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ABSTRACT

Summary: Many large ‘omics’ datasets have been published
and many more are expected in the near future. New analysis
methods are needed for best exploitation. We have developed a
graphical user interface (GUI) for easy data analysis. Our discovery
of all significant substructures (DASS) approach elucidates the
underlying modularity, a typical feature of complex biological data.
It is related to biclustering and other data mining approaches.
Importantly, DASS-GUI also allows handling of multi-sets and
calculation of statistical significances. DASS-GUI contains tools
for further analysis of the identified patterns: analysis of the
pattern hierarchy, enrichment analysis, module validation, analysis
of additional numerical data, easy handling of synonymous names,
clustering, filtering and merging. Different export options allow easy
usage of additional tools such as Cytoscape.

Availability: Source code, pre-compiled binaries for different
systems, a comprehensive tutorial, case studies and many additional
datasets are freely available at http://www.ifr.ac.uk/dass/gui/.
DASS-GUI is implemented in Qt.
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‘Data mining is the process of extracting patterns from data. Data
mining is becoming an increasingly important tool to transform
these data into information’ (en.wikipedia.org/wiki/Data_mining).
Numerous pattern discovery tools have been developed in all fields
of science and beyond. In bioinformatics, analysis of sequence data
is most prominent. Although the requirement of new tools remains
(Friedel et al., 2009), BLAST (Altschul et al., 1990) is a widely used
and regularly improved standard (Cameron et al., 2004). However,
there is no such standard for analyses of non-sequential data.
Hundreds of papers and books for gene expression cluster analysis
have been published since 1998 (Eisen et al., 1998). Biclustering, the
identification of common patterns for a subset of genes in a subset
of conditions, was first adapted to expression analysis a decade ago
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(Cheng and Church, 2000). It is becoming more and more important.
Two corresponding toolboxes containing a number of algorithms
have been developed (Barkow er al., 2006; Kaiser and Leisch,
2008). Indeed, biclustering, also called co-clustering (Madeira and
Oliveira, 2004), two-way clustering (Kaiser and Leisch, 2008) or
subspace clustering (Liu and Wang, 2003), is an important data
mining technique with numerous applications, in bioinformatics and
beyond. It has been used in recommendation systems and targeted
marketing in e-commerce, information retrieval and text mining,
dimensionality reduction in databases, and in analyses of electoral
data, nutritional data and currency exchange. It was found that this
is ‘only a small fraction of the potential applications’ (Madeira and
Oliveira, 2004).

We have developed a complementary approach for pattern
identification in non-sequence data with a largely overlapping range
of applications, called discovery of all significant substructures
(DASS) (Hollunder et al., 2007a). It is applicable to any data that
can be represented by sets containing elements. DASS comprises
two parts (i) identification of closed sets (cs; a set is ‘closed’ if
there exists no superset with the same frequency; for simple sets
a cs is equivalent to a clique in a corresponding bipartite graph)
and (ii) evaluation of the statistical significance of cs. Importantly,
DASS works for simple sets (each element unique per set) and
multi-sets (may contain elements more than once). This feature
sets it apart from standard data mining methods for identification
of meaningful subsets, such as APRIORI (Agrawal and Srikant,
1994) for the identification of frequent (sub)sets and CHARM
(Zaki and Hsiao, 2002) for the identification of frequent cs. In
contrast to these algorithms that iterate through the elements, DASS-
cs, the algorithm to identify cs, iterates through sets. The more
modular and hierarchical the data are, the higher the advantage
of this approach (Hollunder et al., 2007a). However, in cases of
very many sets and few elements, other algorithms might be better
suited. Interestingly, data can be transformed for efficient use of
DASS-cs also in such cases (cf. description of calculation mode in
www.ifr.ac.uk/dass/gui).

Here, we present the newly developed tool DASS-GUI, enabling
easy usage of all DASS algorithms. It works in two modes: the
calculation mode (Fig. 1a) for calculation of cs and corresponding
P-values (using, among others, the DASS algorithms, Hollunder
et al., 2007a), and the analysis mode (Fig. 1b), allowing additional
filtering, calculation of cs hierarchy, calculation of means and
standard deviations of different numerical features, enrichment

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://www.ifr.ac.uk/dass/gui/
http://creativecommons.org/licenses/

J.Hollunder et al.

(a) I Dass-GUt [E=TE =)
Caladton Mode ansiyss Mode
e T
| comprises three steps:
Uploading hest sets,
== detarrireng cietad tats, and|
<slculation of their p-values.
Plese insert the cosed set fle:
Ve Statase
Please it the vkt fie:
v Stateac
st
{3) CALCLLATE P-vaLues,
1943 Povaogs are caleuiuted,
(b) It Heln Ext
[ D55 GUE Analysis Mode (=] o ]
e [N e
[H Ervichment aabysin’ Hypothesis genenstion  Cirl+E
B Mumarical Festure anatysis ol Moy comed e
B Medule validatien [=TET RN e prvalue =
U Translating semants ot | 0350673
1 E-comter clustasing 0552672
2 I Finwsing closed vats CirieF 053838
B Meging closed st .
¥ 0521150
] YBROE1C 1 ] 0545083
3 VGEDMW 1 ] 059673
& YR 1 un 0515807
1 YGRITAC 1 4 0530358
] YALILTW 1 2 0530673
Mumber of deplayed cosed sets: w0 | [ Aeer
Pattern semrch
] s
Fitering cosed sty
Select #ter cptions st Reset
bt croatad e
Glbaly sring
] $ | ascerdegorder: L.norA..2 2 Aoty

Fig. 1. DASS-GUI: (a) the calculation mode and (b) the analysis mode.

analysis, module validation, analysis of additional numerical data,
easy handling of synonymous names, clustering and merging
(allowing, for instance, identification of non-complete bicliques).
Different export options allow easy usage of additional tools such
as Cytoscape.

The calculation mode allows identification of cs (all or sufficiently
dissimilar ones, according to pre-selected size and frequency) and
calculation of the statistical significance of cs. Three algorithms
have been implemented for cs identification: DASS-cs [as already
presented in Hollunder er al. (2007a), but with important additional
features, such as similarity pruning], LCM (Uno et al., 2003) and
FPclose (Grahne and Zhu, 2003). Only DASS-cs can handle single
and multi-sets. This distinction is also important for the calculation
of statistical significances. Together with a second distinction,
unique [each (host)set is unique] or ambiguous [same (host)set
might occur more than once in the dataset], DASS-GUI considers
four different cases for significance calculations: single-unique,
single-ambiguous, multi-unique and multi-ambiguous. For each of
these cases, different models can be used: (i) permutation (exact
P-value calculation, applicable only to very small datasets); (ii)
shuffling (also called random permutation test, the straightforward
computational shuffling of the dataset working for medium sized
data); (iii) shuffle-binomial (improved shuffling model exploiting

the corresponding complete random distribution, assuming binomial
distribution); and (iv) DASS-pv [the algorithms of Hollunder et al.
(2007a), working for large data]. The first three models work for
all four cases (single, multi, unique, ambiguous). DASS-pv can
only handle the two ambiguous cases. Nevertheless, DASS-pv helps
closing the gap of methods for the analysis of statistical significances
of c¢s and biclusters (Madeira and Oliveira, 2004). BiGGEsTS, a
GUI for bicluster analysis of time series gene expression data, also
contains specific calculations of significances (Goncalves et al.,
2009), but the only corresponding general approach we are aware
of is the SAMBA algorithm (Tanay et al., 2002). It is based on
the analogy between biclusters and cliques in bipartite graphs, so
it cannot handle multi-sets. The statistical evaluation of such cs
is unique to DASS-pv. A comprehensive tutorial of DASS-GUI is
available (see availability); many tooltips facilitate usage.

We have already applied our DASS approach for the analysis of
protein complexes (Hollunder et al., 2005, 2007b), multi-domain
proteins (Hollunder et al., 2007a) and transcription factor binding
sites (Beyer et al., 2006; Hollunder et al., 2007a). There are many
more applications, in biology and beyond. We are already working
on corresponding analyses of genomics, transcriptomics, proteomics
and metabolomics data. New interesting and feasible problems are
expected to be found in future.
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