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ABSTRACT

Within a single infected individual, a virus population
can have a high genomic variability. In the case
of HIV, several mutations can be present even in a
small genomic window of 20–30 nucleotides. For
diagnostics purposes, it is often needed to
resequence genomic subsets where crucial muta-
tions are known to occur. In this article, we
address this issue using DNA microarrays and
inputs from hybridization thermodynamics.
Hybridization signals from multiple probes are
analysed, including strong signals from perfectly
matching (PM) probes and a large amount of
weaker cross-hybridization signals from mismatch-
ing (MM) probes. The latter are crucial in the data
analysis. Seven coded clinical samples (HIV-1) are
analyzed, and the microarray results are in full con-
cordance with Sanger sequencing data. Moreover,
the thermodynamic analysis of microarray signals
resolves inherent ambiguities in Sanger data of
mixed samples and provides additional clinically
relevant information. These results show the
reliability and added value of DNA microarrays for
point-of-care diagnostic purposes.

INTRODUCTION

In human genetic research, targeted resequencing of
genomic nucleic acid is applied extensively in population
studies to search for associations between sequence
variants and diseases. The technique is also applied in
diagnostic or prognostic tests. In this context, one is
often confronted with samples of mixed sequence
variants, some possibly present in minority: e.g. biopsies
from cancer tissue usually contain a mixture of cancerous

and non-cancerous cells. Therefore, one needs to distin-
guish the presence of a specific mutation, possibly in low
abundance (minority), in a majority of ‘wild-type’ se-
quences. Several techniques are in use to resolve the
sequence composition in mixed sequence samples, like
allele-specific PCR (1), melting curve analysis or
sequencing (2).
In this article, we focus on the case of HIV-1/AIDS. To

reduce the morbidity and mortality world-wide, there is a
high need for simple point-of-care genotyping tests to
screen for key resistance mutations. However, the devel-
opment of a simple genotyping test to screen for key
resistance mutations is a technical challenge, due to high
genetic variability of HIV-1 (3). The variability is caused
by the error-prone reverse transcriptase enzyme, which
will introduce mutations during each replication cycle,
combined with a short replication time. Within one
single patient, different, but closely related, non-identical
viral genomes can be present. This high variability makes
the design of primers and probes for a simple genotyping
assay difficult. A variety of high throughput genotyping
assay for antiretroviral resistance testing are available in
the market, which allow physicians to determine drug-
resistance profiles (4–6). These genotyping assays are
using capillary electrophoresis platforms that provide
integrated systems for nucleotide sequence-based
analysis and interpretation for drug-resistance mutations
in the HIV-1 reverse transcriptase and protease. The de-
velopment of these assays greatly advanced clinical care
for HIV-1 patients, by allowing personalized disease man-
agement, using the most appropriate drugs and drug com-
binations available at any given point (6). These assays are
requiring high-tech equipment and are performed by
highly trained laboratory personnel limiting their practical
use as point-of-care test.
In this article, a new method based on microarrays

hybridization will be introduced to perform targeted
resequencing on nucleic acid samples. The idea to use
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hybridization for mutation detection is not new (7,8), and
it has often been compared with other techniques (9,10).
An advantage of hybridization is its simplicity and the
possibility of miniaturization for point-of-care tests. An
often reported disadvantage is its specificity: the possibil-
ity of cross-hybridization of not-perfectly matching se-
quences to a probe sequence complicates the data
analysis. The situation complicates even further when
the original sample contains two or more variants of a
given sequence. As usually cross-hybridization is viewed
as a limiting factor, efforts are often aimed at avoiding it,
e.g. by introducing chemical agents in the nucleic acid
probes (11,12). In this article, we show that if the probe-
target affinities for cross-hybridization are quantified
accurately, the measurements from multiple probes,
which typically are not perfectly matching to the sample
sequences, can be turned into a powerful targeted
resequencing method. The analysis relies on estimates
of the hybridization free energies of mismatching
duplexes (cross-hybridization signals). The data are then
checked against the isotherm expected from equilibrium
thermodynamics (13–15).

MATERIALS AND METHODS

HIV samples

HIV-1 virus stocks were selected from the Janssen
Diagnostics repository database, based on their known
mutation profile in the region of codon 179 to codon
186 of the Reverse Transcriptase (RT) gene. This region
was selected to cover key resistance mutations at position
179, 181 and 184. A mutation at position 179 or 181
causes resistance against non-nucleoside RT inhibitors
(NNRTIs) (16–20), while nucleoside RT inhibitors
(NRTIs) are selecting for a mutation at position 184
(21,22). An informed consent for research purposes is
available for the HIV samples used.

Experimental protocol

The viral RNA extraction of virus stocks was carried out
on an EasyMAG (bioMérieux, Boxtel, The Netherlands)
according to the guidelines of the manufacturer, starting
with 256 ml input material for plasma samples and 100 ml
input material for virus stocks, both were eluted in 60 ml.
A One-Step RT-PCR amplification (One-Step Superscript
III HiFi, Invitrogen, CA, USA) was used to generate a
2.3-kb HIV-1 fragment (containing the gag-protease-
reverse transcriptase (GPRT) region) using the 3-RT
(50-CATTGCTCTCCAATTACTGTGATATTTCTCAT
G-30) and 5-OUT (50-GCCCCTAGGAAAAAGGGCTG
TTGG-30) primers. RNA input was 10 ml in a final volume
of 35 ml. The complete amplification procedure was pub-
lished by (23). The 2.3-kb HIV-1 outer fragment generated
with the GPRT one-step PCR was used as template for the
asymmetric amplification of the sequence around RT
codon 184. Therefore, the HIV-1_Fw_184Cy3(50-/Cy3/T
AGAAAACAAAATCCAGAAATA-30) and HIV-
1_Rev_184 (50-TGCCCTATTTCTAAGTCAGATCC-30)
primers were used, with the fluorescent labelled forward
primer HIV-1_Fw_184Cy3 in excess to generate

fluorescent labelled single-stranded DNA (ssDNA) frag-
ments of 78 bp (containing RT codon 184). Forward
primer HIV-1_Fw_184Cy3 and reversed primer HIV-
1_Rev_184 were used at a concentration of 1 mM and
0.1 mM, respectively, with DNA input of 2ml in a final
volume of 100 ml. The microarray experiments were per-
formed in an Agilent platform. Each experiment was per-
formed, following the standard protocol discussed in (24).
We considered hybridizing sequences of 25 nt. This is
because in previous studies (13), sequences of this length
were found to attain thermodynamic equilibrium after
�3h of hybridization (in the experiments, the hybridiza-
tion time is of 17 h to ensure that equilibrium was
reached).

The raw microarray data were subjected to a primary
quality control using the Agilent Feature Extraction
Software (Version 10.7). For all arrays, the spot centroids
in the four corners of the microarray have been located
properly and consequently the grid was placed correctly.
The QC values for homogeneity and those for checking
the hybridization and washing steps, all fall within
the good range according to Agilent guidelines. In the
present application, we work with single color, hence
there is no need of color normalization. In addition, the
analysis in extended previous hybridization experiments
(13,15) showed that the experimental data closely follow
the thermodynamics models in the full range of measured
experimental intensities without additional normalization
requirements.

Microarray design

Table 1 shows some sequences with high clinical frequency
obtained with Sanger sequencing from a database
provided by Janssen Diagnostics, of about 350 000
patients, on a region of 25 nt of the HIV-RT centred
around codon 184. The sequence with the highest fre-
quency occurs in only 25% of the patients. The other
75% of the cases contain mutations with respect to it.
This makes the HIV an excellent test model to check the
validity of the method presented in this article. Part of the
samples in Table 1 consist of unique sequences. Other
samples are mixed, i.e. HIV viruses with sequence differ-
ences within the 25-nt window considered coexist in a
single patient. Further, the concept of unique and mixed
sample has to be interpreted within the limited sensitivity
of Sanger sequencing. This method can detect a mixture
only if the relative abundance of the low abundance
sequence is >20%. For instance, a mixed sequence
sample with only 10% of low abundance sequence
would be detected as unique sequence sample by the
Sanger method (2).

To define a manageable and relevant diagnostic
problem, each unique sample from the database was
selected and ranked in decreasing order of clinical
frequency. The goal was to diagnose the top 100 unique
sequences and mixtures of two sequences thereof. This
corresponds to the coverage of 82% of the whole
database. The sequence no.143 shown in Table 1 is the
100th unique sequence relative to the most frequent one.
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This sequence has two mismatches with respect to the
most frequent one.

The 15k custom Agilent array used in the experiment
contains �15 000 spots. The design of the probe sequences
on the array was started from the 100 probes that are
perfectly matching to the 100 unique sequences considered
in the test (referred as the perfect match (PM) set in the
design). The data analysis of the method discussed in this
article is not solely based on the signal of perfectly
matching spot, but also on cross-hybridizing signals.
Previous experiments (15,25) showed that signals
measured from spots with one or two mismatches with
respect to the target sequence are still above the lower
limit of detection. Therefore, probes with one or two
mismatches with respect to those in the PM set were
included in the microarray. The final design contains
2139 different probes replicated seven times to fill all the
available spots of the 15k microarray.

Thermodynamic assessment

In the standard approach of hybridization-based targeted
resequencing, the microarray contains probes that are per-
fectly matching to all possible variants of target sequences
expected to be present in the biological sample. The
brightest of all spots should indicate the sequence which
is present in solution. Our approach is based on the
analysis of the intensities of the brightest and also of
many ‘dimmer’ spots which are expected to carry one or
two mismatches with respect to the target (actually the

large majority of signals comes from hybridizations to
mismatching sequences). If a unique target sequence is
present in solution, the fluorescence intensity I from dif-
ferent spots will be correlated according to equilibrium
thermodynamics as

I ¼ Ace��G=RT ð1Þ

where A is a proportionality factor, c the target concen-
tration in solution, �G the hybridization free energy as a
sequence-dependent measure of the affinity between
probe-target sequences, R the gas constant, and T the
temperature. For convenience in the rest of the article,
hybridization free energies are shifted by the correspond-
ing perfect match value. This amounts to use
��G � �G��GPM; therefore, for a PM hybridization
��G ¼ 0. Note that as the free energies are shifted by a
constant value, the same functional relationship as
Equation (1), holds also for ��G. Equation (1) holds at
sufficiently low concentrations, while at high concentra-
tions saturation effects should be taken into account, as
the intensity reaches a maximal value when all probes are
hybridized [as predicted by the Langmuir model (24)].
These effects are not relevant in the range of concentra-
tions investigated here. Equation (1) was thoroughly
tested and validated in experiments on Agilent arrays
using several different sequences (15,25).
Given the sequences of the target in solution and the

surface-bound probes, the ��G can be obtained from the
nearest-neighbour model (26). In this model, the hybrid-
ization free energy is given by the sum of parameters that
are dependent on pairs of neighbouring nucleotides. The
computation of ��G used in this article follows the same
principles described in (15,24).
In a resequencing analysis, the target sequences are

coming from a biological sample, and they are usually
not known. One can, however, make a starting hypothesis
about the sequence and compute the corresponding ��G.
If the starting hypothesis agrees with the actual sequence
in the sample, the measured intensities should be
distributed according to Equation (1). Deviations from
this law may have two causes: (i) The starting hypothesis
is wrong; hence, the sequence in the sample is different
from what originally assumed or (ii) the sample is a
mixture, i.e. it contains the sequence of the original
hypothesis together with other sequences. This concept
is illustrated in Figure 1 that shows plots of I versus
���G in log-linear scale for which Equation (1)
becomes a straight line with slope 1=RT (shown as
dashed line). The two plots refer to the same experimental
data. In one case (Figure 1a), the hypothesis matches the
actual sequence in the sample. The data accurately follow
Equation (1) over four orders of magnitude in the
intensity scale. In the other case (Figure 1b), the wrong
hypothesis leads to an incorrect computation of the ��G
and deviations from the expected thermodynamic
behaviour. Here, the data are distributed into four
distinct branches. The origin of this branching will be
discussed in detail in the next section, which presents an
algorithm used to infer the sequence composition from the
analysis of the plots of the measured fluorescence

Table 1. Nucleotide sequences (from codon 179 to codon 186, written

in 50 to 30 orientation) for different variants of the HIV-RT gene, as

obtained from the analysis of 350 000 patients

Rank Type Sequence Relative clinical
. . .180. . .182. . .184. . .186. Frequency

1 Unique GTTATCTATCAATACATGGATGATT 1.000
2 Unique GTTATCTATCAATACGTGGATGATT 0.411
3 Unique GTTATCTATCAATACATGGATGACT 0.124
4 Unique GTCATCTATCAATACATGGATGATT 0.084
5 Unique GTTATCTGTCAATACATGGATGATT 0.075

:
9 Unique GTTATCTATCAATACGTGGATGACT 0.056

:
15 Mixed GTTATCTATCAATACRTGGATGATT 0.037

:
22 Unique GTCATCTATCAATATATGGATGACT 0.027

:
143 Unique GTTATCTATCAATACATGGATGACC 0.002

:

The database, provided by Janssen Diagnostics, is obtained from
Sanger sequencing, and only some selected sequences are shown here.
The ranking follows the relative clinical frequency. Numbers above the
first ranked sequence indicate the codons position. Nucleotides differing
from those of the most frequent sequence are shown in bold. The
Sanger sequencing method yields either unique sequences, i.e. with no
ambiguities, or mixed sequences. In the Table, the mixed sequence with
the highest clinical frequency is ranked no. 15. We use here the
standard notation for degenerate bases (25); therefore, R means a
purine (A or G). Note that this sequence is a mix between sequences
ranked no. 1 and no. 2 in the Table. The sequence ranked no. 143 is the
100th unique sequence from the database and so is the last in the
PM set.
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intensities I versus ���G. We refer these plots as I��G-
plots.

Algorithm

Figure 2 shows a flowchart of the algorithm used for the
targeted resequencing. The algorithm consists of a central
loop that generates iteratively sequences . . . tn�1,tn,tn+1 . . .
(where n is the iteration step), which are successive in silico
hypotheses about the composition of the sample. The loop
is repeated until convergence is reached. Two types of
convergence are obtained. In some cases, after a certain
number of iterations, the algorithm shows a collapsed
I��G plot similar to that seen in Figure 1a. This is a
signature of the presence of a unique sequence in the
sample. In this case, the algorithm ends at the block (b)
of the flowchart and returns the output tn as the sequence
composition of the sample. In other cases, the algorithm
converges to a two-cycle state i.e. tn ¼ tn+2 ¼ tn+4 ¼ . . .
and tn+1 ¼ tn+3 ¼ . . ., where I��G plots are always
branched (similar to that seen in Figure 1b). This two-
cycle state is a signature for a sample composed by a
mixture of two sequences: tn and tn+1. In this case, the
algorithm ends at the block (e) and returns the aforemen-
tioned two sequences as output.
An important part for generating new in silico

hypotheses is the decision block (a) of the flowchart. At
this point, the algorithm checks if the I��G plot is
collapsed or branched. In the latter case, a new in silico
hypothesis tn+1 is generated. To understand how this is
done, the origin of the branching has to be elucidated in
some detail.
The plot of Figure 1b is obtained by calculating ��G

using a wrong in silico hypothesis: Table 2 shows the
actual sequence in solution used in the experiment to
produce Figure 1a and the hypothesis sequence made for
the calculation of Figure 1b. They differ by a single nu-
cleotide at base position 13 (in the in silico hypothesis this
is a G, while the actual target contains a T). Consider now

all probe sequences in the microarray with an A at this
position. The actual hybridization is a Watson-Crick AT
pairing, while the in silico hypothesis estimates the ��G
as these were AG mismatches. This leads to
overestimating the ���G. The data points corresponding
to the probes with nucleotide A at base position 13, are
encircled with a solid line in Figure 1b. Conversely, for the
probes with a nucleotide C the ���G are underestimated.
The latter are encircled with a dashed line in Figure 1b.
Thus, the splitting into four branches is due to the wrong
estimates of free energy for each probe in the position
where actual target and in silico hypothesis differ. It is
important to notice here that the probes in the different
branches systematically differ from each other by specific
nucleotides at specific locations. This systematic sequence
deviation will be used to decide whether the I��G plot is
branched or not (see right panes in Figures 3 and 5 of the
examples in the next section). The correct hypothesis can
readily be constructed by selecting out the top left branch,
determining the systematic sequence deviation (nucleotide
position and type) in this probe subset, and implementing
this nucleotide change in the previous hypothesis. This is
precisely how a new in silico hypothesis denoted by tn+1 is
generated in block (c) by the algorithm.

create
IΔΔG plot

using tn

. . .

(a)
is IΔΔG plot

branched?

(c)
create new
hypothesis

tn+1

(b)
unique

sample tn

(d)
tn+1 equals

tn−1?

...

(e)
mixed sample
tn and tn+1

no

yes

no

yes

Figure 2. A flowchart showing the basics of the algorithm for targeted
resequencing of HIV-RT. tn is the hypothesis for the target sequence
generated at the n-th iteration. The outputs are either a unique
sequence [block (b)] or a mixed sequence composed by two sequences
[block (e)] depending on the nature of the I��G plots.
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Figure 1. Two I versus ���G plots from the same set of experimental
data for the hybridization of a synthetic oligomer target sequence
50�AAGGGCCACGGATTACTCGTAATAA�30 to a microarray
containing a perfect match probe and many probes with one or two
mismatches with respect to the target. The ��G are calculated using
the nearest neighbour model free energies by means that are described
in (15,24), using two different hypotheses for the target sequence in
solution. In (a) the hypothesis matches the actual target sequence and
the data follows the Equation (1) that is shown as a dashed line. In (b)
the hypothesis differs by one nucleotide with respect to the actual target
sequence in solution. Four different branches appear in this plot. The
origin of these branches is discussed in the text.
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In principle, for a unique sequence sample, one can start
with any hypothesis and iterate until a collapsed I��G
plot is found. However, when the sample is a mixture of
two target sequences, the plots will always have branches,
as over- and under-estimation of the data during the ��G
calculation will always occur. For each iteration, a new
hypothesis is generated and when the tn+1 sequence is
equal to the tn�1 sequence as evaluated in block (d), the
algorithm is stopped and gives as output a mixed sample
composed by sequences tn and tn+1.

RESULTS AND DISCUSSION

Decoding a set of coded samples

The algorithm was tested on seven coded clinical samples
selected by Janssen Diagnostics out of a repository of
samples for which the Sanger sequencing had been per-
formed. The sequences composing these samples are
shown in Table 3 where the left part of the Table shows
the Sanger sequencing data provided as reference and the
right part of the Table shows the sequences that were
found by the algorithm. It can be seen that the proposed
method decoded the samples successfully. To illustrate the
working of algorithm, we discuss here in more details the
sequences no. 3 and no. 4 of the seven sequences shown in
Table 3, where the algorithm converges to a mixed and
unique sequence, respectively. For convenience, in these
two examples, the initial hypothesis t1 corresponds to the
sequence with highest clinical frequency (ranked no.1 in
Table 1). We tested that the algorithm also converges to
the same results when t1 is one of the other 99 sequences of
the PM set.
The first example is sample no. 4. The left pane of

Figure 3a shows an I��G plot produced from the initial
hypothesis t1; in this first iteration the data are very scat-
tered. First, a set of data points (encircled) is selected.
These are points that deviate the most from the expected
thermodynamic behavior (dashed line). The nucleotide
composition of this set is analysed: the right pane
Figure 3a shows a histogram of mismatches of this
selected set with respect to the initial hypothesis t1. In
the algorithm, a threshold value of 70% is chosen as the
minimum limit for the fraction of common mismatches
per base positions between the selected probes and the
current hypothesis (more details on the threshold selection
and its influence on the output are presented in the
Supplementary Section II). Based on this threshold, the se-
lected probes are considered mismatching against the
hypothesis t1 at base positions no. 6, 12 and 16, by nucleo-
tides T, C and C, respectively. This information is used to
generate a new hypothesis t2 by swapping nucleotides on
hypothesis t1 so it becomes complementary to the three
nucleotides detected in the mismatching base positions
(resulting sequence t2 is given in Figure 4). The next iter-
ation is the calculation of the I��G plot from t2, which is
the graph shown in Figure 3b. Although, compared with
t1, there is a better agreement with the expected thermo-
dynamic behavior from Equation (1) (dashed line), the
data are still scattered. The analysis of the most deviating
set of points (encircled in Figure 3b) indicates that there is
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Figure 3. Analysis on sample no. 4; the first iteration tells that the
hypothesis t1 is not correct, as the I��G plot is branched
(a). Analysis on the selected deviating points (encircled) reveals mis-
matching nucleotides per base positions that are commonly found in
the selected probes. These nucleotides become the basis to generate a
new hypothesis t2. In the second iteration with the new hypothesis t2,
the I��G plot is apparently still branched (b); thus, the iteration
continued by generating another new sequence t3. The I��G plot
with hypothesis t3 turns out to be a collapsed plot; thus, the algorithm
stops and conclude that the sample contains unique sequence (c).

Table 2. Origin of branches appearing in the I��G plot

Targets Actual Actual Hypothesis
AAGGGCCACGGATTACTCGTAATAA

hypothesis:
AAGGGCCACGGAGTACTCGTAATAA

Probes ——————————A—————————— PM MM
——————————G—————————— MM MM
——————————T—————————— MM MM
——————————C—————————— MM PM
01————————13————————25

The top part of the graph shows two target sequences. The first
sequence is the one that was used in the experiment that generates
the data shown in Figure 1. The second sequence is a (wrong) hypoth-
esis about sequence composition. These two sequences differ by a single
nucleotide at base position 13. This base position is indicated by the
numbers shown in the bottom. The microarray probes are grouped into
four sets according to the type of nucleotide at the position where the
two targets differ. The use of a wrong hypothesis leads to an error in
the ��G computation. For instance, probes with a nucleotide A at
base position 13 are treated as having an AG mismatch (MM), while
actually it has AT perfect match (PM).
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still a mismatch at base position no.6. The next in silico
hypothesis t3 (Figure 4) is then obtained. The analysis of
the most deviating set of points that corresponds to I��G
plot from t3 (Figure 3c) does not provide a strong
signature for any common mismatch. Therefore, the algo-
rithm concludes that sample no. 4 contains a unique
sequence t3.
The second example to be discussed is sample no. 3.

Figure 5 shows the I��G plots obtained during the iter-
ations. In this case, the analysis of the most deviating
branch of points generate a cycle in which sequences t2
and t4 are identical (Figures 6), indicating that the sample
is actually a mixture of two sequences, differing in two
nucleotides from each other. The difference with the case
of sample no. 4 shown in Figure 3 is that in this case the
I��G plot is always branched in all iterations forming a
two-state cycle. The decision on whether a plot is
branched or not is done by the algorithm based on the
fraction of mismatches in the right panes, but note by
visual inspection that in I��G plot of hypothesis t2
(Figure 5b), the data points are quite close to the
expected thermodynamic behavior of Equation (1)
(dashed line). However, they are still more scattered

Table 3. Seven resequenced clinical samples from Janssen diagnostics

No. Sanger sequencing Proposed method
179 180 181 182 183 184 185 186. 179 180 181 182 183 184 185 186.

1 GTT ATC TAT CAA TAC RTG GAT GAY T
GTT ATC TAT CAA TAC GTG GAT GAT T
GTT ATC TAT CAA TAC ATG GAT GAC T

2 GTT ATC TGT CAA TAC ATG GAT GAT T GTT ATC TGT CAA TAC ATG GAT GAT T

3 GTT ATC TAT CAR TAC ATG GAT GAY T
GTT ATC TAT CAA TAC ATG GAT GAC T
GTT ATC TAT CAG TAC ATG GAT GAT T

4 GTT ATC TAT CAG TAC GTG GAT GAT T GTT ATC TAT CAG TAC GTG GAT GAT T

5 GTT ATC TAT CAA TAC RTR GAT GAT T
GTT ATC TAT CAA TAC GTG GAT GAT T
GTT ATC TAT CAA TAC ATA GAT GAT T

6 GTT ATC TAT CAA TAC RTG GAT GAC T
GTT ATC TAT CAA TAC ATG GAT GAC T
GTT ATC TAT CAA TAC GTG GAT GAC T

7 GTT ATY TAT CAA TAC RTG GAT GAT T
GTT ATC TAT CAA TAC GTG GAT GAT T
GTT ATT TAT CAA TAC ATG GAT GAT T

The numbers in the top row are indicating codon locations. Sequences on the left are the Sanger data whereas sequences on the
right are the result from the method proposed in this article. The underlined nucleotides are mismatches against the sequence of
highest clinical frequency including the degenerate bases i.e. R (purines: G or A) and Y (pyrimidines: C or T) (25). All sequences
in this table are written in 50 to 30 orientation.
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Figure 5. Analysis of sample no. 3, which is a mixed sample; in
contrast to the analysis of unique samples such as shown in Figure 3,
in the current case, the resulting I��G plots always have branches.
Thus accordingly, fraction of mismatches higher than the threshold are
always found in each iteration. In this Figure, results from analysing
t1 (a), t2 (b) and t3 (c) are shown. Notice that the next hypothesis
generated from t3, after implementing the nucleotide changes at
position no. 12 and 24, is identical to t2. These sequences are shown
in Figure 6. Therefore, the algorithm converges into two-cycle state and
concludes that the sample in this current case is a mixed sequences
sample.

initialization

t1: GTTATCTATCAATACATGGATGATT

t2: GTTATATATCAGTACGTGGATGATT

t3: GTTATCTATCAGTACGTGGATGATT

stop

Figure 4. The hypothesis sequences from each iteration of the algo-
rithm in the case of sample no. 4. It presents a conclusion that the
sample contains a unique sequence t3 after three iterations.
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compared with the case in Figure 3c, which is a unique
sequence sample.

We comment on the differences between the quality
of the collapses between Figure 1 and Figures 3 and 5.
Figure 1 reports calibration experiments using a single
synthetic target sequence and probes carrying up to two
mismatches (15). In Figures 3 and 5, corresponding to
hybridization experiments on HIV samples, the probes
can carry more mismatches. The intensity drops to a
constant background level for ���G < �10 kcal/mol.
Low intensity data have not been considered in the
analysis as the algorithm selects the most deviating
branch of points in a range I > 102. The HIV data are
typically more scattered than those from the synthetic
oligo, which is probably due to more involved sample
preparation where there is still room for further
improvement.

The microarray probes were designed to detect the top
100 sequences with highest clinical frequency, and
mixtures thereof. The seven samples presented in this
article all fall within this scope, and our algorithm
produces the correct sample composition. A test based
on our algorithm to reject sequences that are outside a
diagnostic scope is further discussed in the
Supplementary Section I.

Resolving ambiguity from two degenerate bases

To discuss further about the result on mixed samples, we
focused on degenerate nucleotides in the sequences due to
uncertainties that are inherent in the Sanger method; as
can be seen in the list of sequences on the left part of
Table 3. The letters R and Y denote the degenerate
bases A or G (purines) and C or T (pyrimidines), respect-
ively (25). These uncertainties are caused by the presence
of mixtures of two sequences in a given clinical sample. In
the case of a single degenerate nucleotide, the sample is
identified as a unique mixture. However, two different
type of mixtures are possible in the case of two degenerate
nucleotides in the same sequence. For instance a degener-
ate RR pair can mean either a AA/GG mixture or a

AG/GA mixture. This type of ambiguity is present in
the sequences no. 1, 3, 5 and 7 of Table 3. The analysis
of the hybridization data from the microarray experiments
allow to resolve this ambiguity because the hybridization
free energies for each case are different.
The importance of this information lies in its clinical

relevance, for example, in sample no. 5 where mutations
RTR occur in codon 184. The presence of ATA as sug-
gested by our method, gives an idea about the stage of re-
sistance. This is interesting because during treatment with
lamivudine, initially isoleucine mutants are present, which
are subsequently replaced by valine variants (27). The iso-
leucine mutants are less fit than the valine mutants (28).

CONCLUSIONS

In this article, we used inputs from hybridization thermo-
dynamics to perform targeted resequencing of a fragment
of the HIV-1 RT gene. In the HIV example considered
here, due to the high mutation rate of the virus, the
fragment analysed can occur in more than a hundred dif-
ferent variants. In addition, one needs to distinguish
between samples composed by a single sequence (unique)
from samples in which two or more different sequences
coexist (mixed). For clinical purposes, it is important to
identify early enough the rising of a resistant strain. Our
microarray analysis is based on a large number of
measured intensities not just from perfectly matching
probes but also mismatching probes. Although in
general the effect of the hybridization of a very low abun-
dance sequence in a mixed sample can be small for each
individual intensities, the correlated effect on a large
number of different probes can be detected even from a
target sequence at relatively low abundance. The analysis
of (14), in which artificial synthetic mixtures of two
sequences were used, indicated that the detection limit of
relative abundance is of about 1%. In the Supplementary
Section III, we repeat that analysis for the HIV data to
illustrate the potential of the thermodynamic approach to
microarray data analysis.
Here, we presented an iterative algorithm that succes-

sively generates in silico hypotheses for the sample com-
position and checked them against thermodynamic
models. The algorithm identified correctly the sequences
in the sample and was tested on seven clinical samples
from the Janssen Diagnostics database. We showed how
hybridization thermodynamics can resolve some intrinsic
ambiguities of the Sanger sequencing. The results show the
reliability of DNA microarrays and in principle any hy-
bridization-based technology.
A method based on hybridization has the advantage

that it is a simple test that can be miniaturized to a fully
automated lab-on-chip, which can be used as point-of-care
test. Indeed hybridization-based method is promising, and
it has been a focus of interest in the recent years on either
its fundamentals or applications (29–33). Although DNA
microarrays are considered nowadays a mature technol-
ogy and these devices are providing high quality and
reproducibile data, their potentials have not been fully
exploited. A better understanding of the underlying

initialization

t1: GTTATCTATCAATACATGGATGATT

t2: GTTATCTATCAGTACATGGATGATT

t3: GTTATCTATCAATACATGGATGACT

t4: GTTATCTATCAGTACATGGATGATT

stop

identical

Figure 6. The hypothesis sequences from each iteration of the algo-
rithm in the case of sample no. 3. It presents a conclusion that the
sample contains mixed sequences as the generated hypothesis t4 after t3
is identical to previously generated hypothesis t2. This is a two-cycle
state between t2 ¼ t4 ¼ . . . and t3 ¼ t5 ¼ . . ..
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physico-chemical principles of hybridization is an issue of
central interest and can lead to novel methods to improve
the data analysis (34).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [35].
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