Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-lodo-3-phenylisoquinolin-1-yl)pyrrolidine-2,5-dione

Weijun Fu,* Mei Zhu and Dongfeng Hong

College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China Correspondence e-mail: wjfu@lynu.edu.cn

Received 27 September 2009; accepted 14 October 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.015 Å; R factor = 0.053; wR factor = 0.154; data-to-parameter ratio = 13.3.

In the title compound, $C_{19}H_{13}IN_2O_2$, the isoquinoline ring makes dihedral angles of 55.92 $(3)^{\circ}$ and 76.11 $(3)^{\circ}$ with the benzene and succinimide rings, respectively. The dihedral angle between the benzene and succinimide rings is $70.37 (3)^{\circ}$. In the crystal structure, the iodo atom deviates from the isoquinoline plane by 0.163 (1) Å. The crystal studied was found to be a racemic twin with a domain ratio of 0.41 (5):0.59 (5).

Related literature

For the synthesis of isoquinoline rings, see: Pandy et al. (2008). For the biological activity of isoquinolines and derivatives, see: Kletsas et al. (2004); Mach et al. (2004). For the synthesis of sterically non-hindering endocyclic ligands of the bi-isoquinoline family and an example X-ray structure of an octahedral tris-chelate iron(II) complex, see: Durola et al. (2006). For red phosphorescence of iridium complexes with isoquinolines and derivatives, see: Tsuboyama et al. (2003).

Experimental

Crystal data

$C_{19}H_{13}IN_2O_2$
$M_r = 428.21$
Monoclinic, P2 ₁
a = 8.874 (3) Å
b = 8.365 (3) Å
c = 11.292 (4) Å
$\beta = 100.494 \ (3)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.516, \ T_{\max} = 0.684$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.154$ S = 1.142880 reflections 217 parameters 1 restraint

V = 824.1 (4) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.96 \text{ mm}^-$ T = 294 K $0.39 \times 0.32 \times 0.21 \text{ mm}$

5068 measured reflections 2880 independent reflections 2722 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.92 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1229 Friedel pairs Flack parameter: 0.41 (5)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

This work was supported by the Doctoral Foundation of Luoyang Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2208).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Durola, F., Sauvage, J. P. & Wenger, O. S. (2006). Chem. Commun. pp. 171-173. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kletsas, D., Li, W., Han, Z. & Papadopoulos, V. (2004). Biochem. Pharmacol. **67** 1927–1932
- Mach, U. R., Hackling, A. E., Perachon, S., Ferry, S., Wermuth, C. G., Schwartz,
- J. C., Sokoloff, P. & Stark, H. (2004). ChemBioChem, 5, 508-518.
- Pandy, G. & Balakrishnan, M. (2008). J. Org. Chem. 73, 8128-8131. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa,
- S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971-12979.

Acta Cryst. (2009). E65, o2802 [doi:10.1107/81600536809042111]

1-(4-Iodo-3-phenylisoquinolin-1-yl)pyrrolidine-2,5-dione

W. Fu, M. Zhu and D. Hong

Comment

The isoquinoline derivatives play an important role in organic chemistry, not only as key structural units in many natural products (Kletsas *et al.*, 2004), but also as building blocks in important pharmaceuticals (Mach *et al.*, 2004). Isoquinoline species are also utilized as chiral ligands for transition metal catalysts (Durola *et al.*, 2006), and their iridium complexes are used in organic light-emitting diodes (Tsuboyama *et al.*, 2003). For these reasons, the efficient synthesis of isoquinoline ring system continues to attract the interest of synthetic chemists (Pandy *et al.*, 2008). In this context, we report the synthesis of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges. The isoquinoline ring makes dihedral angles of $55.92 (3)^{\circ}$ and $76.11 (3)^{\circ}$ with the benzene and succinimide rings, respectively. The dihedral angle between the benzene and succinimide ring is $70.37 (3)^{\circ}$. In the crystal structure, the iodo atom deviates from the isoquinoline plane by $0.163 (1)^{\circ}$ and the crystal is a racemic twin with a domain ratio of 0.41 (5):0.59 (5).

Experimental

To a solution of (E)-2-(2-phenylethynyl)benzaldehyde O-acetyl oxime (0.5 mmol) in dry CH_2Cl_2 was added N-Iodosuccinimide (0.6 mmol). The mixture was stirred for 12 h at room temperature. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to afford the title compound as a colorless solid (yield 90%). The title compound was recrystallized from CH_2Cl_2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH) or 0.97 Å (methylene CH₂), and with $U_{iso}(H) = 1.2Ueq(C)$ or 1.5Ueq(methylene C). The number of Friedel pairs measured were 1229.

Figures

Fig. 1. View of the molecular structure of (I) with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.

1-(4-Iodo-3-phenylisoquinolin-1-yl)pyrrolidine-2,5-dione

Crystal data

C ₁₉ H ₁₃ IN ₂ O ₂	$F_{000} = 420$
$M_r = 428.21$	$D_{\rm x} = 1.726 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo K α radiation, $\lambda = 0.71073$ Å
a = 8.874(3) Å	Cell parameters from 3132 reflections
b = 8.365 (3) Å	$\theta = 2.3 - 27.9^{\circ}$
c = 11.292 (4) Å	$\mu = 1.96 \text{ mm}^{-1}$
$\beta = 100.494 \ (3)^{\circ}$	T = 294 K
$V = 824.1 (4) \text{ Å}^3$	Block, colourless
Z = 2	$0.39 \times 0.32 \times 0.21 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	2880 independent reflections
Radiation source: fine-focus sealed tube	2722 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 294 K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.516, \ T_{\max} = 0.684$	$k = -9 \rightarrow 10$
5068 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0688P)^2 + 3.9331P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.154$	$(\Delta/\sigma)_{max} < 0.001$

S = 1.14 $\Delta \rho_{max} = 1.92 \text{ e} \text{ Å}^{-3}$ 2880 reflections $\Delta \rho_{min} = -0.85 \text{ e} \text{ Å}^{-3}$ 217 parametersExtinction correction: none1 restraintAbsolute structure: Flack (1983), 1229 Friedel pairsPrimary atom site location: structure-invariant direct
methodsFlack parameter: 0.41 (5)Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F², conventional R-factors R are based

on F, with F set to zero for negative F^2 . The threshold expression of

 $F^2 > 2$ sigma (F^2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F² are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.46281 (6)	0.81542 (14)	0.63285 (5)	0.0606 (3)
C19	0.9127 (11)	0.9063 (12)	0.5388 (8)	0.042 (2)
H19	0.9014	0.9804	0.4764	0.051*
C17	1.0667 (9)	0.803 (3)	0.7186 (8)	0.059 (3)
H17	1.1548	0.8082	0.7774	0.071*
C12	0.7415 (11)	0.827 (2)	-0.0459 (8)	0.050(2)
H12A	0.8499	0.8453	-0.0437	0.060*
H12B	0.6832	0.8818	-0.1150	0.060*
C2	0.5181 (10)	0.7804 (11)	0.4622 (7)	0.039 (2)
C14	0.8040 (9)	0.794 (2)	0.5427 (7)	0.045 (3)
N1	0.7039 (8)	0.7695 (8)	0.3323 (6)	0.0352 (17)
C1	0.6664 (10)	0.7796 (9)	0.4443 (7)	0.035 (2)

C9	0.5916 (10)	0.7606 (9)	0.2384 (8)	0.0354 (19)
C3	0.3933 (10)	0.7661 (9)	0.3598 (8)	0.0339 (19)
C8	0.4349 (10)	0.7559 (10)	0.2450 (7)	0.0347 (18)
C7	0.3209 (11)	0.7417 (13)	0.1405 (9)	0.048 (2)
H7	0.3474	0.7367	0.0646	0.058*
C5	0.1268 (12)	0.7485 (14)	0.2662 (13)	0.062 (3)
H5	0.0240	0.7467	0.2732	0.074*
C4	0.2361 (11)	0.7637 (11)	0.3664 (11)	0.051 (3)
H4	0.2068	0.7728	0.4411	0.061*
C6	0.1664 (13)	0.7355 (14)	0.1537 (10)	0.052 (2)
H6	0.0901	0.7225	0.0861	0.062*
C13	0.6947 (13)	0.8815 (13)	0.0688 (9)	0.045 (2)
C15	0.8281 (12)	0.6798 (14)	0.6350 (9)	0.048 (2)
H15	0.7552	0.6007	0.6382	0.058*
C16	0.9609 (12)	0.6848 (15)	0.7222 (9)	0.051 (3)
H16	0.9777	0.6080	0.7828	0.061*
C18	1.0422 (11)	0.9091 (19)	0.6304 (10)	0.066 (4)
H18	1.1144	0.9894	0.6293	0.079*
C11	0.7047 (17)	0.6458 (13)	-0.0504 (10)	0.059 (3)
H11A	0.6281	0.6213	-0.1209	0.071*
H11B	0.7963	0.5844	-0.0544	0.071*
01	0.7041 (11)	1.0138 (10)	0.1076 (7)	0.061 (2)
O2	0.6070 (9)	0.4793 (8)	0.0963 (7)	0.0532 (17)
N2	0.6411 (10)	0.7481 (10)	0.1276 (8)	0.0408 (17)
C10	0.6446 (12)	0.6047 (13)	0.0635 (9)	0.041 (2)

Atomic displacement parameters (\AA^2)

	U	U	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0499 (3)	0.0991 (6)	0.0354 (3)	0.0116 (5)	0.0148 (2)	-0.0016 (5)
C19	0.047 (5)	0.050 (5)	0.029 (5)	0.002 (4)	0.002 (4)	0.005 (4)
C17	0.033 (4)	0.098 (9)	0.040 (5)	0.021 (8)	-0.006 (3)	-0.006 (8)
C12	0.059 (5)	0.055 (6)	0.038 (4)	0.006 (7)	0.013 (4)	0.001 (7)
C2	0.042 (4)	0.049 (7)	0.025 (4)	-0.001 (4)	0.005 (3)	-0.008 (4)
C14	0.034 (4)	0.075 (9)	0.030 (4)	0.008 (5)	0.012 (3)	-0.008 (6)
N1	0.041 (4)	0.034 (4)	0.031 (3)	0.001 (3)	0.009 (3)	-0.002 (3)
C1	0.041 (4)	0.033 (6)	0.029 (4)	0.000 (3)	0.003 (3)	0.000 (3)
C9	0.048 (5)	0.027 (4)	0.033 (4)	-0.001 (3)	0.011 (4)	-0.003 (3)
C3	0.044 (4)	0.025 (5)	0.033 (4)	0.001 (3)	0.006 (3)	-0.001 (3)
C8	0.048 (5)	0.028 (4)	0.026 (4)	0.003 (3)	0.000 (3)	0.000 (3)
C7	0.044 (5)	0.055 (5)	0.038 (5)	-0.003 (4)	-0.011 (4)	-0.018 (4)
C5	0.035 (5)	0.054 (6)	0.095 (9)	-0.005 (4)	0.008 (5)	0.003 (6)
C4	0.042 (5)	0.048 (6)	0.062 (6)	0.001 (4)	0.010 (5)	0.005 (4)
C6	0.051 (6)	0.060 (6)	0.040 (5)	0.003 (5)	-0.003 (4)	0.007 (5)
C13	0.063 (6)	0.045 (6)	0.026 (4)	-0.010 (4)	0.004 (4)	0.010 (4)
C15	0.044 (5)	0.063 (6)	0.037 (5)	-0.002 (4)	0.006 (4)	0.000 (5)
C16	0.044 (5)	0.077 (7)	0.028 (5)	0.007 (5)	-0.002 (4)	0.008 (5)
C18	0.028 (5)	0.128 (11)	0.040 (6)	0.016 (5)	0.003 (4)	-0.010 (6)

C11	0.098 (9)	0.053 (7)	0.032 (5)	-0.006 (6)	0.022 (6)	-0.005 (4)
01	0.098 (7)	0.050 (5)	0.030 (4)	-0.017 (4)	0.001 (4)	0.007 (3)
02	0.080 (5)	0.035 (4)	0.047 (4)	0.000 (3)	0.017 (4)	0.002 (3)
N2	0.049 (4)	0.040 (4)	0.032 (4)	0.003 (3)	0.004 (3)	0.004 (3)
C10	0.049 (6)	0.049 (6)	0.022 (5)	0.006 (4)	-0.003 (4)	-0.012 (4)
Geometric param	neters (Å, °)					
I1—C2		2.093 (8)	C3—C8	3	1.4	14 (12)
C19—C14		1.355 (17)	C8—C7	7	1.4	12 (12)
C19—C18		1.399 (14)	С7—С6	Ď	1.4	07 (16)
С19—Н19		0.9300	С7—Н7	7	0.9	300
C17—C18		1.32 (2)	C5—C4	Ļ	1.3	55 (16)
C17—C16		1.37 (2)	С5—Сб	5	1.3	83 (17)
С17—Н17		0.9300	С5—Н5	5	0.9	300
C12—C13		1.502 (14)	C4—H4	1	0.9	300
C12—C11		1.548 (19)	C6—H6	5	0.9	300
C12—H12A		0.9700	C13—C	01	1.1	88 (13)
C12—H12B		0.9700	C13—N	12	1.4	24 (12)
C2—C1		1.368 (12)	C15—C	216	1.3	92 (13)
C2—C3		1.453 (12)	C15—H	115	0.9	300
C14—C15		1.399 (17)	C16—H	116	0.9	300
C14—C1		1.498 (11)	C18—H	118	0.9	300
N1—C9		1.318 (12)	C11—C	210	1.5	19 (15)
N1—C1		1.368 (11)	C11—H	I11A	0.9	700
C9—N2		1.402 (12)	C11—H	I11B	0.9	700
С9—С8		1.407 (13)	O2—C1	10	1.1	81 (13)
C3—C4		1.411 (13)	N2—C1	10	1.4	04 (13)
C14-C19-C18		118.8 (10)	C4—C5	5—C6	120	0.7 (10)
C14-C19-H19		120.6	C4—C5	5—Н5	119	9.6
C18-C19-H19		120.6	C6—C5	5—Н5	119	9.6
C18-C17-C16		119.2 (9)	C5—C4	└─C3	12	1.5 (11)
С18—С17—Н17		120.4	C5—C4	I—H4	119	9.3
С16—С17—Н17		120.4	C3—C4	I—H4	119.3	
C13—C12—C11		103.7 (9)	C5—C6	б—С7	120.7 (10)	
С13—С12—Н124	4	111.0	C5—C6	б—Н6	119.7	
С11—С12—Н12А	A	111.0	С7—С6	Б—Н6	119	9.7
С13—С12—Н12Н	3	111.0	01—C1	13—N2	124	4.4 (9)
С11—С12—Н12Н	3	111.0	01—C1	13—C12	120	6.1 (10)
H12A—C12—H1	2B	109.0	N2—C1	13—C12	109	9.4 (10)
C1—C2—C3		119.8 (8)	C16—C	C15—C14	120	0.1 (10)
C1—C2—I1		122.0 (6)	C16—C	С15—Н15	120	0.0
C3—C2—I1		118.1 (6)	C14—C	С15—Н15	120	0.0
C19—C14—C15		119.0 (8)	C17—C	C16—C15	119	9.9 (10)
C19—C14—C1		121.2 (10)	C17—C	С16—Н16	120	0.1
C15—C14—C1		119.5 (11)	C15—C	С16—Н16	120	0.1
C9—N1—C1		118.2 (7)	C17—C	C18—C19	123	3.1 (13)
C2—C1—N1		122.6 (8)	C17—C	С18—Н18	118	3.5
C2-C1-C14		124.5 (8)	C19—C	C18—H18	118	3.5

N1—C1—C14	112.9 (7)	C10-C11-C12	107.3 (8)
N1—C9—N2	114.1 (8)	C10-C11-H11A	110.2
N1—C9—C8	124.6 (8)	C12-C11-H11A	110.2
N2—C9—C8	121.2 (8)	C10-C11-H11B	110.2
C4—C3—C8	118.2 (9)	C12—C11—H11B	110.2
C4—C3—C2	125.3 (9)	H11A—C11—H11B	108.5
C8—C3—C2	116.5 (8)	C9—N2—C10	124.3 (8)
C9—C8—C7	121.5 (9)	C9—N2—C13	122.9 (8)
C9—C8—C3	118.2 (8)	C10—N2—C13	112.8 (8)
C7—C8—C3	120.3 (9)	O2-C10-N2	124.3 (10)
C6—C7—C8	118.6 (10)	O2-C10-C11	129.0 (9)
С6—С7—Н7	120.7	N2-C10-C11	106.7 (9)
С8—С7—Н7	120.7		
C18-C19-C14-C15	-2.8 (16)	C6—C5—C4—C3	-0.3 (16)
C18-C19-C14-C1	-177.1 (10)	C8—C3—C4—C5	1.5 (14)
C3—C2—C1—N1	1.6 (13)	C2—C3—C4—C5	-179.4 (9)
I1—C2—C1—N1	-174.7 (6)	C4—C5—C6—C7	-1.6 (18)
C3—C2—C1—C14	-180.0 (10)	C8—C7—C6—C5	2.2 (17)
I1—C2—C1—C14	3.7 (14)	C11—C12—C13—O1	179.7 (12)
C9—N1—C1—C2	0.1 (11)	C11—C12—C13—N2	1.7 (11)
C9—N1—C1—C14	-178.5 (9)	C19—C14—C15—C16	1.0 (16)
C19—C14—C1—C2	-126.3 (10)	C1-C14-C15-C16	175.4 (10)
C15—C14—C1—C2	59.3 (15)	C18—C17—C16—C15	-1.3 (18)
C19—C14—C1—N1	52.2 (14)	C14-C15-C16-C17	1.1 (16)
C15—C14—C1—N1	-122.1 (9)	C16—C17—C18—C19	-0.6 (19)
C1—N1—C9—N2	-179.1 (7)	C14-C19-C18-C17	2.7 (17)
C1—N1—C9—C8	-2.0 (12)	C13-C12-C11-C10	-2.1 (12)
C1—C2—C3—C4	179.3 (8)	N1-C9-N2-C10	101.4 (10)
I1—C2—C3—C4	-4.2 (11)	C8—C9—N2—C10	-75.8 (12)
C1—C2—C3—C8	-1.5 (12)	N1-C9-N2-C13	-78.1 (11)
I1—C2—C3—C8	174.9 (6)	C8—C9—N2—C13	104.7 (10)
N1—C9—C8—C7	-178.2 (8)	O1—C13—N2—C9	0.8 (16)
N2—C9—C8—C7	-1.3 (13)	C12—C13—N2—C9	178.8 (8)
N1—C9—C8—C3	1.9 (12)	O1-C13-N2-C10	-178.7 (11)
N2—C9—C8—C3	178.8 (7)	C12-C13-N2-C10	-0.6 (12)
C4—C3—C8—C9	179.1 (8)	C9—N2—C10—O2	-0.3 (16)
C2—C3—C8—C9	-0.1 (11)	C13—N2—C10—O2	179.1 (10)
C4—C3—C8—C7	-0.8 (12)	C9—N2—C10—C11	179.8 (9)
C2—C3—C8—C7	-180.0 (8)	C13—N2—C10—C11	-0.8 (12)
C9—C8—C7—C6	179.1 (9)	C12-C11-C10-O2	-178.1 (11)
C3—C8—C7—C6	-1.0 (14)	C12-C11-C10-N2	1.8 (12)

