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ABSTRACT
Rasfonin is a fungal secondary metabolite demonstrating with antitumour effects. Reactive
oxygen species (ROS) are formed as a natural by-product of the normal metabolism of oxygen
and have important roles in cell signalling and homeostasis. Studies reported that many fungal
secondary metabolites activated either autophagy or apoptosis through ROS generation. In
former study, we revealed that rasfonin induced both autophagy and apoptosis, however,
whether it promoted aforementioned processes via upregulation of ROS generation remains
explored. In the current work, we demonstrated that rasfonin induced autophagy and apoptosis
concomitant with a dramatically ROS production. N-Acetylcysteine (NAC), an often used ROS
inhibitor, decreased both autophagic flux and caspase-dependent apoptosis by rasfonin. Flow
cytometry analysis revealed NAC was able to reduce rasfonin-dependent apoptosis and necrosis.
In methanethiosulfonate (MTS) assay, we observed that NAC significantly blocked rasfonin-
induced cell viability loss. In addition, we found that rasfonin increased the phosphorylation of
c-Jun NH2-terminal kinase (JNK), which was inhibited by NAC. SP600125, an inhibitor of JNK,
reduced rasfonin-dependent autophagic flux and apoptosis. Moreover, we demonstrated that
rasfonin inhibited the phosphorylation of both 4E-binding protein 1 (4E-BP1) and S6 kinase 1
(S6K1), two main substrates of mammalian target of rapamycin (mTOR). Collectively, rasfonin
activated autophagy and apoptosis through upregulation of ROS/JNK signalling.
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Introduction

Macroautophagy (hereafter called autophagy) is a
degradative process that involves delivery of cyto-
plasmic components, such as proteins, organelles
and invaded microbes to the lysosome for digestion
(Hippert et al. 2006). Autophagy has been found to
be implicated in various human diseases and can
either promote cell survival or cell death (Kroemer
and Levine 2008; Gump et al. 2014). In different
cellular contexts, a complex of signalling pathways
controls the activation of autophagy (Zhu et al. 2007;
Maiuri et al. 2010). Reactive oxygen species (ROS) are
highly reactive oxygen free radical or non-radical
molecules that are produced by multiple mechan-
isms in cells (Apel and Hirt 2004). These ROS are
important signalling molecules that mediating
many signal transduction pathways, playing critical
roles in cell survival and death and participating in
many diseases (Ray et al. 2012). Recently, ROS were
demonstrated to promote starvation-induced autop-
hagy, antibacterial autophagy and autophagic cell

death (Scherz-Shouval and Elazar 2007). There is
now an accumulating consensus that ROS controls
autophagy in multiple contexts and cell types
(Scherz-Shouval and Elazar 2007, 2011). Moreover,
changes in ROS and autophagy regulation contribute
to cancer initiation and progression (Tang et al.
2010). In tumour treatment, therapeutic drugs that
increase ROS and autophagy were implicated in their
mechanism for cell death (Ray et al. 2012).

For a long time, apoptosis was believed the sole form
of programmed cell death during development, home-
ostasis and disease, whereas necrosis was considered as
an unregulated and uncontrollable procedure. Growing
evidence reveals that necrosis can also occur in a regu-
lated manner (Elmore 2007). Based on morphology,
three major types of programmed cell death have
been coined: apoptosis, autophagic cell death and pro-
grammed necrosis (Eisenberg-Lerner et al. 2009). Under
oxidative stress, ROS including free radicals, such as
superoxide, hydroxyl radical and hydrogen peroxide
are generated at high levels leading to cellular damage
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and cell death (Gump et al. 2014). This kind of cell death
often involves induction of apoptosis through caspase
activation. Inmacrophages, one study reported that ROS
contribute to caspase-independent cell death (Yee et al.
2014). Therefore, in addition to autophagy, ROS is
actively involved in the regulation of apoptosis.

Accumulating evidence has indicted that there are
several molecular connections among autophagy,
apoptosis and programmed necrosis (Eisenberg-
Lerner et al. 2009). For cells undergoing persistent
autophagy, hallmarks of apoptosis, such as caspase
activation, necrotic cell death, organelles swelling
and plasma membrane rupture, are often observed
(Chu and Shatkin 2008). Depending on the cellular
setting, the same proteins can regulate both autopha-
gic and apoptotic processes. For example, p53, a
potent inducer of apoptosis, also promotes autophagy
via its target gene, damage-regulated modulator of
autophagy (DRAM). Beclin 1, required for formation of
the autophagic vesicles, was also found to interact
with both Bcl-2 and Bel-xL (Swerdlow and Distelhorst
2007). Until now, three different types of interplays
between autophagy and apoptosis have been sug-
gested: autophagy can act as a partner, and antago-
nist or an enabler of apoptosis (Longo et al. 2008).

Generally, the mammalian target of rapamycin
(mTOR), a 289-kDa serine/threonine protein kinase
also known as fructose bisphosphatase-12/rapamy-
cin-associated protein (FRAP), is a negative regulator
of autophagy (Chiang and Abraham 2005). As a
member of the PI3K-related kinase family, mTOR is
found in two distinct complexes, mTORC1 and
mTORC2, and regulates many aspects of cellular
functions (Wullschleger et al. 2006; Zhu et al. 2007).
mTORC2 can activate Akt, while mTORC1 is primarily
activated by PI3K/Akt (Reiling and Sabatini 2008).
Once activated by Akt, mTORC1 elicits a negative
feedback loop to inhibit the activity of Akt
(Harwood et al. 2008). mTORC1 phosphorylates two
main substrates, ribosomal protein S6 kinase 1 (S6K1)
and eukaryotic initiation factor 4E-binding protein 1
(4E-BP1) (Weisman et al. 2007).

In response to a variety of different stimuli, mitogen-
activated protein kinases (MAPK) transducer signals
from the cell membrane to the nucleus and involve in
various intracellular signalling pathways that control a
wide spectrum of cellular processes, including growth,

differentiation and stress responses (Edick et al. 2007).
MAPKs include extracellular signal-regulated kinase
(ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK
(Gregory et al. 2004). Different from ERK pathway, JNK
and p38 MAPK are weakly activated by growth factors,
but respond strongly to stress signals, including tumour
necrosis factor, interleukin-1, ionizing and UV irradiation,
hyperosmotic stress and chemotherapeutic drugs
(Heinrichsdorff et al. 2008). Activation of these kinases
is strongly associated with apoptotic cell death induced
by stress stimuli (Chu and Shatkin 2008). Recent studies
reported that JNK also played a critical role in the reg-
ulation of autophagy (Goussetis et al. 2010).

Many fungal secondary metabolites were demon-
strated to increase levels of cellular oxidative stress
(Wu et al. 2012). 11ʹ-deoxyverticillin A is a member of
a class of fungal secondary metabolites known as
epipolythiodioxopiperazines (ETPs) and its toxicity
to animal cell by generation of ROS via redox cycling
(Zhang et al. 2011). And X15-2, another small-sized
compounds, promotes autophagy through genera-
tion ROS (Xue et al. 2015).

In present study, we explored whether rasfonin
could produce ROS and, demonstrated ROS played a
critical role in rasfonin-dependent autophagy and
apoptosis. Moreover, we revealed that JNK signalling
functioned downstream of ROS to mediate rasfonin-
induced autophagy and caspase-dependent apoptosis.

Result

Autophagy is involved in rasfonin-induced cell
death processes

Human renal cancer cell line ACHN was selected to
detect rasfonin-induced cell death in the present
study. As shown in Figure 1(a), rasfonin caused cell
viability loss of ACHN cells in a time-dependent man-
ner. In colony growth assay, rasfonin demonstrated
to suppress cell growth remarkably (Figure 1(b)).
Flow cytometry data revealed that the rasfonin-
induced cell death of ACHN could be either apopto-
tic or necrotic (either necrosis or secondary necrosis)
(Figure 1(c)). Interestingly, 3-methyladenine (3-MA),
widely used inhibitor of autophagy (Kabeya et al.
2004), partially rescued rasfonin-induced cell viability
loss (Figure 1(d)), suggesting that autophagy is
involved in rasfonin-activated cell death processes.
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Rasfonin enhances autophagy and inhibits
mTORC1 signalling

Electron microscopy (EM), which is considered as
one of the most convincing approaches to detect
autophagy (Klionsky et al. 2012), is used to deter-
mine whether rasfonin induces autophagy or not.
We found that rasfonin rapidly induced an obvious
accumulation of membrane vacuoles in ACHN cells
at the both 0.5- and 1-h time points (Figure 2(a)). In
immunoblotting assay, rasfonin revealed to
increase the ratio of LC3-II to actin, which is an
indicator of autophagy (Kabeya et al. 2004), at 0.5-
, 1- and 12-h time points. Chloroquine (CQ), which
is known as inhibitor of autophagosome–lysosome
fusion and often used in autophagic flux detection
(Klionsky et al. 2012), further increased rasfonin-
induced LC3-II accumulation, indicating that rasfo-
nin can activate autophagic flux (Figure 2(b) and 2
(c)). Moreover, we observed that rasfonin was able

to promote the degradation of p62/SQSTM1
(Sequestosome 1), a selective substrate of autop-
hagy and degraded when autophagy is activated
(Figure 2(c)). Since the kinase activity of mTOR can
be inferred by measuring the phosphorylation of its
two substrates, S6K1 and 4E-BP1, we next examined
the phosphorylation of S6K1 and 4E-BP1 in
response to rasfonin stimulation. Expectedly, rasfo-
nin demonstrated to decrease the phosphorylation
of either S6K1 or 4E-BP1, suggesting that rasfonin
triggered autophagic process by downregulation of
mTORC1 signalling (Figure 2(d)).

Rasfonin stimulates autophagy and apoptosis
through rapidly ROS generation

Overproduction of ROS caused damage to the cells
and was involved in the regulation of either autop-
hagy or apoptosis (Apel and Hirt 2004); thus, we
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Figure 1. Autophagy is involved in rasfonin-induced cell death processes. (a) ACHN cells were treated with rasfonin with the
concentration of 6 μM for 24 and 48 h. Cell viability was analysed by methanethiosulfonate (MTS) assay as described in Materials
and Methods. The single asterisk denotes the group is statistically different from the control groups (p < 0.05), and double asterisk
means p < 0.01. (b) Colony survival assays in ACHN cells were performed following the treatment of ACHN cells with rasfonin 1 μM
for 14 d. Data represent the mean ± SD of three experiments, each performed in triplicate. (c) Following treatment of ACHN cells
with rasfonin (6 μM) for 12 h, the apoptosis and necrosis induced were determined by flow cytometry. Apoptotic: AV positive and PI
negative; necrotic: PI positive; AV: annexin V. The data are presented as mean ± SD from three independent experiments. (d) ACHN
cells were treated with rasfonin with 6 μM for 12 and 48 h with the presence or absence of 3-MA (2 mM). Cell viability was analysed
by MTS assay as described in Materials and Methods. The double asterisk denotes the group is statistically different from the control
groups (p < 0.01).
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next determine the participation of ROS in rasfo-
nin-induced cell death processes. It demonstrated
that rasfonin dramatically increased ROS produc-
tion to a maximum extent at the 0.5-h time point
(Figure 3(a)). N-Acetylcysteine (NAC), an often used
ROS inhibitor, reduced rasfonin-induced ROS gen-
eration (Figure 3(a)). And rasfonin-induced cell
death was suppressed in 24 h and 48 h (Figure 3
(b)). Flow cytometry data revealed that NAC
decreased rasfonin-dependent apoptosis and
necrosis (Figure 3(c)), indicating that rasfonin acti-
vated above cell death pathways via mediating
ROS production. Moreover, we observed that NAC
attenuated rasfonin-induced autophagy as evaluat-
ing LC3-II accumulation and p62 degradation in
the presence of CQ (Figure 3(d)). Although rasfonin
decreased LC3-II levels at 2-h time point, yet, CQ
was able to prevent LC3-II from degradation
(Grumati et al. 2010; Klionsky et al. 2012), suggest-
ing an enhanced autophagic flux (Figure 3(d)).
Meanwhile, NAC also blocked the cleavage of
PARP-1 (Figure 3(e)), a hallmark of apoptosis (Amé
et al. 2004), and indicating that ROS is also
involved in rasfonin-induced apoptotic process.

Inhibition of JNK pathway attenuates both
autophagy and caspase-dependent apoptosis by
rasfonin

JNK belongs to MAPK signalling pathways and is
activated upon stimulation of ROS (Kim et al.
2010), and so does the downstream factor –
NFκB. We observed that rasfonin increased the
phosphorylation of JNK, which was inhibited by
NAC (Figure 4(a)), confirming that ROS can act
upstream of JNK. SP600125 (SP), an inhibitor of
JNK, demonstrated to completely block rasfonin-
dependent autophagy at the 1-h time point
(Figure 4(b)). At both 2- and 12-h time points, it
was able to decrease rasfonin-induced autophagic
flux judging the LC3-II accumulation and p62
degradation in the presence of CQ (Figure 4(b)).
MG132, a proteasome inhibitor and is often used
to inhibit NFκB (Ko et al. 2010; Zanotto-Filho et al.
2012) attenuated rasfonin-induced autophagy as
evaluating LC3-II accumulation and p62 degrada-
tion in the presence of CQ (Figure 4(c)). Moreover,
we found that SP inhibited the cleavage of PARP-1
by rasfonin (Figure 4(d)). Aforementioned results
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Figure 2. Rasfonin enhances autophagy and inhibits mTORC1 signalling. (a) Electron microscopy was used to detect the vacuoles in
ACHN cells in the medium of rasfonin (6 μM) for 30 min and 1 h. (b) ACHN cells were treated with rasfonin (6 μM) for 30 min (c:1 h,
12 h) in the presence or absence of CQ (15 μM). The lysates of the cells were analysed by western blotting with the indicated
antibodies. Actin was used as loading control. (d) ACHN cells were treated with rasfonin (6 μM) for 1 h and cell lysates were
prepared and analysed by immunoblotting using the indicated antibodies, tERK1/2 was used as loading control.
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indicated that JNK functioned downstream of ROS
and played a critical role in the regulation of rafo-
nin-induced either autophagy or caspase-depen-
dent apoptosis.

Discussion

Rasfonin, a fungal secondary metabolite, stimulates
autophagy and apoptosis; however, it remains
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unknown whether rasfonin can promote above cell
death processes through ROS. In this study, we
clearly revealed that rasfonin induced rapidly gen-
eration of ROS, which was likely to mediate rasfonin-
dependent autophagy and apoptosis via JNK signal-
ling pathway.

Cancer cells produce higher levels of ROS than
normal cells, and this leads to cancer progression
(Hart et al. 2015). ROS are important signalling mole-
cules that mediate many signal transduction path-
ways and benefit for cellular survival (Focaccetti et al.
2015); however, the overproduction of ROS damage
cell by activation of apoptosis or necrosis. Growing
evidence reveal that ROS also play an important role
in the regulation of autophagy (Farah et al. 2016).
Consistent with former study, here, we found that
ROS are critical for rasfonin-dependent autophagy,
necrosis and apoptosis. Huang et al. (2011) reported
that ROS regulated autophagy through distinct
mechanisms depending on cell types and stimula-
tion conditions. In cancer treatment, while therapeu-
tic drugs that augment ROS and autophagy have
been implicated in their mechanism for cell death,
other therapeutic drugs that generate ROS and pro-
mote autophagy seem to have a protective effect
(Focaccetti et al. 2015; Koo et al. 2016). Concerning
rasfonin, we found that, through ROS, it induced
both autophagy and apoptosis. Immunoblotting
data demonstrated that NAC abolished rasfonin-
induced PARP-1 cleavage, whereas flow cytometry
results indicated that NAC only partially decreased
rasfonin-dependent apoptotic cell death. Therefore,
we speculated that rasfonin possibly activated cas-
pase-independent apoptosis. Collectively, it is rea-
sonable to assume that, through induction of ROS,
rasfonin could undergo cell death via multiple
pathways.

Many signalling pathways have been found to reg-
ulate autophagic process (Jung et al. 2010), such as
Adenosine 5′-monophosphate (AMP)-activated protein
kinase, Akt/mTOR and MAPK, etc. MAPKs include ERK,
JNK and p38 MAPK, and control a wide spectrum of
cellular processes (Kim et al. 2008a). Accumulating
evidence indicated that MAPKs actively participated
in the regulation of autophagic process (Peter et al.
2010). In Parkinson’s and Lewy body diseases, human
tissue study supports a role for ERK/MAPK in the reg-
ulation of autophagy (Jung et al. 2010). In colorectal
cancer cells, a novel cell type-specific role of p38α

MAPK is found to control and mediate autophagy
(Kim et al. 2008a). Either autophagy or apoptosis has
been found to be regulated by JNK-mediated Bcl-2
phosphorylation (Kim et al. 2008b). Wei et al. reported
that JNK1-mediated Bcl-2 phosphorylation interferes
with its binding to the proautophagy BH3 domain-
containing protein Beclin 1, and had a dual role in
autophagy and apoptosis regulation (Wei et al. 2008).
Similar to their observation, we demonstrated that
rasfonin was able to activate JNK signalling pathway,
and ROS functioned upstream of JNK to regulate both
apoptosis and autophagy by rasfonin.

In conclusion, rasfonin induces autophagy through
oxidative stress/JNK signalling, which provides a novel
mechanism for this fungal secondary metabolite-acti-
vated cell death processes. These enriched the
machinery and broaden our understanding of fungal
secondary metabolite-induced autophagy, apoptosis
as well as necrosis.

Materials and methods

Chemicals and antibodies

Chloroquine diphosphate salt (CQ, C6628), N-acetyl-L-
cysteine (NAC, A7250), SP600125 (S5567), MG132
(M8699) and polyclonal antibodies against LC3
(L7543) were purchased form Sigma-Aldrich (St. Louis,
MO, USA). Antibody of p62 (sc-28359) was acquired
from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Antibodies against PARP-1 (9542), p44/42 MAPK (total-
Erk1/2, 9102), phospho-p70S6 kinase (Thr389, 9205),
p70S6 kinase (S6K1, 9202), phospho-4E-BP1 (Thr37/
46, 2855), phospho-SAPK/JNK (T183/Y185, 9521) and
SAPK/JNK (9525) were purchased from Cell Signaling
Technology (Beverly, MA, USA). And total 4E-BP1
(ab32130) was purchased from Abcam (Burlingame,
CA, USA). Antibody against actin (TA-09) was obtained
from Zhongshan Jinqiao Biocompany (Beijing, China).
Methanethiosulfonate reagent powder (G1111) was
acquired from Promega Corporation (Madison,
WI, USA).

Cell culture and western blot analysis

ACHN (human renal cancer cell line) were grown
in Dulbecco modified Eagle medium (DMEM)
medium containing 10% foetal bovine serum
(GIBCO) and 1% antibiotics. Cells were grown to
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70–80% and treated with varieties of compounds
for indicated time. Whole cell lysates were pre-
pared with lysis using Triton X-100/glycerol buffer,
containing 50 mM Tris-HCl, pH 7.4, 4 mM ethylene
diamine tetraacetic acid, 2 mM ethylene glycol
tetraacetic acid and 1 mM dithiothreitol, supple-
mented with 1% Triton X-100, 1% sodium dodecyl
sulfate (SDS) and protease inhibitors and then
separated on a SDS-polyacrylamide gel electro-
phoresis gel (13, 10 or 8% according to the mole-
cular weights for the proteins of interest) and
transferred to polyvinylidene fluoride membrane.
Immunoblotting was performed using appropriate
primary antibodies and horseradish peroxidase-
conjugated suitable secondary antibodies, fol-
lowed by detection with enhanced chemilumines-
cence (Pierce Chemical).

Cell viability assay (MTS)

Cells were plated in 96-well plates (5000–10,000 cells
per well) in 100 µl complete culture medium. After
overnight culture, the medium was replaced with
complete medium that was either drug-free or con-
tained rasfonin or other chemicals. The cells were
cultured for various periods and cellular viability
was determined with CellTiter 96 Aqueous Non-
Radioactive Cell Proliferation Assay (Promega).

Colony growth assay

Cells were seeded at a concentration 300 cells/ml
and cultured for 2 weeks to allow colony growth in
the presence or absence of the indicated concentra-
tion of rasfonin. Pictures were taken after 4% paraf-
ormaldehyde fixation and trypan blue stain, and then
the numbers of colony were calculated by Image J.

Flow cytometry assay

ACHN cells were treated with the indicated compounds,
then trypsinised and harvested (keeping all floating
cells), washed with phosphate buffer saline (PBS) buffer,
followed by incubating with a fluorescein isothiocya-
nate-labelled annexin V (FITC) and propidium iodide (PI)
according to the instructions of an Annexin-V-FITC
Apoptosis Detection Kit (Biovision Inc., K101-100) and
analysed by flow cytometry (FACSAria, Becton

Dickinson). Percentages of the cells with annnexin V
positive and PI negative stainings were considered as
apoptotic, whereas PI-positive staining was considered
to be necrotic.

Electron microscopy

Electron microscopy was performed as described.
Briefly, samples were washed three times with PBS,
trypsinised, and collected by centrifuging. The cell
pellets were fixed with 4% paraformaldehyde over-
night at 4°C, postfixed with 1% OsO4 in cacodylate
buffer for 1 h at room temperature (RT) and dehy-
drated stepwise with ethanol. The dehydrated pellets
were rinsed with propylene oxide for 30 min at RT
and then embedded in Spurr resin for sectioning.
Images of thin sections were observed under a trans-
mission electron microscope (JEM1230, Japan).

Reactive Oxygen Species Assay Kit

DCFH-diacetate (DA) passively diffuses into cells and is
deacetylated by esterases to form nonfluorescent 2′,
7′-dichlorofluorescein (DCFH). In the presence of ROS,
DCFH reacts with ROS to form the fluorescent product
DCF, which is trapped inside the cells. Cells were plated
in 96-well plates (20,000–30,000 cells per well) in 100 µl
complete culture medium. After overnight culture, the
culture medium was first removed and the cells were
washed three times with PBS, DCFH-DA, diluted to a
final concentration of 10 μM with DMEM/F12, was
added to cultures and incubated for 20 min at 37°C.
The fluorescence was read at 485 nm for excitation and
530 nm for emission with a fluorescence plate reader
(Genios, TECAN). The increase value compared to con-
trol was viewed as the increase of intracellular ROS.

Statistical analysis

Normally distributed data are shown as mean ± SD
and were analysed using one-way analysis of var-
iance and the Student–Newman–Keuls post hoc test.
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