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Background: Recent studies have identified several molecular subgroups of
medulloblastoma associated with distinct clinical outcomes; however, no robust
gene signature has been established for prognosis prediction. Our objective was to
construct a robust gene signature-based model to predict the prognosis of patients
with medulloblastoma.

Methods: Expression data of medulloblastomas were acquired from the Gene
Expression Omnibus (GSE85217, n = 763; GSE37418, n = 76). To identify genes
associated with overall survival (OS), we performed univariate survival analysis and
least absolute shrinkage and selection operator (LASSO) Cox regression. A risk score
model was constructed based on selected genes and was validated using multiple
datasets. Differentially expressed genes (DEGs) between the risk groups were identified.
Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and
protein–protein interaction (PPI) analyses were performed. Network modules and hub
genes were identified using Cytoscape. Furthermore, tumor microenvironment (TME)
was evaluated using ESTIMATE algorithm. Tumor-infiltrating immune cells (TIICs) were
inferred using CIBERSORTx.

Results: A 13-gene model was constructed and validated. Patients classified as
high-risk group had significantly worse OS than those as low-risk group (Training
set: p < 0.0001; Validation set 1: p < 0.0001; Validation set 2: p = 0.00052). The
area under the curve (AUC) of the receiver operating characteristic (ROC) analysis
indicated a good performance in predicting 1-, 3-, and 5-year OS in all datasets.
Multivariate analysis integrating clinical factors demonstrated that the risk score was
an independent predictor for the OS (validation set 1: p = 0.001, validation set 2:
p = 0.004). We then identified 265 DEGs between risk groups and PPI analysis
predicted modules that were highly related to central nervous system and embryonic
development. The risk score was significantly correlated with programmed death-
ligand 1 (PD-L1) expression (p < 0.001), as well as immune score (p = 0.035),
stromal score (p = 0.010), and tumor purity (p = 0.010) in Group 4 medulloblastomas.
Correlations between the 13-gene signature and the TIICs in Sonic hedgehog and Group
4 medulloblastomas were revealed.
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Conclusion: Our study constructed and validated a robust 13-gene signature model
estimating the prognosis of medulloblastoma patients. We also revealed genes and
pathways that may be related to the development and prognosis of medulloblastoma,
which might provide candidate targets for future investigation.

Keywords: medulloblastoma, gene signature, prognosis, risk score model, LASSO

INTRODUCTION

Medulloblastoma is the most common central nervous system
(CNS) malignancy in children (Louis et al., 2016; Northcott
et al., 2019). The current revision of WHO classification of
medulloblastoma integrates histological and molecular studies
(Louis et al., 2016). It is established that medulloblastoma can
be characterized into at least four major subgroups, Wingless
(WNT), Sonic hedgehog (SHH), group 3, and group 4 (Taylor
et al., 2012). While the WNT and SHH subgroup can be clearly
identified based on the WNT and SHH signaling pathway
mutations, much less is known about Group 3 and Group 4
tumors, and these subgroups remain as non-SHH/non-WNT
medulloblastomas in WHO’s 2016 classification for diagnostic
considerations (Louis et al., 2016). Group 3 and Group 4
tumors have few mutations but can be identified through
transcriptional profiles (Ramaswamy et al., 2016b). Despite the
difficulty in classification—and an overlap (intermediate 3/4
Group) between these tumors has been observed—Group 3
and Group 4 are indeed different subgroups featuring distinct
clinicopathological and genomic characteristics (Łastowska et al.,
2018; Schwalbe et al., 2019). Group 3 tumors have the worst
prognosis of all medulloblastomas, whereas Group 4 tumors
have an intermediate prognosis similar to that of SHH subgroup
(Taylor et al., 2012). Although large cell/anaplastic (LCA) tumors
can be found in all four molecular subgroups, the majority of
this histological subtype are found in Group 3 tumors. Moreover,
Group 3 tumors tend to have high levels of expression of
the MYC proto-oncogene, bHLH transcription factor (MYC),
whereas MYC expression in Group 4 tumors are relatively low.
On the other hand, isochromosome 17q can be commonly seen
in Group 4 tumors (approximately 66%), whereas it is less
common in Group 3 tumors (approximately 26%) (Kool et al.,
2012). While molecular subgroups improved our knowledge of
medulloblastoma, there are still some limitations, particularly
in the characterization of clinical outcomes. Wide variation in
patient outcomes within the same subgroup has been observed
(Ramaswamy et al., 2016b), and many subgroups show a
subsequent level of structures, namely, subtypes of molecular
subgroups (Taylor et al., 2012). Labeled with Greek letters,
such as α, β, γ, etc., these subtypes are associated with distinct
clinical outcomes. For example, study from Cho et al. (2011)
demonstrated that Group 3β medulloblastomas have a clinical
outcome similar to Group 4 tumors. However, the number of
subtypes for each subgroup and the extent of overlap between
subgroups remains unknown. Cavalli et al. (2017) identified
12 subtypes of the known molecular subgroups in their study
of 763 medulloblastoma cases, while new subtypes featuring
hotspot in-frame insertions that target Kelch repeat, BTB domain

containing 4 (KBTBD4), and “enhancer hijacking” events that
activate PR/SET domain 6 (PRDM6) were proposed in a recent
study (Northcott et al., 2017). Therefore, a precise prognostic
model with high efficacy and broad applicability would assist
in prognostic prediction of the patients with medulloblastoma
in addition to the molecular and histology characterization.
In this study, we utilized expression data from the Gene
Expression Omnibus (GEO) to construct a 13-gene signature that
can robustly predict risk stratification of patients with specific
identification of a high-risk group with significant worse overall-
survival (OS) among medulloblastoma patients. We validated the
efficacy and applicability of the model using two unique datasets
sequenced using different platforms. Using this model, we
identified differentially expressed genes (DEGs) and performed
a pathway enrichment analysis. Furthermore, we performed
comprehensive analyses of the protein–protein interaction (PPI),
tumor microenvironment (TME), tumor-infiltrating immune
cells (TIICs), and immune checkpoints of the medulloblastoma
samples, and we assessed their correlation with our risk score
model, to give insight into the underlying mechanism of the
13-gene signature and its relation with published molecular
signatures of the disease. Our study has potential clinical
significance in patient management and may shed light on the
tumorigenesis of medulloblastoma.

MATERIALS AND METHODS

Patient Cohorts and Data Preprocessing
Expression datasets of medulloblastomas (GSE85217, n = 763;
GSE37418, n = 76) were acquired from GEO1 (Robinson et al.,
2012; Morfouace et al., 2015; Cavalli et al., 2017; Ramaswamy
and Taylor, 2019). Clinical data, including gender, histology,
age, and molecular subgroup, were retrieved from corresponding
publications (Robinson et al., 2012; Morfouace et al., 2015; Cavalli
et al., 2017; Ramaswamy and Taylor, 2019). Patients without
survival information were excluded. Considering the distinct
clinical characteristics of infant medulloblastoma (Waszak et al.,
2018), cases that were 3 years old or younger were excluded.
To remove the batch effect (Luo et al., 2010), expression data
were normalized using a quantile normalization method via
the “limma” R package and log2 transformed (Ritchie et al.,
2015). Outliers were detected using the “hclust” R package
(Müllner, 2013) and excluded. Probes were mapped to genes
per manufacturer’s instruction for each microarray platform
when applicable (GRL22286, Affymetrix, United States2; GRL570,

1http://www.ncbi.nlm.nih.gov/geo/
2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL22286
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Affymetrix, United States3). For genes detected by multiple probe
sets without recommended probes from the manufacturer, the
probe with the highest expression covering the targeted region
was selected for analysis. Probes without descriptions from
the manufacturer were excluded. After data preprocessing, we
randomly assigned cases in dataset GSE85217 to the training set
(70%) or validation set 1 (30%) with proportionate stratification
by the four molecular subgroups (SHH, WNT, Group 3,
and Group 4). GSE37418 was assigned as validation set 2
for external validation. Of note, the datasets were sequenced
on different microarray platforms (GPL22286 for GSE85217;
GPL570 for GSE37418).

Construction of the Gene Signature
Model
The training set was used to construct the prognostic model. The
univariate survival analysis was performed using the R packages
“survival” and “surveminer” (Therneau and Grambsch, 2000)
to identify OS-related genes. OS-related genes were defined as
genes that were significantly associated with the OS (p < 0.05)
in the univariate survival analysis. We then used a least absolute
shrinkage and selection operator (LASSO) Cox proportional
hazards model to identify signature genes predicting the OS
of the patients. The optimal penalty parameter was estimated
by 10-fold cross-validation in the training dataset (Tibshirani,
1997; Therneau and Grambsch, 2000). Genes with none-zero
coefficients were selected for further model construction. Risk
scores for each patient was calculated using the following
formula:

Risk Score =
n∑

i=1

Expi × Li

n, Expi, and Li, represented the number of signature genes, gene
expression level, and the coefficient of the gene, respectively. The
cutoff between high-risk and low-risk groups was statistically
estimated using the “maximally selected rank statistics method”
(Lausen and Schumacher, 1992) with the training set.

Validation of the Gene Signature Model
Using the gene signature-based model constructed from the
training set, risk scores were calculated for all patients in the
validation set 1 and 2. Patients were then classified as being
in a “high-risk” or “low-risk” group based on their risk scores,
using the cutoff estimated from the training set. To validate
the performance of the gene signature model, Kaplan–Meier
survival (K–M) curves were plotted for “high-risk” and “low-risk”
groups. The area under the curve (AUC) of the receiver operating
characteristic (ROC) for 1-, 3-, and 5-year OS were calculated
for risk scores.

To assess the independent predictive value of the gene
signature when considering clinical factors, univariant and
multivariant analyses were performed by integrating the age,
gender, tumor histology, molecular subgroups, as well as risk
groups of the patient. To visualize the performance of the risk

3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570

score model, heatmaps were plotted using R package “ggplot2”
by clustering signature genes and risk groups.

Differentially Expressed Gene (DEGs)
Analysis
DEGs between the high-risk and low-risk group were identified
using R package “limma.” Genes with fold change > 1.5
or <0.5 (Dalman et al., 2012), and adjusted p-value < 0.01
after Benjamini–Hochberg (BH) multiple test adjustment were
considered differentially expressed. The Gene Ontology (GO)
enrichment analysis was performed for DEGs using R package
“clusterProfiler” and R/Bioconductor annotation data package
“org.Hs.eg.db” (Yu et al., 2012; Carlson, 2019). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis was
performed using WEB-based Gene SeT AnaLysis Toolkit4, with
hypergeometric test statistical method and BH method applied.
The “TOP” method was used to identify enriched categories
in which the top most significant categories were selected after
ranking based on the false discovery rate (FDR).

Protein–Protein Interaction (PPI) Analysis
Protein–protein interaction network of the DEGs was
constructed using The Search Tool for the Retrieval of
Interacting Genes (STRING5) (Szklarczyk et al., 2019). The
constructed network was then visualized using Cytoscape
software. The Molecular Complex Detection (MCODE)
plugin was used to identify significant modules of the PPI
network, and modules with score ≥ 4 and nodes ≥ 20
were included in this study (Bader and Hogue, 2003).
A GO enrichment analysis were performed for DEGs
in each module for functional enrichment analysis. Hub
genes of the PPI network were identified using CytoHubba
based on the predication of two topological analysis
methods, maximal clique centrality (MCC) and Degree
(Chin et al., 2014).

Analysis of Tumor Microenvironment
(TME) and Estimation of Tumor Purity as
Well as Stromal and Immune Cell
Admixture
Tumor microenvironment plays an important role in the
development and prognosis of tumors, and the main components
of TME are immune and stromal cells (Koelwyn et al., 2017).
To infer the stromal, immune, and other non-tumor component
admixture in the TME of medulloblastomas, immune score,
stromal score, and tumor purity of each sample were calculated
using the Estimation of STromal and Immune cells in MAlignant
Tumor tissues using an Expression data (ESTIMATE) algorithm
(Yoshihara et al., 2013). We then compared the immune score,
stromal score, and tumor purity between the high-risk and low-
risk group classified by our risk model, and we also assessed their
correlations with the risk score.

4http://www.webgestalt.org
5http://string-db.org
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Analysis of Tumor Infiltrating Immune
Cells (TIICs)
CIBERSORTx6 is an algorithm developed to estimate the
abundance of TIICs based on gene expression data. Using the
CIBERSORTx algorithm, we profiled 22 immune cells in each
medulloblastoma sample. We then analyzed the correlation
between the fraction of the immune cells and the expression
level of the newly identified candidate genes (including signature
genes and network hub genes). We also compared the fraction
of infiltrating immune cells between the high-risk and low-risk
group indicated by the 13-gene signature model.

Statistical Analysis
R software version 3.6.2 and SPSS software version 21
were used for all statistical analysis. Spearman’s correlation
between continuous variables, such as risk score, level of gene
expression (log2 transformed), immune score, stromal score,
tumor purity, and immune cell fraction, were evaluated, and
p-values were adjusted using the BH method. Continuous
variables between different subgroups of medulloblastomas were
compared using Wilcoxon rank-sum test (Mann–Whitney U
test), or Kruskal–Wallis H test followed by Dunn’s post hoc tests
for pairwise comparisons. The p-value for survival analysis was
calculated using R package “survminer” as aforementioned, and
pairwise comparisons were performed using “pairwise_survdiff”
function. The calculated p values were adjusted using the BH
method provided by the package. P < 0.05 was considered
statistically significant.

RESULTS

Characteristics of the Studied Cohorts
After data preprocessing, 531 of 763 cases in the GSE85217
dataset and 70 of 76 cases in the GSE37418 dataset were included
in this study (Table 1). Cases in GSE85217 were proportionately
stratified by molecular subgroups and randomly assigned as
training set (371, 70%) or validation set 1 (n = 160, 30%).
Additionally, cases in GSE37418 were assigned as the external
validation set 2 (n = 70).

The clinical characteristics of the datasets were summarized
in Table 1, and the study design and workflow were summarized
in Figure 1.

Construction of the Gene Signature
Model
Prognostic model was constructed using the training set (n = 371,
GSE85217). We included 21028 of 21641 probes with description
from the manufacture and unambiguously mapped genes, from
the microarray platform (GPL22286). A univariate survival
analysis was performed, and we identified 2,438 OS-related genes
(Supplementary Table 1) (p < 0.05). We further screened these
genes using LASSO-penalized regression, and 14 genes with
none-zero coefficient was selected by cross-validation (Figure 2A

6cibersortx.stanford.edu

TABLE 1 | Summary of studied cohorts.

Train set Validation set 1 Validation set 2

GEO access GSE85217 GSE85217 GSE37418

Microarray Platform GPL22286 GPL22286 GPL570

Cases included (n) 371 160 70

Age (mean ± SD) 11.5 ± 9.2 11.7(±9.4) 8.4(±3.12)

Overall survival

Year (mean ± SD) 5.1 ± 3.7 5.1(±4.1) 3.7(±1.8)

Status (alive/dead) 278/93 118/42 58/12

Gender

Female 122 53 21

Male 179 104 49

Histology

Classic 206 107 48

Des 38 16 5

LCA 43 15 15

MBEN 5 0 2

Subgroup

SHH 84 37 10

WNT 43 19 8

GROUP3 64 27 16

GROUP4 180 77 34

GEO, Gene Expression Omnibus; SD, standard deviation; Des,
desmoplastic/nodular; LCA, large-cell anaplastic; MBEN, medulloblastoma
with extensive nodularity; SHH, sonic hedgehog; WNT, Wingless.

and Table 2). Among them, we excluded ENSG00000186838
(Selenoprotein V, SELENOV), which cannot be properly mapped
in the GPL570 platform. Finally, a total of 13 genes were selected
for the construction of prognostic model, including cytochrome
B5 domain containing 2 (CYB5D2), filamin binding LIM protein
1 (FBLIM1), interleukin 27 receptor subunit alpha (IL27RA),
cell migration inducing hyaluronidase 1 (CEMIP), dynein
axonemal heavy chain 2 (DNAH2), pitrilysin metallopeptidase 1
(PITRM1), FKBP prolyl isomerase 4 (FKBP4), Cyclin Y (CCNY),
phospholipase A2 Group IVE (PLA2G4E), immunoglobulin
kappa variable 1/OR2-108 (IGKV1OR2-108), ZFP3 Zinc Finger
Protein (ZFP3), XK related 5 (XKR5), and spectrin repeat
containing nuclear envelope family member 3 (SYNE3). Most of
the 13 signature genes (except for IGKV1OR2-108, ZFP3, XKR5,
and SYNE3) were reported to be related to neurological functions
and diseases, which are summarized in Table 3 and will be further
discussed in detail.

Risk scores for each patient can be calculated as:

Risk Score

= (−0.244845303 ∗ CYB5D2)+ (−0.2109008 ∗ PLA2G4E)

+(−0.199451582 ∗ FBLIM1)+ (−0.193108399 ∗ IL27RA)

+(−0.116666216 ∗ IGKV1OR2-108)

+(−0.057694631 ∗ DNAH2)+ (−0.054565913 ∗ CEMIP)

+(−0.021712839 ∗ ZFP3)+ (−0.014694104 ∗ XKR5)

+(0.02622514 ∗ CCNY)+ (0.104753688 ∗ PITRM1)

+(0.108748445 ∗ SYNE3)+ (0.196424875 ∗ FKBP4)
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FIGURE 1 | Design and workflow of this study. Public medulloblastoma
datasets, including 763 (GSE85217) and 76 cases (GSE37418), were
included in our analysis. Cases in GSE85217 were divided into the training set
(n = 371) and validation set 1 (n = 160), and cases in GSE37418 were
assigned as validation set 2 (n = 70) for cross-platform and external validation.
We constructed our gene-signature-based risk score model using a training
set and validated with two validation sets. Using the constructed model, we
then performed comprehensive analysis, including analysis of DEGs, PPI
network, TME, TIICs, immune checkpoint, KEGG pathways, and GO
enrichment, as well as a comparison of established medulloblastoma
molecular and histological subgroups.

“Maximally selected rank statistics method” indicated an
optimal cutoff of −2.74 (Figure 2B) for the training set. Patients
with a risk score of less than or equal −2.74 were classified
into low-risk groups, while those above −2.74 were classified
into high-risk groups. K–M curves were plotted, and patients
in the high-risk group demonstrated significant worse OS than
those in the low-risk group (high-risk n = 128, low-risk n = 243,
p < 0.0001) (Figure 2C). ROC analysis was performed to assess
the accuracy of the risk score model, and the AUCs for 1-, 3-, and
5-year OS were 0.782, 0.833, and 0.845, respectively (Figure 2D).

Validation of the Gene Signature Model
To validate the gene signatures, we applied the constructed model
to the validation set 1 (n = 160, GSE85217), resulting in 52
high-risk cases and 108 low-risk cases, respectively. K–M curves
demonstrated a significantly lower OS of the high-risk group
compared with that of the low-risk groups (high-risk n = 52,
low-risk n = 108, p < 0.0001) (Figure 2E). The ROC yielded
AUCs of 0.904, 0.790, and 0.720 for 1-, 3-, and 5- year OS
prediction, respectively (Figure 2F). These analyses indicated a
great performance of our 13-gene signature model predicting the
OS of the patients in the validation set 1.

Additionally, we applied the constructed model to validation
set 2 (n = 70, GSE37418), which was generated with a different
study group and microarray platform (GPL570), to further
validate its applicability. In validation set 2, 24 patients were
predicated to be in the high-risk group while 46 were predicated
to be in the low-risk group. K–M curves demonstrated a
significant lower OS of the high-risk group compared with low-
risk group (high-risk n = 24, low-risk n = 46, p = 0.00052)
(Figure 2G). The ROC yielded AUCs of 0.848, 0.804, and 0.722
for 1-, 3-, and 5- year OS prediction, respectively (Figure 2H).
These results were very similar to our training and validation
set 1, indicating a consistent performance of our model when
applied to an external, cross-platform dataset. To visualize the
performance of the gene signature, heatmaps were plotted for the
13-gene signature in each dataset (Figure 3).

Independent Predictive Value of the
Gene Signature
Patients in the validation set 1 (n = 160) and validation set 2
(n = 70) were used to assess the independent predictive value
of the 13-gene signature. Univariant Cox analysis demonstrated
that the OS for patients was significantly associated with risk
groups in both validation set 1 (Hazard ratio, HR = 0.31,
p = 0.00022) and validation set 2 (HR = 0.14, p = 0.003), while no
significant correlation with clinical factors including age, gender,
and molecular subgroups were observed (Table 4). The risk
group was the only factor significantly associated with OS in the
multivariant cox analysis (Validation set 1: HR = 0.3, p = 0.00107;
Validation set 2: HR = 0.14, p = 0.00407). Although a significant
association between histology types and OS was observed in the
validation set 1 in univariate analysis (HR = 1.7, p = 0.044), it
was not significant when assessed in multivariant cox analysis
(HR = 1.51, p = 0.12). These findings indicate that the risk group
was an independent predictor for the OS.

Comparison of Risk Scores Among
Molecular and Histological Subgroups
Despite proven to be an independent predictor of the OS, the
risk score seemed to vary among different medulloblastoma
subgroups. We then compared the risk scores among established
medulloblastoma molecular subgroups, including SHH, WNT,
group 3, and group 4, as well as histology types, including
classic, desmoplastic, LCA, and medulloblastoma with extensive
nodularity (MBEN), using the GSE85217 dataset. We found that
the risk score of each molecular and histological subgroup was
consistent with its OS. For example, Group 3 medulloblastomas,
known to feature the worst survival, were found to have the
highest risk scores (Figure 4A) and the worst OS (Figure 4C),
whereas WNT tumors, which are thought to have by far the best
survival, demonstrated the lowest risk score (Figure 4A) and the
best OS among all molecular subgroups (Figure 4C) (Kool et al.,
2012; Taylor et al., 2012; Shih et al., 2014). LCA medulloblastomas
were found to have the highest risk score, which was significantly
higher than that of classic (p < 0.001) and desmoplastic
medulloblastomas (p < 0.001) (Figure 4B). Consistently, LCA
demonstrated the worst OS among all histology types, which
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FIGURE 2 | (A) Cross-validation of LASSO, the optimized log (lambda) was indicated by the dot line; (B) Optimizing the cutoff of the risk score using “maximally
selected rank statistics method,” and an optimal cutoff of –2.74 was indicated; (C) K-M curve and (D) ROC of the training set; (E) K-M curve and (F) ROC of the
validation set 1; and (G) K–M curve and (H) ROC of the validation set 2. P-value < 0.05 were considered statistically significant. Greater AUCs reflects better
discrimination, while AUCs close to 0.5 reflects no discrimination. AUC, area under curve.
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TABLE 2 | Gene signature selected for model construction.

Probe Gene Coefficient Factor Expression level (high vs. low risk)

ENSG00000167740 CYB5D2 −0.244845303 Protective Decreased

ENSG00000188089 PLA2G4E −0.2109008 Protective Decreased

ENSG00000162458 FBLIM1 −0.199451582 Protective Decreased

ENSG00000104998 IL27RA −0.193108399 Protective Decreased

ENSG00000186838* SELENOV −0.168074864 Protective Decreased

ENSG00000231292 IGKV1OR2-108 −0.116666216 Protective Decreased

ENSG00000183914 DNAH2 −0.057694631 Protective Decreased

ENSG00000103888 CEMIP −0.054565913 Protective Decreased

ENSG00000180787 ZFP3 −0.021712839 Protective Decreased

ENSG00000275591 XKR5 −0.014694104 Protective Decreased

ENSG00000108100 CCNY 0.02622514 Risk Increased

ENSG00000107959 PITRM1 0.104753688 Risk Increased

ENSG00000176438 SYNE3 0.108748445 Risk Increased

ENSG00000004478 FKBP4 0.196424875 Risk Increased

*Excluded: no mapped gene in GLP570 platform. Gene names: Cytochrome B5 Domain Containing 2 (CYB5D2), Phospholipase A2 Group IVE (PLA2G4E), Filamin
Binding LIM Protein 1 (FBLIM1), Interleukin 27 Receptor Subunit Alpha (IL27RA), Selenoprotein V (SELENOV), Immunoglobulin Kappa Variable 1/OR2-108 (IGKV1OR2-
108), Dynein Axonemal Heavy Chain 2 (DNAH2), Cell Migration Inducing Hyaluronidase 1 (CEMIP), ZFP3 Zinc Finger Protein (ZFP3), XK Related 5 (XKR5), Cyclin Y
(CCNY), Pitrilysin Metallopeptidase 1 (PITRM1), Spectrin Repeat Containing Nuclear Envelope Family Member 3 (SYNE3), and FKBP Prolyl Isomerase 4 (FKBP4).

TABLE 3 | Summary of signature genes related to neurological
functions or diseases.

Gene Neurological functions
and diseases

CNS tumors Other tumors or
tumor-related
pathways

CYB5D2 Neurogenesis, neural
functions

Tumorigenesis and
cancer progression,
breast and cervical
cancer

FBLIM1 Brain development, autism
spectrum disorders

Migration and
invasion in
glioma

IL27RA Immune regulation in CNS

CEMIP Brain function and
development, Schwann cell
dedifferentiation

Immune
response in
glioblastoma

Wingless (WNT)
signaling

DNAH2 Parkinson’s disease, autism,
adult-onset hearing loss

Clear cell renal cell
carcinomas

PITRM1 Amyloidogenic neuropathy,
Alzheimer’s disease

FKBP4 Neuronal differentiation,
chemotropic guidance of
neuronal growth cones,
regulating neuroprotective
activities with calcium
channels, major depressive
disorder

Prostate-cancer

CCNY Synapse formation, synapse
elimination, hippocampal
neurons related pathways,
hippocampal long-term
potentiation

Glioma cell
proliferation

PLA2G4E Neurobehavioral disorders

Gene names: Cytochrome B5 Domain Containing 2 (CYB5D2), Filamin Binding LIM
Protein 1 (FBLIM1), Interleukin 27 Receptor Subunit Alpha (IL27RA), Cell Migration
Inducing Hyaluronidase 1 (CEMIP), Dynein Axonemal Heavy Chain 2 (DNAH2),
Pitrilysin Metallopeptidase 1 (PITRM1), FKBP Prolyl Isomerase 4 (FKBP4), Cyclin
Y (CCNY), and Phospholipase A2 Group IVE (PLA2G4E).

was significantly shorter than that of classic (p < 0.001) and
desmoplastic medulloblastomas (p < 0.001) (Figure 4D).

Differentially Expressed Gene (DEG), GO
Enrichment, and KEGG Analysis
Using the validated gene signature model and expression data of
GSE85217 (high-risk n = 180, low-risk n = 351), we identified 265
DEGs (Figure 5A and Supplementary Table 2) between the high-
risk and low-risk group. GO analysis demonstrated that these
genes were highly related to neurological functions, as DEGs
were found to be significantly enriched in biological processes,
such as axon development, axonogenesis, axon guidance,
neuron projection guidance, and neuron fate commitment;
cellular components, such as presynapse, synaptic membrane,
neuronal cell body, postsynaptic membrane, synaptic vesicle
membrane, and GABA-ergic synapse; and molecular functions,
such as substrate-specific channel activity and channel activities,
including the ion channel, gated channel, cation channel,
and voltage-gated channel (Figure 5B). A KEGG analysis
demonstrated enrichment of DEGs in synapse-related pathways
(Figure 5C and Supplementary Table 3) and the WNT signaling
pathway, which was widely reported in medulloblastomas (Xia
et al., 2019; Majd and Penas-Prado, 2019).

PPI Network Analysis and Prediction of
Hub Genes and Network Modules
To further understand the interaction between the DEGs and
their roles in medulloblastoma, PPI network of these genes
was constructed using STRING database and was visualized
using Cytoscape. STRING analysis identified 254 nodes and
400 edges in this PPI network (enrichment p < 0.001)
(Figure 6A and Supplementary Table 4). Using MCODE, three
modules were identified from the PPI network (Figure 6B and
Supplementary Table 6).
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FIGURE 3 | Heatmap of the constructed 13-gene signature for (A) training set; (B) validation set 1; and (C) validation set 2, clustered by gene expression level and
risk groups.

To explore the underlying mechanism of these modules,
a GO enrichment analysis was performed for each module.
Interestingly, we found that DEGs in module 1 were
significantly enriched in pathways that were related to the
development and function of CNS (including forebrain
development, axonogenesis, positive regulation, telencephalon

development, neuron fate commitment, forebrain generation of
neurons, neuron migration, forebrain neuron differentiation,
diencephalon development, forebrain regionalization, and
forebrain neuron fate commitment) (Figure 7A and
Supplementary Table 7), while those in module 2 were
significantly enriched in pathways that were related to
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TABLE 4 | Univariate and multivariate survival analysis for validation sets.

Validation set 1 Validation set 2

HR 95% CI p-value HR 95% CI p-value

Univariate analysis

Age (3–6 vs. 6–9 vs. 9–12 vs. 12–15 vs. 15–18 vs. 18+) 1 0.86–1.2 0.75 0.76 0.42–1.4 0.37

Gender (male vs. female) 1.4 0.7–3 0.33 0.78 0.23–2.6 0.69

Histology (classic vs. Des vs. LCA vs. MBEN) 1.7 1–2.7 0.044* 1.4 0.81–2.5 0.23

Risk Group (low vs. high) 0.31 0.17–0.58 0.00022* 0.14 0.037–0.51 0.003*

Subgroup (SHH vs. WNT vs. Group 3 vs. Group 4) 1 0.8–1.4 0.73 0.8 0.5–1.3 0.35

Multivariate analysis

Age (3–6 vs. 6–9 vs. 9–12 vs. 12–15 vs. 15–18 vs. 18+) 1.17 0.95–1.47 0.14 0.77 0.41–1.44 0.41

Gender (male vs. female) 1.08 0.51–2.30 0.84 0.86 0.20–3.64 0.84

Histology (classic vs. Des vs. LCA vs. MBEN) 1.51 0.89–2.52 0.12 1.48 0.78–2.78 0.23

Risk Group (low vs. high) 0.3 0.14–0.61 0.00107* 0.14 0.04–0.54 0.00407*

Subgroup (SHH vs. WNT vs. Group 3 vs. Group 4) 1.23 0.89–1.68 0.21 0.83 0.47–1.45 0.51

HR, hazard ratio; CI, confidence interval; Des, desmoplastic/nodular; LCA, large-cell anaplastic; MBEN, medulloblastoma with extensive nodularity; SHH, sonic
hedgehog; WNT, Wingless.

embryonic development (including eye development, visual
system development, sensory system development, appendage
development, limb development, inner ear development,
visual perception, sensory perception of light stimulus,
sensory organ morphogenesis, appendage morphogenesis, limb
morphogenesis, embryonic organ morphogenesis, chondrocyte
differentiation, embryonic limb morphogenesis, embryonic
appendage morphogenesis, odontogenesis, regulation of
chondrocyte differentiation, regulation of cartilage development,
and regulation of mesenchymal cell proliferation) (Figure 7B
and Supplementary Table 7). Therefore, module 1 and module
2 might be involved in the development of medulloblastomas,
which are known as embryonal CNS tumors. For DEGs in
module 3, however, the underlying mechanism and its relevance
to medulloblastomas were less clear (Figure 7C). Notably, four
subunits of the calcium voltage-gated channel (CACN), which
has been reported as a novel target for medulloblastoma therapy
(Phan et al., 2017; Huang et al., 2018), were predicted, including
calcium voltage-gated channel subunit alpha1 A (CACNA1A),
calcium voltage-gated channel subunit alpha1 D (CACNA1D),
calcium voltage-gated channel auxiliary subunit alpha2delta
1 (CACNA2D1), and calcium voltage-gated channel auxiliary
subunit gamma 3 (CACNG3).

Hub genes were highly interconnected with network nodes,
and intramodular hub genes in disease related modules have
been reported to have clinical significance (Ivliev et al., 2010;
Langfelder et al., 2013). Using Cytohubba, a total of 16
hub genes were predicted, including fibroblast growth factor
receptor 1 (FGFR1), GLI family zinc finger 2 (GLI2), glutamate
decarboxylase 1 (GAD1), CACNA1A, paired box 3 (PAX3), paired
box 6 (PAX6), T-Box brain transcription factor 1 (TBR1), bone
morphogenetic protein 4 (BMP4), calbindin 1 (CALB1), solute
carrier family 17 member 6 (SLC17A6), SRY-Box transcription
factor 9 (SOX9), Forkhead box G1 (FOXG1), Zic Family
Member 1 (ZIC1), ELAV like RNA binding protein 3 (ELAVL3),
RUNX family transcription factor 2 (RUNX2), and CACNA2D1
(Figures 6C,D and Supplementary Table 5). All 16 hub genes

were presented in at least one of network modules predicted by
MCOD. In addition, 6 hub genes were presented in both module
1 and 2 (FGFR1, BMP4, PAX3, SOX9, GLI2, and PAX6), while
1 hub gene was presented in both module 1 and 3 (CACNA1A)
(Figures 6B,D). All hub genes presented in multiple modules
have been reported in medulloblastomas which would be further
discussed in the discussion section. These hub genes might be
critical in the underlying mechanism of the PPI network.

Association of TME With the Risk Score
Model and Molecular Subgroups of
Medulloblastoma
TME is essential for tumor development and is involved in
the drug resistance in cancers (Quail and Joyce, 2017). To
understand the role of our risk score model in the TME of
medulloblastomas, we inferred the stromal and immune cell
admixture, which are of important in TME, as well as the tumor
purity in the GSE85217 dataset using ESTIMATE algorithm.
We first compared the TME in different molecular subgroups
(Figure 8A). SHH tumors had the highest immune and stromal
score but the lowest tumor purity among all subgroups. WNT
tumors had a significantly lower immune score (p < 0.001)
and higher tumor purity (p = 0.006) than SHH tumors, a
significantly higher stromal scores than Groups 3 (p = 0.010)
and Group 4 (p < 0.001) tumors, as well as a significantly
lower tumor purity than Group 4 tumors (p = 0.006). The
TME of Group 3 and Group 4 medulloblastomas seemed
to be similar, as no significant differences in terms of the
immune score (p = 1.000), stromal score (p = 1.000), and
tumor purity (p = 1.000) were detected between these groups.
We then analyzed the correlation between TME and the risk
score (Figure 8B). The risk score of Group 4 tumors were
positively correlated with both the stromal score (r = 0.169,
p = 0.010) and the immune score (r = 0.131, p = 0.035)
while negatively correlated with the tumor purity (r = −0.172,
p = 0.010) (Figure 8B). No significant correlations were detected
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FIGURE 4 | Comparison of risk scores in different (A) molecular subgroups and (B) histological subtypes (Kruskal–Wallis H test followed by Dunn’s post hoc tests for
pairwise comparisons). K–M curves of different (C) molecular subgroups and (D) histological subtypes (P-values were calculated using “survminer” and were
adjusted using the BH method).

in other subgroups. We also compared the TME between
different risk groups classified by our risk model (Supplementary
Table 8), and found that high-risk group had significantly
lower tumor purity compared to those classified into low-
risk group (p = 0.045) in Group 4 medulloblastomas, while
high-risk Group 3 medulloblastomas demonstrated significantly
higher level of stromal scores compared to those classified
as low-risk group in the same subgroup (p = 0.045). These
findings might be suggestive of a subgroup-specific TME in
medulloblastomas and indicated an association between our risk
score model and these distinct TME profiles in Group 4 and SHH
medulloblastoma.

Association of TIICs and Immune
Checkpoint With the Risk Score Model
To assess the relation between immune cell infiltration
and our 13-gene signature, we profiled 22 TIICs using
CIBERSORTx algorithm in the GSE85217 dataset (Figure 9A and
Supplementary Table 9). We first investigated the correlation

between the risk score and the immune cells (Figure 9B and
Supplementary Table 10). For SHH cases, the risk score was
positively correlated with naïve B cells (r = 0.347, p < 0.001)
but negatively correlated with memory B cells (r = −0.259,
p = 0.013) and plasma cells (r = −0.388, p < 0.001). In addition,
the risk score of SHH cases was positively correlated with CD8
T cells (r = 0.316, p = 0.002) and regulatory T cells (r = 0.400,
p < 0.001) but was negatively correlated with CD4 T cells
(r = −0.343, p < 0.001). For Group 4 medulloblastomas, the risk
score was negatively correlated with memory B cells (r =−0.232,
p = 0.002) as well and positively correlated with M2 Macrophages
(r = 0.262, p < 0.001).

We also examined the association between our risk score
model and immune checkpoint pathways, focusing on PD-L1
and cytotoxic T-lymphocyte associated protein 4 (CTLA4) since
inhibitors targeting these checkpoints have been proposed to be
effective in treating medulloblastoma animal models (Pham et al.,
2016). We found that the risk score was significantly correlated
with PD-L1 expression (p < 0.001, r = −0.162) but not with
CTLA4 expression (Supplementary Table 11).
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FIGURE 5 | (A) Volcano map of DEGs between risk groups. Genes with a red color were upregulated, whereas genes with a blue were downregulated. Genes with
absolute Log2FC > 1 are highlighted in green. (B) GO enrichment analysis of the DEGs. BP, biological process; CC, cellular component; MF, molecular function.
(C) KEGG analysis of the DEGs. Genes were selected by “TOP” 10 method using WEB-based Gene Set Analysis Toolkit.

Correlation of TIICs With the Signature
Genes and PPI Network Hub Genes
To further understand the role of our signature genes and PPI
network hub genes in immune cells infiltration, we assessed the

correlation between signature genes as well as network hub genes
and fraction of immune cells (Figure 10 and Supplementary
Table 12). For the B cells in SHH tumors, naïve B cells were
significantly correlated with SOX9 (p = 0.001, r = −0.391),
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FIGURE 6 | (A) PPI network of the DEGs. (B) A total of 3 modules (blue, yellow, and gray nodes) were identified from the PPI network using MCOD. (C) Hub genes
were predicted based on the MCC and Degree method using Cytohubba. (D) A total of 16 hub genes were predicted from the PPI network. All hub genes can be
found in at least on module. Hub gene FGFR1, BMP4, PAX3, SOX9, GLI2, and PAX6 were presented in both module 1 and 2 (Green nodes). Hub gene CACNA1A
was presented in both module 1 and 3 (Purple nodes).
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FIGURE 7 | Visualization and GO enrichment analysis of DEGs in (A) module 1, (B) module 2, and (C) module 3. DEGs that were upregulated in the high-risk group
are in red nodes, whereas those that were downregulated are in green nodes. (A) DEGs in module 1 were significantly enriched in pathways that are related to CNS
development, while (B) DEGs in module 2 were significantly enriched in pathways that are related to embryonic development.
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FIGURE 8 | Significant correlations between the risk score and the immune score, stromal score, and tumor purity were found in the TME of Group 4
medulloblastomas. (A) Comparison of immune score, stromal score, and tumor purity between molecular subgroups (Kruskal–Wallis H test followed by Dunn’s
post hoc tests for pairwise comparisons). (B) The correlation between risk scores and immune scores, stromal scores, as well as tumor purity (Spearman’s r and p.
P values were adjusted using BH method. Only significant p-values were presented).

GLI2 (p = 0.026, r = −0.303), ZIC1 (p = 0.021, r = −0.315),
CYB502 (p = 0.007, r = −0.350), and SYNE3 (p = 0.013,
r = 0.331) expression (Figure 10A). Memory B cells were
significantly correlated with SOX9 (p = 0.001, r = 0.398) and
GLI2 (p = 0.028, r = 0.300) expression, and plasma cells were
positively correlated with CYB502 (p = 0.049, r = 0.279), DNAH2
(p = 0.031, r = 0.296) and SYNE3 (p = 0.048, r = 0.280)
expression (Figure 10A). Considering that SOX9, GLI2, ZIC1,

CYB502, and DNAH2 were downregulated, whereas SYNE3
was upregulated in the high-risk group, the expression pattern
of these genes was in accordance with our aforementioned
observation that the risk score was positively correlated with
naïve B cells but negatively correlated with memory B cells and
plasma cells in SHH tumors. Interestingly, GLI2 and SOX9 were
also significantly correlated with follicular helper T cells (Tfh)
in SHH tumors (p = 0.048, r = 0.280; p = 0.011, r = 0.337,
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FIGURE 9 | Significant correlations between the risk score and the fraction of TIICs were found in Group 4 and SHH medulloblastomas. (A) TIICs profile in
GSE85217 dataset estimated using CIBERSORTx algorithm. (B) The correlation between the risk score and the fraction of infiltrating immune cells (Spearman’s r
and p. P-values were adjusted using BH method). Significant correlations are in green color.

respectively) (Figure 10A). Since Tfh is known to be essential
in directing B cells differentiation into memory B cells and
plasma cells in the germinal center, these genes might be
important in the regulation of tumor-infiltrating B cells in SHH
medulloblastomas.

Regarding other T cells in SHH medulloblastomas, CD8
T cells were significantly correlated with SYNE3 expression
(p = 0.048, r = 0.280), and regulatory T cells were significantly
correlated with SYNE3 (p = 0.036, r = 0.291), FKBP4 (p = 0.039,
r = 0.288), IL27RA (p = 0.026, r = −0.304), and DNAH2
(p = 0.004, r = −0.362) expression (Figure 10B). Considering
that FKBP4 and SYNE3 were upregulated, whereas IL27RA
and DNAH2 were downregulated in the high-risk group, the
expression pattern of these genes was in accordance with

our previous observation that the risk score was positively
correlated with CD8 T cells and regulatory T cells. Regarding
macrophages in SHH medulloblastomas, CEMIP expression
was negatively correlated M0 (p = 0.002, r = −0.378) while
positively correlated with M2 macrophages (p < 0.001, r = 0.437)
(Figure 10C). Since CEMIP was downregulated in the high-
risk group, this finding was consistent with our observation
of significantly increased fraction of M0 macrophages in
the high-risk group. Moreover, activated NK cells were
positively correlated with GLI2 (p = 0.020, r = 0.318) and
ELAVL3 (p = 0.020, r = 0.317) expression (Figure 10D),
and resting mastocyte cells were significantly correlated with
CACNA2D1 expression (p = 0.026, r = 0.303) in SHH
medulloblastomas (Figure 10E).
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FIGURE 10 | (A–L) The correlation between the expression level of the signature genes as well as hub genes and the fraction of the 22 TIICs in GSE85217 dataset
(Spearman’s r and p. P-values were adjusted using BH method. Only genes and TIICs with significant correlations are presented).
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For Group 4 medulloblastomas, B naïve cells were positively
correlated with RUNX2 (p = 0.031, r = 0.208) and PITRM1
(p = 0.025, r = 0.214) expression, and the latter was negatively
correlated with memory B cells as well (p = 0.048, r = −0.198)
(Figure 10F). Plasma cells were positively correlated with both
PAX3 (p < 0.001, r = 0.360) and CACNA1A (p = 0.013, r = 0.228)
expression (Figure 10F). These results were consistent with our
observation that the risk score was negatively correlated with
memory B cells. However, while the expression of both PITRM1
(p = 0.025, r = 0.214) and RUNX2 (p = 0.031, r = 0.208) was
positively correlated with the fraction of naïve B cells, the former
was upregulated whereas the latter was downregulated in the
high-risk group (Figure 10F). This might explain non-significant
correlation detected between risk score and naïve B cells in Group
4 tumors. Regarding T cells, Tfh was significantly correlated with
ZIC1 expression (p = 0.002, r = 0.266), and resting memory T
CD4 cells was significantly correlated with PLA2G4E expression
(p = 0.022, r =−0.217) (Figures 10F,H).

In concordance with the aforementioned observations, a
positive correlation between M2 macrophages and the risk score
was detected in Group 4 medulloblastoma. Consequently, we
found that M2 macrophages fraction were positively correlated
with the expression of RUNX2 (p < 0.001, r = 0.326), CCNY
(p = 0.005, r = 0.252) and SYNE3 (p = 0.007, r = 0.243)
expression, which were upregulated in the high-risk group, while
negatively correlated with the expression of ZIC1 (p < 0.001,
r = −0.307), GLI2 (p = 0.047, r = −0.200), PAX6 (p = 0.021,
r = −0.219), CYB5D2 (p = 0.013, r = −0.230), and SELENOV
(p = 0.009, r = −0.239), which were downregulated in the high-
risk group (Figure 10G). Activated NK cells were correlated with
CACNA2D1 (p = 0.047, r = 0.199) and RUNX2 (p < 0.001,
r = −0.325) expression (Figure 10I). Resting mastocyte cells
were correlated with ZFP3 expression (p = 0.013, r = 0.231)
(Figure 10J). Neutrophils were correlated with IGKV1OR2-108
expression (p = 0.030, r = −0.210) (Figure 10K). For Group
3 tumors, M0 Macrophages were significantly correlated with
ELAVL3 expression (p = 0.001, r =−0.470) (Figure 10L).

Taken together, these findings indicated that our risk score
model might be involved in the TIICs of medulloblastomas.
The signatures genes and PPI network hub genes significantly
correlated with immune cells may play a critical role in the
medulloblastoma immune microenvironment, and their clinical
significance requires further investigation.

DISCUSSION

Previous studies have improved our understanding of
medulloblastoma dramatically, but a robust prognostic signature
has yet to be established for medulloblastoma patients. The
risk stratification for medulloblastoma was suggested long ago
without incorporating genetic findings (Packer et al., 2003).
Magnetic resonance (MR) imaging-based signatures were
promising in predicting molecular subgroups (Colafati et al.,
2018) but have not been used in predicting patient prognosis.
Although gene signatures were investigated in several studies,
a major focus was on patient preselection for targeted therapy

(Shou et al., 2015) or molecular classification (Corno et al.,
2012; Chen et al., 2013). Northcott et al. (2012) presented a
22-subtype-specific gene signature that can predict molecular
subgroup in 88% of recent Formalin Fixed Paraffin Embedded
(FFPE) medulloblastoma samples (Northcott et al., 2012).
Braoudaki et al. (2014) used a microRNA (miRNA) signature
to predict the clinical outcome in pediatric CNS tumors, but
only 34 medulloblastomas were analyzed with other brain
tumors, identifying only two signature miRNAs, which were not
used to construct predictive models. Tantawy et al. (2018) also
investigated miRNA signature for medulloblastoma; however,
only a total of 82 miRNAs were assessed, in a cohort of 30
medulloblastoma cases with another 90 pediatric brain tumors,
resulting in only 1 miRNA that was specific to medulloblastoma.
The prognostic model established by Tamayo et al. (2011) was
the only model we found, that could be used to predict clinical
outcomes based on expression profiles. While their model can
predict tumor relapse, it was not constructed to predict survival
of the patients.

In this study, we constructed a 13-gene signature risk score
model predicting the OS of medulloblastoma patient. The
robustness and applicability of this model was validated with two
independent datasets, generated from two different microarray
platforms. Our results demonstrated that this model can identify
high-risk patients that have significantly shorter OS compared
with low-risk patients. We further confirmed the 13-gene
signature as an independent predictor when a variety of clinical
factors were considered simultaneously. To our knowledge, this is
the first study constructing and validating a gene signature-based
prognostic model for medulloblastoma.

Most of the 13 signature genes were related to neurological
functions and diseases, as well as CNS tumors and other
tumors. CYB5D2 was related to neurogenesis, neural functions,
tumorigenesis, and cancer progression (Kimura et al., 2010;
Ryu et al., 2017). It was reported in breast (Ojo et al., 2019)
and cervical cancer as well (Xie et al., 2011, 2016a,b; Bruce
and Rybak, 2014). FBLIM1 was reported to promote migration
and invasion in glioma (Ou et al., 2017), and participate
in brain development and autism spectrum disorders (Kang
et al., 2011; Pinto et al., 2014; Ishizuka et al., 2018). IL27RA
might participate in immune regulation in CNS (Iwasaki et al.,
2015; Yoshida and Hunter, 2015). CEMIP may be related to
brain function and development (Yoshino et al., 2017, 2018),
MEK/ERK-induced Schwann-cell dedifferentiation (Boerboom
et al., 2017), immune response in glioblastoma (Motaln et al.,
2012), and WNT signaling (Li et al., 2017; Duong et al., 2018;
Liang et al., 2018). It was frequently reported in colorectal
cancers as well (Fink et al., 2015; Zhang et al., 2017). DNAH2
mutation was reported in Parkinson’s disease (Gaare et al.,
2018), autism (Butler et al., 2015), adult-onset hearing loss
(Lewis et al., 2018), and clear cell renal cell carcinomas
(Arai et al., 2015). PITRM1 was associated with amyloidogenic
neuropathy (Boczonadi and Horvath, 2016; Brunetti et al.,
2016; Smith-Carpenter and Alper, 2018) and Alzheimer’s disease
(Alikhani et al., 2011; Deters et al., 2017). FKBP4 was found
to be associated with major depressive disorder (Binder et al.,
2004; Tatro et al., 2009a,b) and might be critical to early
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steps in neuronal differentiation (Quintá and Galigniana, 2012),
chemotropic guidance of neuronal growth cones (Shim et al.,
2009), and regulating neuroprotective activities with calcium
channels (Ruan et al., 2008). It was also reported in malignancies
like prostate cancer (Bhowal et al., 2017; Joshi et al., 2017)
and breast cancer (Ostrow et al., 2009). CCNY knockout can
inhibit glioma cell proliferation (Xu et al., 2010). It was known
to regulate synapse formation, synapse elimination (Ou et al.,
2010; Park et al., 2011), hippocampal neurons related pathways,
and hippocampal long-term potentiation (Cho et al., 2015; Joe
et al., 2017). PLA2G4E was reported to be strongly expressed in
the brain, especially in neurons (Ogura et al., 2016), and was
associated with neurobehavioral disorders (Everson et al., 2019;
Morimoto et al., 2018).

To better understand the molecular mechanism underlying
the 13-gene signature, we identified 265 DEGs by comparing
the high-risk and low-risk group and performed GO and
KEGG enrichment analysis for these genes. The results
demonstrated that the DEGs were significantly associated with
axon formation, synapse components, neuron components,
and cell channel activities. Medulloblastoma is thought to
arise from the granule cell precursors during the cerebellar
development (Oliver et al., 2005; Roussel and Hatten, 2011).
Cerebellar development occurs in multiple regions, including the
ventricular zone surrounding the fourth ventricle and the upper
rhombic lip (Martirosian et al., 2016). The former generates
GABAergic neurons, while the latter generates glutamatergic
neurons of cerebellum (Butts et al., 2014). Interestingly, we
found that both the GABAergic and glutamatergic synapse
pathways were associated with the 265 DEGs identified using
the risk score model. Also, a GO analysis revealed that
these DEGs were significantly enriched in pathways related to
axon development and functions, including axonogenesis and
axon guidance. Axon guidance pathways, such as Eph/ephrin
signaling, were reported to play important roles in malignant
brain tumor (Nakada et al., 2004; Pasquale, 2008; Miao et al.,
2009). The Eph/ephrin signaling system plays a key role
in the invasion of medulloblastoma, and EPH Receptor B2,
EphB2, was found to be critical for invasion of pediatric
medulloblastoma (Sikkema et al., 2012). Additionally, our
results are consistent with previous report, which identified
DEGs related to axon guidance in medulloblastoma spheres
and core versus migrating cells and suggested a novel
potential role for axon guidance signaling in medulloblastoma-
propagating cells (Morrison et al., 2013). Moreover, KEGG
analysis revealed that the DEGs were significantly enriched in
WNT signaling pathways, which is known to be strongly related
to medulloblastomas (Louis et al., 2016; Majd and Penas-Prado,
2019; Xia et al., 2019). Together, our study suggested that the
13 signature genes may play critical roles in the development
of medulloblastoma by regulating these enriched pathways and
functions through the DEGs.

Furthermore, we analyzed the PPI network of the 265
DEGs and identified 3 modules. Interestingly, GO enrichment
analysis revealed that module 1 and module 2 were highly
enriched in pathways that were related to CNS development
and embryonic development, respectively. Defined as an

embryonal CNS tumor, medulloblastoma is thought to arise
from disruptions during the development of cerebellum as
a result of dysregulated genes and pathways, including the
Notch, WNT/β-Catenin, Transforming growth factor-beta (TGF-
β)/bone morphogenetic protein (BMP), SHH/Patched, and
Hippo pathways (Roussel and Hatten, 2011) in embryonic
development. The aberrantly regulated DEGs in modules 1
and module 2 might be involved in this process considering
their functional characteristics. Additionally, these modules were
interconnected via several hub genes, namely, FGFR1, BMP4,
PAX6, PAX3, SOX9, and GLI2, all of which have been related
to medulloblastomas in previous studies. Fibroblast growth
factor receptor (FGFR) signaling is known to drive SHH
medulloblastomas and is critical in regulating medulloblastoma
invasion, and FGFR1 has been demonstrated to mediate
inhibition of SHH medulloblastoma growth (Kumar et al.,
2018; Neve et al., 2019). Bone morphogenetic proteins (BMPs)
are known to regulate SHH-induced granule cell progenitor
proliferation during cerebellar development and cell migration
and invasion in Group 4 medulloblastoma model (Merve
et al., 2014). BMP4 can inhibit medulloblastoma proliferation
and induce differentiation of medulloblastoma cells (Grimmer
and Weiss, 2008; Zhao et al., 2008). The Paired box (PAX)
gene family play a critical role in embryonic development
especially the development of CNS. PAX6 participates neuronal
fate determination and can be regulated by SHH signaling
in medulloblastoma (Shahi et al., 2010). PAX3 is known to
be involved in tumors originated from neural crest and has
been related to neural cell adhesion molecules polysialylation,
and, subsequently, cell–cell and cell–substratum interactions in
medulloblastoma cells (Mayanil et al., 2000; Wang et al., 2008).
SOX9 play an important role in glial fate determination and are
commonly overexpressed in WNT and SHH medulloblastoma
(Larsimont et al., 2015). SOX9 has been reported as a
critical transcription factor in MYCN Proto-Oncogene, BHLH
Transcription Factor, MYCN-driven medulloblastoma (Swartling
et al., 2014) and can be related to drug resistance of these
tumors (Rahmanto et al., 2016). Interestingly, SOX9 might
function upstream of GLI2, which is known to be a major
effector in the Hedgehog signaling, and act as a key driver
of SHH medulloblastomas (Bar et al., 2007; Raleigh et al.,
2018; Yin et al., 2019). These modules and genes are likely
to play a important role in medulloblastomas and shed light
on potential pathways and mechanism underlying our 13-gene
signature model.

TME plays a critical role in the development, progression
and treatment of brain tumors (Quail and Joyce, 2017). The risk
score predicted by our 13-gene signature model was significantly
correlated with the immune score, stromal score, and tumor
purity in Group 4 medulloblastoma, indicating a potential
role of our model in the TME. Furthermore, the prognostic
significance of TIICs in the immune microenvironment of brain
tumors has been investigated extensively, and immunotherapy
has been proposed for medulloblastoma (Sonabend et al., 2012;
Boussiotis and Charest, 2017). Bockmayr et al. (2018) suggested
a subgroup-specific TIICs in medulloblastoma with distinct
types of immunosuppression associated with macrophages and
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regulatory T cells or cytokines and immune checkpoints.
Consistently, distinctive association between our model and
molecular subgroups were identified, as the risk score was
significantly related to naïve B cells, memory B cells, plasma
cells, resting memory CD4 T cells, CD8 T cells, and regulatory
T cells in SHH tumors, while it was significantly correlated
with memory B cells and M2 macrophages in Group 4 tumors.
Interestingly, we found that SHH medulloblastoma with higher
risk score tend to have an increased fraction of naïve B cells
but a decreased fraction of memory B cells and plasma B cells,
suggesting a potential defection of naïve B cell activation or the
subsequent maturation into plasma cells and memory B cells
in the immune microenvironment of SHH medulloblastomas
with a higher risk score. Moreover, we found that GLI2 and
SOX9 might contribute to this disruption. Downregulation of
these genes in cases with higher risk scores was not only
associated with increased naïve B cells and decreased memory
B cells and plasma cells but also a decreased fraction of Tfh
cells, which is known to provide key signals to the B cells
for their differentiation into plasma cells and memory B cells
(McHeyzer-Williams et al., 2009). In summary, our 13-gene
signature might be associated with the infiltrating B cells in the
TME of SHH medulloblastoma. The underlying mechanism of
this association and its clinical significance in medulloblastomas
require further investigation.

Comprising up to ∼30% of the tumor mass, tumor-
associated macrophages (TAMs) are the major component of
the TME in brain tumors. Despite their function of promoting
specific immunity, the presences of macrophages in TME are
thought to be pro-tumorigenic and has been associated with
tumor progression, immune evasion, and immune suppression
(Hambardzumyan et al., 2016). In medulloblastoma, however,
TAMs can improve patient outcome (Maximov et al., 2019).
The paradoxical role of TAMs might be partially related to
their different polarization which can be tumor killing (M1)
or tumor promoting (M2) (Sica et al., 2008; Mills, 2012).
Interestingly, the fraction of M2 macrophages in Group 4
medulloblastoma were positively correlated with the risk score
and were significantly correlated with the expression level of
four signature genes (CCNY, SYNE3, CYB5D2, and SELENOV)
and four hub genes (GLI2, PAX6, RUNX2, and ZIC1). These
findings may suggest our 13-gene signature model might
participate the regulation of TAMs in the TME of Group
4 medulloblastomas.

The programmed death (PD-1) pathway is a promising
therapeutic target for brain tumors (Topalian et al., 2016).
However, although PD-L1 blockage treatment can improve
the survival of Group 3 medulloblastoma in animal models
(Pham et al., 2016), several studies indicated an absence
of PD-L1 expression in medulloblastomas and suggested a
limited value of immunotherapy with PD1/PD-L1 inhibitor
(Majzner et al., 2017; Vermeulen et al., 2017), while others
suggested that PD-L1 expression in medulloblastomas might
be associated with infiltrating CD8+ T cells, and relatively
high PD-L1 expression can be seen in some SHH and WNT
cases (Bockmayr et al., 2018; Murata et al., 2018). Our

analysis indicated that the risk score calculated using our 13-
gene signature model was significantly correlated with PD-
L1 expression and prognosis in medulloblastoma patients.
Therefore, our risk model might have potential value in
selecting candidate patients who may benefit from PD-L1
clinical trials.

This study is subject to several limitations. Infant
medulloblastoma were not included in the analysis due to
their distinct genomic and clinical features. Inclusion of these
tumors could bias the patient outcome, especially due to their
enrichment in SHH and Group 3 subgroups (Ramaswamy et al.,
2016a). In addition, since we aimed to identify robust signature
genes that are closely related to the prognosis of medulloblastoma
patient, we focused on probes that unambiguously mapped to
protein-coding genes or genes with known functions, and we
filtered out a very small proportion of probes (n = 613, 2.8% of all
21641 probes) that have no description from the manufacturer
of microarray platforms. It is not implausible that some genes
were excluded simply due to their limited studies at the time.
Moreover, we used a conventional approach of selecting the
representative probe for genes detected by multiple probe sets
for genes without recommended match per manufacturer’s
instruction by selecting the probe covers the targeted gene with
the highest expression level. This approach may be improved by
alternative methods such as scoring systems, which have claimed
to have optimized mapping (Li et al., 2011); an even more
accurate prediction may thus have been achieved. Finally, SHH-
activated Tumor Protein P53 (TP53)-mutant medulloblastomas
were not classified in this study. Although this subgroup was
included in the resent WHO classification (Louis et al., 2016),
the datasets used in this study, as well as most of the existing
medulloblastoma datasets, does not provide this information
or only provide for a small proportion of the cases. Further
sequencing of these tumors with p53 mutation might be needed
so that the model could be revalidated with the most updated
WHO classification.

In summary, using gene expression data from GEO, we
constructed and validated a 13-gene signature risk score
model predicting the overall survival of medulloblastoma
patients that can effectively classify low-risk and high-risk
groups. Most of these 13 signature genes were involved
in neurological activities or disease and may play critical
roles in medulloblastoma through DEGs that were found to
be significantly enriched in pathways related to neurological
functions. PPI analysis revealed gene modules highly related to
CNS and embryonic development. The risk score was found
to be associated with the TME and TIICs particularly in
SHH and Group 4 medulloblastomas and was significantly
correlated with PD-L1 expression. The signature genes and
PPI network hub genes might play a role in regulation
of TIICs. Our study may complement the current WHO
classification for prognosis prediction and clinical management
of medulloblastoma patients. This study also has the potential
to provide insight into the tumorigenesis and pathogenesis of
medulloblastoma and provide candidate molecular targets for
therapeutic studies in the future.
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