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Abstract
Few studies have addressed action control training. In the current study, participants were

trained over 19 days in an adaptive training task that demanded constant switching, mainte-

nance and updating of novel action rules. Participants completed an executive functions

battery before and after training that estimated processing speed, working memory updat-

ing, set-shifting, response inhibition and fluid intelligence. Participants in the training group

showed greater improvement than a no-contact control group in processing speed, indicat-

ed by reduced reaction times in speeded classification tasks. No other systematic group dif-

ferences were found across the different pre-post measurements. Ex-Gaussian fitting of the

reaction-time distribution revealed that the reaction time reduction observed among trained

participants was restricted to the right tail of the distribution, previously shown to be related

to working memory. Furthermore, training effects were only found in classification tasks that

required participants to maintain novel stimulus-response rules in mind, supporting the no-

tion that the training improved working memory abilities. Training benefits were maintained

in a 10-month follow-up, indicating relatively long-lasting effects. The authors conclude that

training improved action-related working memory abilities.

Introduction
"Never mistake motion for action" (Ernest Hemingway).

The ability to control, monitor and execute actions in a goal-directed manner has been the
focus of much research [1–4]. Usually, our environment holds multiple action cues, most of
which are irrelevant to the internal plan being pursued. Additionally, in everyday life, there is a
frequent need to shift between one or more tasks. To move between task-sets in a flexible, goal-
directed manner, the cognitive system needs to update and maintain relevant action informa-
tion in mind while resisting interference from irrelevant environmental cues. Thus, following
internal action plans might require the orchestrated operation of distinct control process such
as inhibition, shifting and updating of action rules. The ability to exert control over actions was
found to have a broad relevance to major issues such as cognitive development [5,6], aging
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[7,8], attention- deficit/hyperactivity disorder [9–11], depression [12–14], frontal lobe damage
[15] and intelligence [16–18]. Thus, finding ways to improve these control processes would po-
tentially have a significant impact. The aim of the current study was to explore a novel training
protocol, explicitly targeting action control process.

Although most studies refer to cognitive control functions (or executive functions) as one
set of control process, it is unclear whether procedural control processes (which monitor and
regulate actions) are distinct from declarative processes (relevant to knowledge and facts).
Studies that address executive functions typically use the taxonomy of three control processes:
updating of information in working memory, inhibition of a pre-potent response and switch-
ing between tasks or mental sets [1]. In this taxonomy, there is no distinction between proce-
dural and declarative sub-systems. Yet, paradigms that tap response inhibition [19,20] or
switching [21–23] are usually based on measurements of procedural control (e.g., stopping an
already initiated response or switching tasks). In contrast, paradigms that tap working memory
updating abilities tend to do so using (almost exclusively) declarative representations. For ex-
ample, a common working memory updating paradigm is the N-back task [24–26]. In the N-
back task, participants are asked to indicate whether a current target stimulus is identical to the
target stimulus presented N trials back. Therefore, in this task participants are required to hold
and update declarative representations in working memory as procedural demands (remem-
bering the task rules) remain low and do not increase with N. Complex span tests [26–28] are
also widely used to measure working memory abilities. In these tests, participants are asked to
remember information while performing a distracting task. Although these tasks might be pro-
cedurally demanding (switching between a memorizing task and the distraction task), the pri-
mary dependent measure is the amount of information successfully remembered, i.e., the
declarative aspect. Additionally, the load is manipulated by increasing the number of items
that need to be remembered, thus not changing the procedural demands of the task.

Recently, Oberauer [29] suggested a distinction between procedural and declarative working
memory, with declarative working memory being responsible for the maintenance of facts and
knowledge and procedural working memory being responsible for maintaining representations
needed for the execution of the current task. This hypothesis has gained empirical support
[30,31]. Specifically, Souza, et al., [30] manipulated declarative and procedural working memory
load in a single task and found an under-additive interaction. This result led the authors to con-
clude that the updating and maintenance of representations in working memory is processed in
two distinct sub-systems, procedural and declarative. Notably, there is evidence that the ability
to execute complex and novel task rules might be more predictive of fluid intelligence than de-
clarative-based working memory tasks [16,32]. This finding gives some additional support to
the distinction between procedural and declarative working memory sub-systems.

In the last decade, much interest has been devoted to the study of cognitive training, explor-
ing the mechanisms that might allow the improvement of cognitive processes using computer-
ized training tasks. Currently, there is a wealth of training studies focusing on working
memory updating training, predominantly relying on tasks that tax declarative working memo-
ry [33–36]. By contrast, only a limited number of studies have directly examined the trainabili-
ty of the action control process, and none of the training studies of which we are aware used
exceptionally demanding training tasks in terms of procedural working memory [37].

The few studies that did explore the effects of action control training made use of the task-
switching paradigm as a training task. The task-switching paradigm [21,23,38–41] has been
used extensively to explore action control processes, specifically the ability to organized and
follow complex task rules. In this paradigm, participants are asked to switch between two or
more tasks, with a cost in performance being observed in trials that demand a task switch com-
pared to trials in which no switching is required (i.e., switch cost). It is important to note that
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the task switching paradigm is assumed to be demanding not only in terms of switching but
also in terms of procedural working memory updating. For example, Mayr and Kliegl [42] ar-
gued that task switching requires the retrieval of action rules (i.e., stimulus-response rules) of
the upcoming task into working memory. Thus, an important aspect of task switching includes
the ability to maintain, update and shield the task rules in working memory [43]. The task
switching paradigm is also considered demanding in terms of inhibition. First, each target
stimulus in this paradigm conveys information about multiple tasks. Thus, if, for example, the
participant is asked to perform Task A, the cognitive system might need to refrain from re-
sponding according to information relevant to Task B that is also conveyed by the target stimu-
lus. When the responses conveyed by the target for Task A and Task B mismatch, a cost is
observed (i.e., task rule incongruence effect) [44]. Additionally, switching has been claimed to
require the ability to inhibit the previous task [45].

One leading example of a study in which the task switching paradigm served for training is
Karbach & Kray’s [46]. These authors gave three age groups (i.e., children, young adults and
older adults) either task-switching training or a control training task across four sessions. Both
the training and the control groups performed a two-choice reaction task, requiring partici-
pants to make simple perceptual judgments (e.g., big/small, plane/train, etc.). The control
group performed each of these tasks separately, in single blocks, and the training group per-
formed mixed blocks, demanding task switching. The authors found beneficial transfer effects
in similar switching tasks, with the training group demonstrating better switching abilities. In
addition, the results demonstrated a far transfer effect to measurements of working memory,
inhibition and even fluid intelligence. In a second study that examined a similar training only
with children suffering attention-deficit/hyperactivity disorder, the authors found similar im-
provements, though with no transfer to fluid intelligence measurements [47]. Yet, the utility of
this training protocol has been questioned, particularly given the difficulty to replicate the far
transfer effects originally reported by Karbach and Kray [48,49].

Additional evidence for training action control process comes from action video game stud-
ies [50]. These studies use commercial action video games as a training task. The games require
the player to learn and react according to a complex set of rules and procedures. Thus, action
video games can be a real-life approximation of the action control process demanded in labora-
tory paradigms. Several correlational studies have found that experienced video game players
demonstrate lower switching costs than novice players [51–53].

Given the correlational nature of these studies, one cannot rule out the possibility that people
who choose to play video games have better switching ability. This interpretation is ruled out
given that similar evidence has been found using experimental designs. Strobach et al. [54] ex-
amined novice video game participants in a pre-post battery of executive function tasks (i.e.,
dual task and task switching). Three groups were included in this study: an experimental group,
an active control group and a no-contact control group. Participants in the experimental group
were trained for 15 hours in an action control-demanding video game (i.e., Medal of Honor).
The training game required constant monitoring and switching between multiple game-related
actions and was performed under strong time constraints. The active control group was trained
for the same amount of hours in a computerized puzzle game (i.e., Tetris). The puzzle game was
also demanding in terms of executive function (i.e., mental rotation) but required focusing on
only one task. Last, a no-contact comparison control group performed only the pre- and post-
test measurements. The results demonstrated improved performance in task switching, reflected
by the reduced switch costs for the experimental group compared to both the active and no-
contact control groups. Similar improvement in action control was found in the dual-task
paradigm. Others have found similar evidence for improvement in the action control process
following training in action video games. For example, Green et al. trained novice video game
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participants in an action video game for approximately 50 hours and found a greater reduction
in switch costs following action video games training compared with control training [55].

To conclude, research using task switching training is characterized by fixed (and moderate)
levels of task demands. Moreover, although near transfer effects seem replicable, far transfer ef-
fects are more difficult to replicate. Video game playing seems more promising in this regard,
yet the involvement of executive functions in the video game is rather implicit given that these
are commercial games that were not explicitly designed to tap specific aspects of action control.

In this study, we designed a novel training protocol that explicitly targeted critical compo-
nents of action control. We used a task with an adaptive difficulty level and a high training dos-
age (i.e., 19 training sessions), based on results from previous studies [56,57]. The training task
required participants to randomly switch between two choice-reaction tasks. In each trial, a
cue appeared, signaling which task should be performed, followed by the target stimulus. In ad-
dition, when the difficulty level increased, the participants were asked to react according to the
stimulus (either the cue or the target) that appeared N trials beforehand. For example, partici-
pants could have been presented with a cue for Task A but had to perform Task B because this
was the required task N trials beforehand. Thus, unlike the N-back training previously used
[56], the current N-back element was mostly action-related; it demanded that the participants
maintain and update the representation related to the task rules and not merely be able to re-
port a piece of information. The task difficulty was adjusted according to participants’ perfor-
mance using multiple sets of variables (see Method section), including the N value. Thus, the
training task remained very demanding throughout the training. In addition, to prevent as
much as possible performance improvement due to the formation of long-term memory traces
and to keep the working memory demands high, a new set of stimuli (i.e., task cues and target
stimuli) and response keys was introduced in each block of the training task.

The training group was compared to a no-contact control group who underwent just pre-
testing and post-testing. We chose to use a no-contact control group for two main reasons.
First, this was the first study to test this particular training protocol, and as such the study was
regarded as preliminary. Second and not less importantly, a recent meta-analysis of working-
memory training in young adults [58] indicated that although control-group type (active vs.
no-contact) influenced the Experimental-vs.-Control difference in pretest-to-posttest gain, this
control-group type effect was exclusively due to the experimental groups—that is, it was inde-
pendent of the type of the control group that was studied. Other studies have also demonstrat-
ed no substantial difference between passive and active control groups [59]. Thus, we chose a
no-contact comparison group that controls for pre-testing effects [60,61]. To be on the safe
side, we were extra cautious in hiding group membership information (see below), to prevent
any biases due to demand characteristics and other types of expectations.

We predicted that practice would increase pretest-to-posttest in tasks that require executive
control (i.e., near transfer). Additionally, we also explored the improvement in fluid intelli-
gence following training (i.e., far transfer). We chose to include measurements of fluid intelli-
gence based on previous reports [35,56,58,59,62] and on Duncan et al. [16,32], who showed
that the ability to maintain and execute complex and novel task rules might be more predictive
of fluid intelligence than are declarative based tasks. To examine such near and far transfer ef-
fects, a battery of executive functions was administered before and after 19 training sessions.
The measurement battery was designed to estimate processing speed, switching, response inhi-
bition, and working memory updating (i.e., near transfer), as well as fluid intelligence measures
(i.e., far transfer). In addition, participants completed a follow-up measurement session admin-
istrated 10 months from the end of training, testing for long-term transfer effects. Aside from
testing the stability of the gains, the follow-up session was introduced in order to rule out some
alternative accounts of the results of the first posttest.
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Method

Participants
31 healthy undergraduate students from Ben-Gurion University of The Negev took part in the
study (mean age = 25.1, SD = 1.6, 25 females) in return for either course credit, 25 NIS per
hour (~$6) or an equivalent combination of both. Participants were pre-screened for self-
reported head injury, psychiatric disorders, drug/alcohol use, color blindness, diagnosed atten-
tion disorders and learning disabilities. The study received approval from the Ben-Gurion Uni-
versity psychology department’s ethics committee, subordinate to the Ben-Gurion University
institutional review board (IRB). All participants provided written consent to participate in
this study, using a consent form that was approved by the ethics committee.

Procedure
The design included two groups, a training group and no-contact control group. That is, both
groups underwent pre, post and follow-up measurements simultaneously, but only the training
group participated in 19 training sessions in between the pre and post measurements. To keep
participants and experimenters blind to the study conditions, we used a "triple-blind" proce-
dure in which we divided the training and measurement sessions into what appeared to be as
two different experiments. This design aspect allowed us to keep the participants blind to the
fact that they were being tested for training related improvements. In addition, both the partici-
pants and the experimenter who ran the measurement sessions were blind to the group assign-
ment. In the debriefing that took place after the experiment ended, none of the participants
noted being aware that the measurement and training session were actually related.

After the initial screening and drop-out (see Appendix A for a full description of the recruit-
ment process), 31 participants were randomly assigned to the training and control groups. Par-
ticipants in the control group were invited to a round of training sessions that were dated after
the actual study had ended (without the participants being aware of this fact). Thus, partici-
pants in the control group were similar to the training group in their intention to take part in a
training study. The training group completed 19 lab sessions of 60 minutes each, over a period
of 25 days. All participants completed two pre-test and two post-test sessions. After finishing
the entire procedure, participants were paid and were offered a full debriefing.

Apparatus & setting
Across the study (i.e., pre-post measurements and training sessions), participants were seated
in front of a computer screen in a small room in the lab. Tasks were programmed using
E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA). Stimuli were presented on a black
19" computer screen. Participants responded using a QWERTY keyboard or vocal response
box according to the specific instructions for each task.

Training Task
Participants were asked to switch between two 2-alternative choice reaction tasks: an object
classification task (e.g., report using a key press whether a plant or flower is presented on a
computer screen) and a spatial classification task (e.g., indicate, using a key press, whether the
image is displayed on the right or left side of the screen; see Fig. 1). Sessions 1 to 4 included ten
blocks, and Sessions 5–19 included seven blocks. (The number of blocks was adjusted to ensure
the task was not too long when participants made it to higher levels.) Each training block in-
cluded: (1) an instruction screen presenting a novel set of stimuli and stimulus-response map-
ping for the spatial and object classification tasks, (2) two practice blocks (6 trials each), one for
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the object classification task and one for the spatial classification task, and (3) a test block
(64 trials) in which the two tasks were randomly switched. Each trial sequence included a task
cue (300 ms), a fixation point (200 ms) and the target stimulus (presented until a response or
until 6000 ms had elapsed). A "chimes" (500 ms) and a "beep" sound signaled correct and error
responses, respectively. Across the training blocks, the following aspects were manipulated:

N-back. Participants were asked to respond according to the stimuli presented N trials be-
forehand. Whether the N-back aspect referred to the target stimulus or the cue stimulus was
randomly selected at the beginning of each training block. When N-back referred to the target
stimulus, participants had to execute the task instructed by the current task cue. When it re-
ferred to the task cue, they had to respond to the current target stimulus. The N value in the
current block was set according to the participants' performance in the previous block (see
Table A in S1 File, Table B in S1 File, and Fig. 1).

Stimuli & response keys. To increase task novelty, each training block included a random-
ly selected new set of task cues, target stimuli and responses. There were 16 sets of object sti-
muli (i.e., plant/flower, boat/plane, etc.), 7 sets of locations (i.e., up/right, down/left, near/far,
etc.), 4 sets of arbitrary task cues (i.e., dog/cat, piano/drum, etc.) and 7 sets of keyboard re-
sponses (i.e., S/K, T/B, etc.), resulting in as many as 6,272 possible combinations for each train-
ing block (see Table A in S1 File).

Task cue modality. The task cue modality also varied randomly between trials so that the
task cue could appear in one of three modalities (i.e., text, image, sound; see Table A & B in
S1 File).

Fig 1. A demonstration of two trials in the training task, each trial including the presentation of a task cue (indicating which task to perform),
fixation and a target stimulus. The current figure demonstrates a condition of N = 1, requiring participants to respond according to the task cue (panel A) or
the target (panel B) presented in the previous trial (i.e., N = 1)

doi:10.1371/journal.pone.0119992.g001
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Response threshold. A different reaction time (RT) criterion was selected randomly in
each training block, demanding participants to generate response times that would be either
below or above 800 ms (see Table A in S1 File).

Task rule incongruence. To prevent participants from employing a constant control poli-
cy, the proportion of task rule incongruent trials was manipulated between blocks. The effect
of rule congruency is the poorer performance seen when the target stimulus invokes a compet-
ing response according to the task that is not currently required. The proportion of task rule in-
congruent trials was adjusted each level (see Table A & B in S1 File for details).

Mapping compatibility. The compatibility of the stimulus-response rules in the spatial
task with the response key position also varied between blocks. Three levels of mapping com-
patibility were employed: (1) compatible mapping (e.g., "right" reported using a key positioned
on the right side of the QWERTY keyboard), (2) neutral (e.g., "right" reported using a key posi-
tioned on the upper side of the QWERTY keyboard) and (3) incompatible (e.g., "right" re-
ported using a key positioned on the left side of the QWERTY keyboard). Mapping
compatibility (i.e., compatible, neutral or incompatible) was adjusted according to the partici-
pant level (see Table A & B in S1 File for details).

Fadeout trials. When participants are required to perform a single task in a block (i.e., no
task switching was required) immediately after performing a mixed block (where switching
was required), the first trials tended to show prolonged RTs, reflecting the difficulty of reducing
control, even when the instructions specifically indicated that no alternation between tasks
would be demanded [13,63]. Thus, to prevent participants from adhering to a particular con-
trol mode (related to switching, for example), participants were asked twice during each test
block to perform only one task (i.e., either spatial or object task, randomly selected), with
N = 0, and to respond very quickly (RT<500 ms). This demand appeared in a randomly cho-
sen trial during the test block, and it lasted 8 trials. These fadeout phases were indicated by a
thick, black border surrounding the target stimulus.

Adaptive difficulty and level adjustment. Task difficulty was determined according to
the participants' accuracy rate in the previous block. If the participant had an accuracy rate
above 80%, the difficulty level was incremented by one step. If performance accuracy dropped
below 60%, the level was lowered by one step. That is, the difficulty was changed based on the
total number of errors in the previous block. In each level, the following parameters were ad-
justed: the task cue dimension, the proportion of task incongruent trials, and mapping compat-
ibility (see Table B in S1 File). Additionally, N-Level was incremented by one each fourth level
(i.e., N = 0 for levels 1–4, N = 1 for levels 5–8, N = 2 for levels 9–12, N = 3 for levels 13–16, and
N = 4 for levels 17–20; see Table B in S1 File). The lagged increase in N-level was chosen to
make the difficulty adjustment more gradual. This was important given the difficult nature of
this training task, even under low N-Levels.

Pre-post measurements
The pre-post measurement battery was designed to estimate five domains of executive func-
tion: processing speed [64–66], switching [21–23], response inhibition [19,20], working memo-
ry updating [29] and fluid intelligence [67,68].

Digits updating task. Performance in the digit updating task was used to estimate working
memory updating abilities. The working memory updating task was similar to that used by
Kessler & Meiran [69]. In this task, the participants were asked to memorize as quickly as pos-
sible three digits presented on the screen inside three square frames. After memorizing, the
participants were asked to press the space bar, the frames went blank, and a simple arithmetic
operation (addition or subtraction) appeared inside one of the three frames. The participants
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were then asked to overtly perform the arithmetic operation on the last number that was relat-
ed to the frame and to press the space bar as quickly as possible when done. The task included
10 blocks, each including six updating trials, at the end of which the participants were asked to
recall the outcome digits related to each of the three frames.

Shape classification task. Performance in the shape classification task was used to estimate
switching and processing speed. In each trial, a shape (diamond or triangle) was displayed with a
different filling (i.e., full or empty). Participants were asked to perform one of the two choice
tasks, shape (diamond vs. triangle) categorization or (2) filling (empty vs. full) task. In both tasks,
the same response keys were used (i.e., S (left), K (right), in a QWERTY keyboard). Participants
performed six blocks in the following order: two single-task blocks (one for each task), two
mixed-tasks blocks (where the two tasks switched randomly) and, finally, two additional single-
task blocks. The tasks were ordered in a sandwich design (e.g., shape, filling, mix, mix, filling,
shape). Whether the first task was the shape or filling task was counterbalanced across partici-
pants. Each of the six blocks included 48 trials. Each trial started with the presentation of a textu-
al Hebrew task cue (i.e., “color” or “filling”; 300 ms), followed by a presentation of both the cue
and the shape target (until a manual response was given or 6 seconds had elapsed). The first
three blocks (i.e., two single blocks and one mixed block) also included a short practice phase,
which included six trials in which the stimulus-response mapping appeared beside the target.

Vocal Stroop. Performance in the vocal Stroop task was used to estimate switching and re-
sponse inhibition abilities. One of four Hebrew color words (i.e., the Hebrew equivalent of
“green”, “blue”, “red” or “purple”) appeared in colored ink (i.e., green, blue, red or purple) at
the center of the screen. Stimuli were either congruent (i.e., the word "red" in red ink) or incon-
gruent (i.e., the word "red" in blue ink). In each trial, participants were asked to name either the
written text (i.e., the word-reading task) or the color of the ink in which the word was written
(i.e., the color-naming task). The task started with two single-task blocks, where each task (i.e.,
word-reading or color naming) was performed separately. This was followed by two mixed-
blocks, where the two tasks switched randomly. Finally, two additional single-task blocks were
performed. Thus, this task included four single-task blocks and two mixed blocks in a sandwich
design (e.g., ink, word, mix, mix, word, ink). Whether the first task was word-reading or color-
naming was counterbalanced across participants. Each of the six blocks in the task contained
48 trials (12 congruent, 36 incongruent trials). In each trial, a cue (i.e., Hebrew text indicating
“color” or “word”) indicating the task appeared (100 ms), followed by a presentation of both
the cue and the Stroop stimulus (presented until a vocal response was given or until 6 seconds
had elapsed). Finally, a blank screen was presented (700 ms). Vocal reaction time was recorded
using a homemade voice key that was attached to a microphone.

Stop-signal. [70] Performance in the stop-signal task was used to estimate response inhibi-
tion abilities. In this task, participants were asked to indicate whether the current trial included
the presentation of a circle or square by pressing one of two keys (i.e., Z, / keys, left/right on a
QWERTY keyboard). In each trial, a fixation was displayed for 250 ms, followed by the target
stimulus (i.e., circle or a square). The target stimulus remained on the screen until a response
was given or until 1,250 ms had elapsed. Furthermore, a beep sound was played at random in
25% of the trials along with the target stimulus, signaling to participants to refrain from re-
sponding. The presentation of the stop single (i.e., beep sound; 750 Hz presented for 75 ms)
was delayed in some trials, according to participants’ performance, with longer delays making
it more difficult to stop an already initiated response. The task consisted of a practice phase of
32 trials proceeded by a test phase of three blocks of 64 trials. This task was performed using
the STOPIT software, which is freely available [70].

Digit classification task. Performance in the digit classification task was used to estimate
processing speed abilities. In this task, participants were asked to indicate whether a current
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trial included the presentation of the digit 1, 2 or 3 by pressing the matched key on a QWERTY
numbers keypad. The task consisted of two blocks of 72 trials. Each trial included a fixation
point (500 ms) followed by the target stimulus presented in the middle of the screen until a re-
sponse was given.

Fluid intelligence. Raven's Advanced Progressive Matrices (RAPM) Test was used to esti-
mate fluid intelligence abilities [71,72]. To allow for two parallel forms to be used in the pre-post
design, the test was divided into two forms using even and odd items (i.e., form A, form B),
which resulted in 18 items in each form. To counterbalance the difficulty differences between
the forms, half of the participants received form A in the pre-test and form B in the post-test
and the other half in the opposite order. The tests were computerized so that a test item was pre-
sented on the screen, and participants had to key-in the response they chose. Participants were
given 15 min to complete the test. The test ended with the participant either answered all 18
items or exceeded the time limit.

Results

Training
All participants in the training group completed 19 sessions of training over a period of 25 days.
At the end of the training period, participants had completed, on average, 141.07 blocks, ranging
from a minimum of 133 blocks to a maximum of 148 blocks. The mean level at the end of train-
ing was 16.11 with a mean N-Level of 3.39 (The N level was increased every fourth level; see
Table B in S1 File) A repeated measures Analysis of Variance (ANOVA) that explored the effect
of Session (1 to 19) on participants' mean level revealed a significant effect [F(18, 216) = 87.22,
p<.001, ηp

2 = .88], indicating that participants did, in fact, improve in the training task as train-
ing advanced (see Fig. 2).

Pre-post measurements
For RT analysis, error trials, post-error trials and the first trial in each block were omitted. In
addition, 2% of the RT data in the upper and lower portion of the RT distribution were omitted
for each participant in each condition. For each dependent variable, we formed a difference
score by subtracting the post score from the pre-score. To explore the training effects, we
formed five groups of measurements, arranged based on a priori theoretical consideration:

Switching. The estimation of switching abilities was obtained by calculating (1) switch
cost: the difference between the RT to the switching trials (i.e., trials in which the previous task
was a different task) and the RT to the repeat trials (i.e., trials in which the previous task was
the same as the one in the current trial), both performed in the mixed-tasks blocks and (2) al-
ternation cost: the difference in RT between the mixed tasks blocks (i.e., where the task occa-
sionally switched) and the single-task blocks (i.e., where no task switching occurred). Each of
these costs was calculated separately for the shape classification and vocal Stroop tasks. Because
the switch cost in the Stroop task is known to show an asymmetric effect, we included only tri-
als with the word-reading task to calculate switch costs. In addition, the alternation cost in the
Stroop task was calculated individually for the color-naming and word-reading tasks.

Response Inhibition. Response inhibition was estimated using (1) the STOPIT estimated
Stop-Signal RT (describing the time needed to stop a response that has already been initiated),
which was calculated from the stop-signal task, and (2) the Stroop interference, which was cal-
culated by the difference in RT between incongruent trials and congruent trials for the color-
naming task. This was calculated using trials from single blocks, where no task switching
was required.
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Working memory updating. Working memory updating was estimated using the RT and
accuracy rates for that task.

Processing speed. Processing speed was estimated using the RT and accuracy rates from
the shape classification tasks (only single blocks) and the digit classification task.

Fluid Intelligence. Fluid intelligence was estimated using the total score in the RAPM.

Analyzing group differences in pre-post measurements
To control for α inflation, we performed five multivariate ANOVAs (MANOVAs) on the dif-
ference scores with Group (control vs. training) as an independent variable. Each time, all the
pre-to-post-test difference scores belonging to a given group of variables were entered as de-
pendent variables. Moreover, to control for α value of the entire study, we divided the individu-
al α values by the number of MANOVAs so that the α for an individual MANOVA was. 05/5 =
.01. As seen in Table 1, group differences were found only in measurements of processing

Fig 2. Themean level in each training session, calculated across participants. Bars represent 95% confidence intervals [79].

doi:10.1371/journal.pone.0119992.g002
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speed. Thus, we continued analyzing only measurements in that variable group. (See Table 2
for full descriptive statistics.)

Analyzing group differences in measurements of processing speed
A repeated measures ANOVA was performed with mean RT as a dependent variable, Time
(pre vs. post) and Task-type (i.e., shape classification vs. digit classification) as within-subjects
independent variables and Group (control vs. training) as a between-subjects independent vari-
able (see Fig. 3). Group (training vs. control) × Time (pre vs. post) interaction was found to be
substantial and statistically significant [F(1, 29) = 16.81, p<0.001, ηp

2 = .37], showing greater
RT reduction for the training group from pre-test to post-test compared to controls (see
Fig. 3). Furthermore, Group × Task-type × Time interaction was found to be marginally signif-
icant [F(1, 29) = 4.08, p = .05, ηp

2 = .12], indicating that the group differences were most likely
inconsistent across Task-type (i.e., shape classification vs. digit classification).

To further explore the differences in mean RT between the groups separately for each Task-
type (i.e., shape classification vs. digit classification), a series of planned comparison was per-
formed. First, a planned comparison exploring the Group (trained vs. control) × Time (pre vs.
post) interaction only in the shape classification task revealed a significant reduction for the
training group compared to the control group [F (1, 29) = 17.57, p<.001, ηp

2 = .38] (see Fig. 3).
Further comparison of Group (trained vs. control) on the shape classification task revealed no
significant group differences in the pretest [t (29) = 0.12, ns, rpb = .02] but a substantial and sta-
tistically significant difference at post-test [t (29) = 3.06, p<.01, rpb = .49]. Hence, group differ-
ences in the shape classification task were not observed before training and are most likely the
result of training. Second, the Group (trained vs. control) × Time (pre vs. post) interaction
only in the digit classification task was found to be non-significant [F(1, 29) = 1.4, ns, ηp

2 = .05],
demonstrating no group differences in this task.

To account for any speed-accuracy trade-offs, we performed a repeated measures ANOVA
with error rate differences (pre minus post) as a dependent variable and Group (control vs.
training) as an independent variable. We found no significant differences in accuracy between
the groups [t(1,29) = 0.87, ns, rpb = .16] (see Table 2 for descriptive statistics).

Discussion
In sum, we found group differences only in tasks that tapped processing speed abilities. The
fact that only the shape classification task and not the digit classification task showed a transfer
effect can be explained by two accounts. First, it might be that a different set size (two alterna-
tives for the shape classification task and three alternatives for the digit classification task) re-
duced the transfer effect, with the two-alternative task being more similar to the training task
setting. This account is in line with some studies that show that transfer effects are primarily
found when the training and transfer task share the same setting [48]. Yet, the two tasks are

Table 1. Group Differences in Transfer Measurements.

Measurements Wilk's Lambda F value p value

Processing Speed 0.58 F(2,28) = 9.98 <0.01

Switch Costs 0.87 F(5,25) = 0.77 ns

Inhibition 0.93 F(2,28) = 0.91 ns

Working Memory 0.85 F(2,28) = 2.48 ns

Fluid Intelligence t(29) = 1.25 ns

doi:10.1371/journal.pone.0119992.t001
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different from one another in another important respect. Although the shape classification task
used an arbitrary stimulus-response mapping (e.g., press the right key whenever a triangle ap-
pears), the digit classification task was based on familiar, long-term memory based, stimulus-
response rules (e.g., press the "1" key on the numerical keypad each time this digit appears). In
that sense, the shape classification task demanded that participants hold in mind (relatively)
novel action rules, whereas the digit classification task allowed participants to use action rules
that were familiar to them pre-experimentally. Thus, another potential conclusion is that pro-
cedural working memory has been trained.

Recently, a relationship between working memory and a specific aspect of the RT distribu-
tion in choice-reaction tasks has been found. Specifically, working memory has been shown to
be related to the heaviness of the right tail of the RT distribution. Studies that explore this rela-
tionship typically use the ex-Gaussian distribution as a model to quantify the heaviness of the
right tail [73,74]. The ex-Gaussian distribution consists of Gaussian and exponential distribu-
tions and is thus described by three parameters: μ & σ, the mean and standard deviation of the
Gaussian component, and τ, the decay parameter of the exponential component (1/l). Thus, μ
accounts for the central tendency of the RT probability distribution. For example, increasing μ

Table 2. Pre-Post Performance Measurements for the Training and Control Groups.

Dependent Variable Session Training Group Control Group

Processing Speed

Shape classification task (RT, ms) Pre 437 (52) 439 (75)

(arbitrary mapping) Post 359 (38) 415 (61)

Digit classification task (RT, ms) Pre 433 (35) 422 (54)

(non-arbitrary mapping) Post 394 (41) 397 (52)

Switching

Alternation cost (ms) Pre 303 (98) 348 (140)

(shape classification task) Post 199 (78) 303 (144)

Switch cost (ms) Pre 124 (71) 178 (92)

(shape classification task) Post 79 (72) 139 (141)

Alternation cost (ms) Pre 479 (171) 527 (224)

(word-reading, vocal Stroop) Post 318 (196) 415 (277)

Alternation cost (ms) Pre 281 (104) 376 (165)

(color-naming task) Post 231 (148) 397 (148)

Switch cost (ms) Pre 78 (172) 129 (178)

(word-reading, vocal Stroop) Post 30 (117) 76 (104)

Response Inhibition

Stop-signal RT (ms) Pre 233 (26) 235 (35)

Post 229 (34) 229 (27)

Stroop Interference (ms) Pre 78 (70) 68 (85)

Post 73 (52) 102 (57)

Working memory updating

Accuracy (proportion) Pre 0.97 (0.05) 0.97 (0.06)

Post 0.98 (0.04) 0.91 (0.11)

RT (ms) Pre 2720 (984) 2778 (1,556)

Post 2573 (1,082) 2445 (1,655)

Fluid intelligence

Accuracy (proportion) Pre 0.58 (0.22) 0.63 (0.18)

Post 0.72 (0.20) 0.67 (0.12)

doi:10.1371/journal.pone.0119992.t002
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will shift the RT distribution to the right without changing variability. σ accounts for the vari-
ability of the quickest RTs. Increasing σ will cause more variance in the relatively quick RTs. τ
accounts for the heaviness of the right RT-distribution tail. Increasing τ will cause a higher rate
of exceptionally slow RTs. Correlational studies show that τ correlates negatively with working
memory abilities [75–77]. Importantly, τ was recently shown to change as a function of experi-
mentally induced working memory load [78], with one of the major means to increase load
being the arbitrariness of the stimulus-to-response mapping.

Thus, if indeed the improvement in the shape classification task was due to a better ability
of maintaining arbitrary task rules in working memory, these changes should reflect in the τ
parameter. To test this prediction, we performed a post-hoc ex-Gaussian distribution fitting on
for the shape classification RT data (i.e., arbitrary mapping; average of 71.16 trials for each fit).
Fitting was performed using the DISTRIB toolbox in MATLAB [79]. RT distributions were
carefully examined visually one by one to ensure a good fit. Furthermore, a quantile-quantile
plot was generated to find inconsistencies between the empirical data and theoretical ex-
Gaussian distribution (see Fig. A in S1 File). After extracting ex-Gaussian parameters, we per-
formed a separate ANOVA on each of the three ex-Gaussian parameters (μ, σ and τ) with
Session (pre vs. post), Group (control, training) and Task (shapes or digits). We found a
Group × Session interaction only for τ [F(1, 29) = 7.31, p<.05, ηp

2 = .20] and not for μ
[F(1, 29) = 2.10, ns, ηp

2 = .07] or σ [F(1, 29) = .43, ns, ηp
2 = .01] (see Fig. 4). A planned compar-

ison contrasting Group (training vs. control) in τ, only in the post-test, indicated a significant
difference [t(29) = 3.52, p<.01, rpb = .54]. A similar analysis on the pre-test results indicated a
non-significant difference [t(29) = .91, p = .36, rpb = .17].

Fig 3. Mean RT (in ms) for the twomeasurement sessions (pre vs. post), the shape classification (i.e., arbitrary mapping) and the digit
classification (i.e., non-arbitrary mapping) tasks. Error bars reflect 95% confidence intervals [82].

doi:10.1371/journal.pone.0119992.g003
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Follow-Up Session
The posttest results were analyzed immediately after completing the study, and this has led us
to decide to run a delayed follow up session. Our considerations were as follows. First, we
wanted to make sure that training effects remain after a substantial delay, especially given the
fact that the specific training effects were not predicted. Additionally, the shape classification
task in which we found the specific training effects involved task switching. Although the trans-
fer effect was found only in single blocks were switching was not directly involved, these single
blocks were performed in the context of a switching task. This means that although the heavi-
ness of the right RT-distribution tail (τ) could be interpreted as reflecting the rate of rule re-
trieval from working-memory [78], there is an alternative explanation. Specifically, previous
studies have shown that aspects of task-switching control processes selectively influence τ
[80,81]. Finally, the effects were found in tasks involving shapes and we wanted to make sure
this effect is not specific to this material. We therefore designed a battery of tasks that enabled
us to point to the specific involvement of working-memory retrieval in the training effects.

The session included a battery of classification RT tasks that did not involve task switching
(thus ruling out the involvement of switching control). The tasks were divided into three task
types. (1) The critical tasks involved arbitrary stimulus-response mapping (with 2 choices, sim-
ilar to the shape classification task that was used in the posttest) that forced participants to
hold the mapping information in working memory. Since these were the most important tasks,

Fig 4. Pre-post differences for the training and control groups in each of the three ex-Gaussian parameters, estimated for the arbitrary mapping
choice reaction task (i.e., shape classification). Error bars reflect 95% confidence intervals [82].

doi:10.1371/journal.pone.0119992.g004
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we included three types of stimuli (words, shapes and numbers) to ensure that any effect is not
material-specific. These critical tasks were compared with (2) classification tasks with non-
arbitrary stimulus-response mapping that involved a choice but did not involve the need to
retrieve stimulus-response mapping rules from working memory; and (3) a simple RT which
neither involved choice nor working-memory retrieval.

Our predictions were based on the interpretation of the findings so far that training influ-
enced working memory processing. We therefore predicted that training effects would be seen
in the τ parameter of the ex-Gaussian RT distribution but only (or primarily) in the tasks with
arbitrary mapping that involved working memory demand [78]. Accordingly, we did not pre-
dict any training effects in tasks with non-arbitrary stimulus-response mapping given the very
little working memory involvement. Similarly, no effects were predicted in the simple RT task,
which predominantly taps early perceptual and motor preparation processes.

Method

Participants
All participants from both the training and control groups were invited to take part in a follow-
up session. 19 Nineteen participants agreed to participate (9 training, 10 controls). For their
participation, participants received either a course credit or 25 NIS per hour (~$6).

Procedure & apparatus
Participants were invited to the lab by an experimenter not known to them from either the pre-
post measurement sessions or the training experiment sessions. They were told their contact
information was kept in the lab and that they were contacted regarding a new experiment tak-
ing place in our lab. When asked, the experimenter explained that this experiment was unrelat-
ed to the training study. All tasks were performed in a single session and took approximately
45–60 min. Otherwise, the apparatus was the same as in the training study.

Measurements
Three types of RT classification tasks were used: classification tasks with arbitrary mapping, clas-
sification tasks with non-arbitrary mapping and a simple RT task (without classification/choice).

Classification tasks with arbitrary mapping. This battery of tasks included six 2-alterna-
tives choice reaction tasks with arbitrary stimulus-response mapping (i.e., novel mapping that
was not based on any knowledge the participants might have had prior to testing). The battery
included: (1) two tasks with word stimuli (classification of words describing kitchenware vs.
writing tools; topics in humanities vs. topics in natural sciences), (2) two tasks with digit stimuli
(classification of odd vs. even; larger than 5 vs. smaller than 5) and (3) two tasks with image sti-
muli (classification of ship vs. plane; skateboard vs. bicycle). Each task had a set of five stimuli
per class (e.g., five images of a plane and five images of a ship). Participants were asked to clas-
sify the stimuli using the S and K keys (left and right, respectively) on a QWERTY keyboard.
The stimuli were displayed using a 24-point Courier New font. Images were 6 cm × 8 cm in
size. Each of the six tasks was performed for 200 trials divided into 4 blocks. Each trial began
with a fixation appearing for a randomly chosen period of either 500 ms or 1000 ms. Then, the
target appeared until the response was given or after 6 sec had elapsed. Error trials were sig-
naled by a beep sound (400 ms).

Classification tasks with non-arbitrary mapping. In these tasks, participants were asked
to perform two 2-alternatives choice reaction tasks with spatial stimuli (classification of up vs.
down, left vs. right). Across the task, two borders appeared on two sides of a centered fixation
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marker (i.e., located above and below or on the right and left sides of the fixation marker;
7 cm × 7 cm each border). In each trial, an "X" marker (i.e., 18-point Courier New font) ap-
peared at a randomly chosen location inside one of the two borders, and participants were re-
quired to indicate whether this was the upper/lower or right/left border. Participants
responded using the Y (upper) and B (lower) keys or the S and K (left/right) keys on a QWER-
TY keyboard in the respective up/down or right/left classification tasks. The number of trials
and trial sequence were identical to the classification choice-reaction tasks with arbitrary map-
ping, presented in the previous paragraph.

Simple RT task. Participants were asked to place the index finger of their dominant hand
on the space bar and press the bar as soon as a white square (3 cm × 3 cm in size) appeared at
the center of the screen. Because this task included only one possible response, no error sound
was presented. The number of trials and trial sequence were identical to the classification
choice-reaction tasks with arbitrary mapping, presented previously.

Results and Discussion
As we did before for RT data calculation, we omitted error trials, post-error trials, and the first
trial in each block and trimmed the data by 2% in the upper and lower portion of the distribu-
tion. This resulted in an acceptable number of trials for ex-Gaussian fitting (181.47 trials on av-
erage for the simple RT task, 159.7 trials for the arbitrary mapping tasks and 171.39 trials on
average for the non-arbitrary mapping tasks). We performed an ex-Gaussian distribution fit-
ting, as we did before. After extracting the ex-Gaussian parameters for each participant in each
task, we averaged the mean and each of the three parameters for the arbitrary mapping tasks
(i.e., verbal × 2, visual × 2, and numerical × 2) and the non-arbitrary tasks (i.e., spatial × 2). We
then performed an ANOVA on these values with Task (simple RT, non-arbitrary mapping and
arbitrary mapping) and Group (training vs. control) as independent variables. This analysis
was done separately for each of the four RT dependent variables: mean, μ, σ and τ (see Fig. 5).
The results were in line with our predictions. We did not find any significant main effect of
Group [Fs<0.76]. The interaction of Group × Task was significant for τ [F(2,34) = 4.98, p<.05,
ηp

2 = .23] but not for μ [F(2,34) = .31, ns, ηp
2 = .02] or σ [F(2,34) = 1.02, ns, ηp

2 = .06]. One-
tailed planned comparisons contrasting Group (training vs. control) with the τ estimates was
found significant for arbitrary mapping [t(17) = 2.31, p<.05, rpb = .49] but not for simple RT
[t(17) = 1.05, ns, rpb = .24] or non-arbitrary mapping [t(17) = .29, ns, rpb = .10].

The examination of error rates showed that the speed-accuracy tradeoff cannot explain the
pattern of RT results because the (non-significant) pattern was similar to that seen in RT. Spe-
cifically, the mean error rates in the tasks with arbitrary stimulus-response mapping were train-
ing = .04 and control = .05. In the tasks with non-arbitrary mapping, they were. 07 and.
09, respectively.

General Discussion
In the present study, participants were trained in a highly demanding action control task across
19 sessions. The training task required participants to (1) acquire a new set of action rules (i.e.,
stimulus-response rules) in each block (up to 10 times each session), (2) to constantly hold and
update task rules in working memory (i.e., reacting according to the stimuli in the N-back trial)
and (3) to adapt to rapid changes (i.e., switching tasks between trials). Participants in the train-
ing group were compared to a no-contact control group in a pre-post testing battery that in-
cluded measurements of set-shifting, response inhibition, working memory updating,
processing speed and fluid intelligence.
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Participants in the training group improved only in processing speed, and there were no
other systematic group differences across the different pre-post measurements. The benefits of
processing speed were found only in tasks that required the maintenance of novel stimulus-
response rules in working memory (i.e., arbitrary mapping) and not when those rules were fa-
miliar and/or practiced (i.e., non-arbitrary mapping), and they were restricted to the right tail
of the RT distribution, as indexed by the τ parameter of the ex-Gaussian distribution, which
has been linked to working memory demand [78]. A follow-up measurement demonstrated
that these benefits were maintained ten months after training: Participants in the training
group demonstrated similar advantages as in the post-test, in spite of the fact that the stimuli
and mapping used in the follow-up study were completely new to them. Importantly, the fol-
low-up findings enabled us to implicate working-memory retrieval processes in the training
gain and also to substantially rule out the material-specificity of the effect and any involvement
of task-switching.

Previous studies found that low τ values in choice reaction tasks are related to better work-
ing memory abilities [75–77] and lower working memory demands [78]. Thus, both the fact
that the group differences were found only under working memory demanding conditions (i.e.,
arbitrary mapping) and that those changes were only found in the τ parameter support the
claim that a reduction in RTs reflects better working memory abilities in the training group.

Fig 5. Group differences (training vs. control) in RT-means and the three ex-Gaussian parameters for each of the three tasks types performed in
the follow-up session: simple reaction time and 2-alternative choice reaction with arbitrary mapping or with non-arbitrary mapping. Results
demonstrate that group differences were found in the arbitrary mapping condition and only in the τ parameter, which is in line with the hypothesis that these
differences are related to working memory abilities. Error bars reflect confidence intervals [82].

doi:10.1371/journal.pone.0119992.g005
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The fact that training gains were not observed in tasks with non-arbitrary mapping can also
rule out the possibility that the transfer effects were due to the use of 2-choice tasks. Had this
been true, training effects should have been observed in all choice tasks, regardless of mapping
arbitrariness. Although the results may be interpreted as reflecting improvement in working
memory, there is another viable explanation, i.e., that participants in the training group formed
highly abstract representations of the stimulus-response rules, which allowed them to flexibly
acquire and implement novel stimulus-response rules when needed.

Of course, there is no indication of what exactly in the training task allowed the improve-
ment in how working memory was employed to control performance. Under conditions of a
combined task-switching and N-back task, the maintenance and retrieval of action rules from
procedural working memory were most demanding. Nonetheless, other action control process-
es, such as switching and response inhibition, were also highly demanded through the training
task. The question of why only procedural working memory was improved should be
further explored.

In conclusion, the present findings show that highly demanding and relatively lengthy
working memory training, which emphasized action control, resulted in what appears to be an
improvement in the working memory aspects of choice RT. This pattern of findings also lends
some support to the claimed distinction between procedural and declarative working memory
sub-systems [29–31]. An obvious caveat of the specific design is the use of a no-contact control
group (rather than an active control group). The no-contact control format was chosen due to
the exploratory nature of this study; this format allowed for a first examination of action con-
trol training benefits on executive functions. Future studies should thus extend the understand-
ing of action control training on processing speed and procedural working memory and
replicate the effect with an active control group.
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