providing evidence that i35-Breg
immunotherapy may also be efficacious in uveitis (90)
(Figure 3). Mechanistically, the i35-Bregs also suppressed EAU
by inhibiting expansion of pathogenic Th17 cells and converting
conventional lymphocytes to B10, iTR35 or i35-Breg. These
observations have led to significant interest in using IL-35 or
i35-Bregs as treatment for uveitis. However, before i35-Breg
immunotherapy can be brought to the clinic, additional
preclinical investigations are needed to establish IL-35
pharmacokinetics and detailed characterization of human
i35-Breg to demonstrate that it is a stable Breg phenotype with
immune-suppressive activity and functions.

IL-35 Subunit Therapy
Despite significant interest in IL-35 as a potential biologic or use of
i35-Breg immunotherapy for autoimmune diseases, less is known
about mechanisms by which IL-35 mediates its immune
suppressive functions. It is still not clear whether immune-
suppressive activities of IL-35 derive exclusively by the pairing of
IL-12p35 and Ebi3 subunits to form the heterodimeric IL-35 or if
IL-12p35 or Ebi3 also possesses intrinsic functions independent of
IL-35. Recent reports revealed that recombinant IL-12p35 (rIL-
12p35) has immunoregulatory activities that regulated immunity
and suppressed neuroinflammation in the EAEmouse model (91).
Similar to IL-35, the rIL-12p35 subunit suppressed EAU and EAE
by inducing expansion of B10 and i35-Bregs while inhibiting Th17
responses (91, 92). However, a major difference is that while IL-35
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upregulates inhibitory receptor proteins (Lag3, PD-1) that induceT
cell exhaustion, rIL-12p35 did not induce these inhibitory receptors
but suppressed inflammation by inhibiting signals downstream of
IL-6 receptor and cell-cycle proteins that inhibit T cell proliferation
(91).Recapitulationof essential immunosuppressive activities of IL-
35 suggests that IL-12p35 may also be used as immunotherapy
for uveitis.

i35-Breg-Exosome Therapy
Although IL-35 shows promise as biologics for the treatment of
autoimmune diseases, a major disadvantage of using the
heterodimeric IL-35 cytokine for therapy is its instability and
relatively short-half-life. Besides the technical challenges
associated with ex-vivo generation of large amounts of
functional i35-Breg, there is the difficulty of reproducibly
administering the same dose of IL-35 each time. It is a very
unstable heterodimeric cytokine because association of its
IL-12p35 and Ebi3 subunits is not strong (non-covalent) and
readily dissociate. This makes it difficult to ascertain the dose of
the bioactive p35:Ebi3 heterodimer administered or required to
ameliorate disease. An important development relating to the
therapeutic use of IL-35 or i35-Breg is the recent discovery that
i35-Bregs secrete copious amounts of exosomes that contain
IL-35 (93). An impediment to i35-Breg immunotherapy for
neuroinflammatory diseases are the BBB, BRB and NVU that
limit entry of cells into the CNS. Exosomes are 30-150 nm
nanosized extracellular vesicles and their relatively small size,
making them suitable for delivering immunoregulatory
molecules to the CNS. Mice treated with IL-35 containing
exosomes (i35-Exosomes) were protected from developing
severe uveitis and disease protection correlated with expansion
of IL-10 and IL-35 secreting Treg cells with concomitant
suppression of Th17 responses (93) (Figure 3). i35-Exosome
therapy thus overcomes the technically difficult and labor-
intensive effort required to produce sufficient amounts of
IL-35-producing i35-Bregs for immunotherapy: as much as
32x1010 exosomes can be isolated from a mouse and 2x1010

i35-exosomes contain ~15ng IL-35. Another advantage of i35-
Exosomes therapy is that IL-12p35/Ebi3 heterodimers are
confined in the same vesicle which obviates the dosing issue of
determining the precise amount of bioactive IL-35 administered
to the subject (93). Taken together, i35-Exosomes are an
attractive therapeutic option for delivering IL-35 to the retina.
PERSPECTIVES

The remarkable advances in ocular immunology over the past 3
decades have led to a better understanding of the molecular
mechanisms that underlie etiology and susceptibility to uveitis.
Genetically modified mouse strains with targeted deletion or
overexpression of transcription factors, regulatory proteins or
cytokines that control lymphocyte development or functions
have led to identification of critical pathways that regulate
uveitis. Results from these studies have ushered in a new era of
targeted therapies for these family of potentially blinding diseases
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that are a major cause of morbidity. In conclusion, we highlight
three promising and effective treatment modalities without the
adverse effects associated with steroids, which are the commonly
used drugs for uveitis. (i) Regulatory B cell (Breg) therapy: Breg
immunotherapy with as few as 5x106 cells is sufficient to
suppress uveitis by inhibiting Th17/Th1 lymphocytes and
converting conventional lymphocytes into IL-10 and/or IL-35-
producing regulatory cells. Because the Bregs proliferate in vivo
they are able to sustain secretion of anti-inflammatory cytokines
in target tissues. (ii) i35-Exosome therapy: i35-Exosomes
suppress uveitis by upregulating inhibitory receptors (PD1,
LAG3), propagating infectious-tolerance signals which induced
conventional lymphocytes to acquire capacity for producing
Frontiers in Immunology | www.frontiersin.org 9
immunosuppressive cytokines. (iii) Topical SOCS1-Mimetic
therapy: The SOCS1-Mimetic inhibits Jak kinases and is an
effective non-invasive treatment for uveitis in mice. Although
therapy for uveitis will continue to depend in part upon the
location, underlying cause and any associated complications,
availability of alternative therapeutic options for patients is
clearly a major dividend.
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