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Common variable immunodeficfiiency (CVID) is a primary immunodeficiency syndrome representing a 
heterogeneous set of disorders resulting mostly in antibody deficiency and recurrent infections. However, 
inflammatory and autoimmune disorders and some kinds of malignancies are frequently reported as a part 
of the syndrome. Although it is one of the most widespread primary immunodeficiency, only recently some 
genetic defects in CVID have been identified. Mutations have been detected in inducible T-cell costimulator 
(ICOS), transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), B-cell 
activating factor-receptor (BAFF-R), B-cell receptor complex (CD19, CD21 and CD81) and CD20. On the other 
hand, recent studies have shown a decrease in T-helper-17 cells frequency and their characteristic cytokines 
in CVID patients and this emphasis on the vital role of the T-cells in immunopathogenesis of the CVID. 
Furthermore, in the context of autoimmune diseases accompanying CVID, interleukin 9 has recently attracted a 
plenty of considerations. However, the list of defects is expanding as exact immunologic pathways and genetic 
disorders in CVID are not yet defined. In this review, we have a special focus on the immunopathogenesis of 
CVID, recent advances in understanding the underlying etiology and genetics for patients.
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infections. Males and females are affecting equally. 
Although there are no clear-cut data on the prevalence 
of CVID,  prevalence ranging from 1:10,000 to 1:50,000 
or 1:100,000, is estimated and it is believed to be the 
most prevalent human primary immunodeficiency 
diseases (PID) requiring medical consideration.[1-3] 
The onset of CVID is at greater than 2 years of age.[ (4] 
CVID patients have diverse clinical presentations and 
manifest different types of immunodeficiencies.[5,6] A 
marked decrease of IgG and of at least one of the IgM 
or IgA isotypes can be used to diagnosis of CVID, while 
the absence of isohemagglutinins and/or failure to 
response to specific antigens and other defined causes 
of hypogammaglobulinemia are excluded.[7] Clinically, 
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INTRODUCTION

As a primary immunodeficiency, common variable 
immunodeficiency (CVID) is characterized by low levels 
of serum immunoglobulins (Ig) and recurring bacterial 
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Patients have an increased susceptibility to infections 
with signs of autoimmunity and an increased risk of 
malignancy.[8]

As about 90% of CVID patients have normal numbers 
of peripheral B lymphocytes, presumably the defects 
are due to the later stages of B-cell development.[9] 
However, apart from low Ig production by B-cells in 
CVID patients, other immunological abnormalities 
such as T-cell dysfunction and monocyte/macrophage 
hyperactivity are reported in a large proportion of 
patients.[10] Approximately, half of the cases have 
signs of T-cell deficiencies contributing to the defective 
antibody production.[11,12] It’s demonstrated that CVID 
patients have decreased numbers of T-helper-17 
(Th17) cells in their circulation.[13] Mutations have 
been identified in various B-cell related inducible 
T-cell costimulator (ICOS), transmembrane activator 
and calcium modulator and cyclophilin ligand 
interactor (TACI), B-cell activating factor-receptor 
(BAFF-R), in members of the CD19-B-cell receptor 
(BCR) complex (CD19, CD21 and CD81) and CD20 
(Table1). Moreover, polymorphisms in genes involved 
in deoxyribonucleic acid (DNA) repair (MSH5, MSH2, 
MLH1, RAD50 and NBS1) have also been reported in 
patients with CVID.[4,14-20] Among the CVID patients, 
only 10-20% of cases have a positive family history 
while most cases arise sporadically.[7] In the most 
families, CVID is inherited in an autosomal dominant 
pattern, but autosomal recessive inheritance is also 
seen in a significant minority.[21]

GENETIC DEFECTS PREDISPOSING FOR CVID

ICOS deficiency
ICOS is a member of Ig-like co-stimulatory surface 
molecules, which expresses only on activated T 
lymphocytes. In human, this is encoded by the 
ICOS gene on chromosome 2q23.[21,22] The ligation 
of ICOS with its ligand on B-cells stimulates the 
differentiation of T lymphocytes into T follicular 

helper (TFH) cells. The latter cells are essential 
for the creation of the germinal center (GC) in 
lymphoid follicules.[23] Accordingly, recent researches 
demonstrate that the formation of GCs is impaired 
in ICOS-deficient patients.[21] In lymph nodes of an 
ICOS-deficient patient, disturbed GC formation has 
demonstrated by follicles analysis.[24] Bossaller et al. 
have reported that ICOS-deficient patients had a severe 
decrease in CXCR5+ positive/CD4+ T-cells and almost 
complete absence of CD57+/CXCR5+/CD4+ T-cells.[24]

This defect in GC formation may be due to the low 
production of interleukin (IL)-10 by ICOS-deficient 
CD4+ T lymphocytes, which result in severe decrease in 
the number of CD27+ memory B-cells and plasma cells. 
ICOS also plays an essential role in clonal expansion 
of effector Th2 cells.[25,26] ICOS also regulates Th2 cell 
differentiation by enhancing NFATc1 expression and 
initial IL-4 production during early T-cell activation 
by antigens.[27]

Reported by Grimbacher et al. in 2003, the first 
genetic defect detected in patients with CVID was 
ICOS deficiency (CVID1, Mendelian inheritance 
in man (MIM)#607594) (Table 1) as an autosomal 
recessive disorder.[28,29] However, based on a research 
in the Black Forest region of Germany, only 9 out 
of 226 patients with CVID have been found to have 
ICOS mutations.[29] Altogether, 11 individuals from 5 
different families have been identified so far, 9 of them 
had the same mutation in ICOS.[28-30] A homozygous 
deletion of a region spanning from intron 1 to intron 
3 of the ICOS gene (1815 bp) was found in the first 
nine individuals (from four families) identified.[28,29]

TACI deficiency
TACI is belonging to the tumor necrosis factor 
(TNF) receptor superfamily and is expressed both 
on activated T lymphocytes and B lymphocytes.[31,32] 
TACI molecules are encoded by the TNFRSF13B gene 
located at the short arm of human chromosome 17 
(17p11.2).[32] BAFF and a proliferation-inducing ligand 
(APRIL) are the known ligands for TACI.[33] Ligation 
of TACI induces class-switch recombination events 
in B-cells.[34-37] In 2005, mutations in TNFRSF13B 
have been described in CVID patients.[16,38] A variety 
of mutations in TACI (CVID2, MIM#240500)(Tabel1) 
have identified in cohorts of patients with CVID by 
multiple studies.[16,38-40] However, the earliest studies 
showed that the TACI mutations more frequently are 
founded in C104R and A181E positions.[41] All together, 
the incidence of TACI deficiency patients is estimated 
to be around 5-10% of CVID patients.[42]

Based on clinical findings, TACI mutations show 
a range of clinical symptoms from no infection to 

Table 1: Types of CVID basis on deficient gene
Type Deficient gene Chromosome 

location
Number of related 

mutations identified so far
CVID 1 ICOS 2q33.2 2
CVID 2 TACI 

(TNFRSF13b)
17p11.2 16

CVID 3 CD19 16p11.2 2
CVID 4 BAFFR 

(TNFRSF13c)
22q13.2 2

CVID 5 CD20 (MS4A) 11q12.2 1
CVID 6 CD81 (TAPA-1) 11p15.5 1
CVID 7 CD21 (CR2) 1q32 2
CVID: Common variable immune deficiency, ICOS: Inducible T-cell costimulator, 
MS4A: Membrane-spanning 4A, TAPA-1: Target of the antiproliferative antibody 1, 
CR2: Complement receptor 2, TNFRSF: Tumor necrosis factor receptor superfamily
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very severe infections, autoimmune manifestations, 
lymphoma and other cancers. This suggests that other 
genetic and environmental factors may contribute to 
this variable disease spectrum.[32,43] Recent studies 
demonstrate that TACI deficiency patients may be 
more prone to lymphoproliferation and autoimmunity 
as in a cohort of 564 patients, TACI mutations were 
shown to be strongly associated with autoimmunity 
(most commonly autoimmune thrombocytopenia) and 
lymphoproliferation (splenomegaly, lymphadenopathy, 
nodular lymphatic hyperplasia).[4]

CD19 deficiency
In human, CD19 protein is encoded by the CD19 gene 
and it is located on the short arm of chromosome 16 
(16p11.2).[18] CD19 is a member of BCR co-receptor 
complex together with CD21, CD81 target of the 
antiproliferative antibody 1 (TAPA-1) and CD225 on 
mature B-cells.[44,45] Unlike CD81 and CD225, CD19 
and CD21 are B-cell specific antigens.[46] Recognition 
of antigen attached to C3d by the BCR and CD21 
respectively results in dual signaling through the BCR 
and the CD19 complex. In this manner, this complex 
acts as a link between the innate and adaptive immune 
systems.[23] CD19-/-B-cells show a decrease in serum Ig 
secretion and a profound defect in response to T-cell-
dependent antigens.[21]

For the first time, CD19 deficiency (CVID3, 
MIM#613493) (Table1) was found in a Turkish 
girl and three Colombian siblings as a homozygous 
mutation in the CD19 gene.[18] The Turkish girl had 
a homozygous single base pair insertion in exon 6 
resulting in a frame shift mutation and premature 
stop codon in the intracellular part of the molecule. 
Those three siblings from Colombia were homozygous 
for a deletion resulting in a premature stop codon in 
the intracellular domain.[4] In a subsequent report, a 
Japanese boy was also described to be CD19 deficient 
with a compound heterozygous mutation in CD19, 
both of which were novel mutations.[47]

BAFF-R deficiency
BAFF-R is a member of the TNF receptor family that 
specifically binds BAFF. This molecule is encoded 
by three exons of the TNFRSF13C gene situated on 
human chromosome 22q13.[48-50] BAFF-R is required 
for B-cell maturation and survival.[51,52]

Two adult siblings, one with CVID, of a consanguineous 
marriage have been reported by Warnatz et al. in 2009 
that carrying a homozygous 24 bp in-frame deletion 
in exon 2 of the TNFRSF13C gene.[20] One sibling (the 
brother) had decreased IgG and IgM levels but normal 
IgA and the other (the sister), who was clinically 
normal, had a slightly diminished IgG and IgM 

levels in her serum.[4] In other studies, heterozygous 
sequence variations in the BAFF-R gene (CVID4, 
MIM#613494) (Table1) have been reported.[53]

CD20 deficiency
CD20 in human is encoded by the MS4A1 gene and 
is belonging to membrane-spanning 4A (MS4A) gene 
family.[54,55] This molecule is one of the first B-cell 
specific differentiation antigens, which was identified 
from early pre-B until mature B-cell stage during 
B-cell development.[56,57]

In 2010, Kuijpers et al. reported a homozygous 
mutation in CD20 gene (CVID5, MIM#613495) 
(Table1) in a Turkish girl of consanguineous 
marriage, with CD20 deficiency. Genetic analysis 
showed a homozygous mutation in a splice junction of 
the CD20 gene (MS4A1) resulting in non-functional 
mRNA variant.[14] The clinical features of this 
patient presented with hypogammaglobulinemia, 
decrease in memory B-cells count, recurrent 
bronchopneumonia and respiratory tract infections 
from the age of 2.[58]

CD81 deficiency
CD81 (TAPA-1) belongs to the tetra spanning family 
and forms a complex that signals in conjunction with 
the B-cell antigen receptor.[59] While CD19 and CD21 
are specifically expressed on B lymphocytes, CD81 
and CD225 are widely expressed on many immune 
cell types (T-cells, B-cells, NK cells, eosinophils 
and monocytes), hepatocytes and most stromal and 
epithelial cells.[19] This molecule is encoded by the 
CD81 gene[60] located on the short arm of human 
chromosome 11 (11p15.5).[7]

As the first case, Van zelm et al. had identified a 
6-year-old Moroccan girl born of consanguineous 
parents. She had CD19 deficiency with a homozygous 
substitution mutation downstream of exon 6. They 
showed that defects in the CD19 signaling complex 
could be involved in development of CVID and even in 
expression of CD81 on B-cells (CVID6, MIM#613496) 
(Table1) due to the dependency of CD19 on CD81 
expression.[19] Her clinical findings were onset of 
recurrent respiratory infections in early childhood, 
glomerulonephritis resulting in renal failure and 
autoimmune thrombocytopenia. She also had impaired 
antibody response to both pneumococcal antigens and 
tetanus toxoid. The antibody deficiency pattern was 
comparable to patients with CD19 deficiency, which 
was accompanied with reduced CD27+ memory B-cells. 
Somatic hyper mutation was defective through the 
BCR, particularly in IgA. A decreased IgG level was 
found in her serum sample, but she had normal IgM 
and normal to low IgA serum levels.[19]
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CD21 deficiency
Complement receptor type 2 (CR2 or CD21) is encoded 
by CR2 gene that situated on human chromosome 
1q32.[61] CD21 is a membrane protein on B-cells 
to which the Epstein-Barr virus binds and infect 
these cells.[23] This molecule is a member of B-cell 
co-receptor and expressed by mature B-cells and 
follicular dendritic cells. CD21 co-receptor on B-cells 
comforting its activation by recognizing C3d-opsonized 
immune complexes and enhances antigen specific B 
lymphocyte responses.[62] CD21 deficiency (CVID7, 
MIM#614699) (Table1) has been described for the 
first time in a 28-year-old male with mild clinical 
disorder, born of non-consanguineous parents.[62] On 
one allele, the patient had a point mutation resulting 
in one shortened mRNA lacking exon 6. On the second 
allele, he had a mutation in exon 13, thus creating 
a premature stop codon at amino acid position 766. 
Serum IgG and IgA levels were diminished, but 
the IgG responses to protein and polysaccharide 
vaccination were acceptable.[4]

Other genetic defects
Mutations, which are reported in the genes encoding 
for ICOS, TACI, BAFF-R, CD19, CD20 and CD81 
account for only less than 15% of CVID cases.[14,16,18-20,38] 
The remaining 85% of the patients do not have a 
known genetic defect and it is likely that other genes 
besides those already identified may be involved 
in the pathogenesis of the CVID.[63] For example, 
polymorphisms in genes involved in universal DNA 
repair machinery (MSH5, MSH2, MLH1, RAD50 
and NBS1) and genetic variants of CARD11 and 
Bob1 genes have also been reported in some patients 
with CVID.[14-20,63] Nevertheless, none of these genetic 
defects are yet categorized as an independent 
syndrome.

Immunopathogenesis of CVID
Th17 cell is a subset of CD4+ helper T-cells and 
preferentially produce IL-17A, IL-17F, IL-22 and IL-21 
upon activation. Retinoid-acid receptor-related orphan 
receptor C (RORC2) is the specific transcription factor 
orchestrating Th17 cells differentiation.[13,64,65] Th17 
cells and its cytokines are necessary for host defense 
against extracellular bacterial and fungal infections, 
but it is mostly known for its role in inflammatory 
diseases.[13,66] The differentiation and survival of Th17 
cells share critical cues with B-cell differentiation 
and the TFH subset, which was recently shown 
to be enriched in Th17 cells able to help B-cell 
differentiation.[67] B-cell differentiation in GCs is 
required or may contribute to the induction and/or 
survival of Th17 cells as well.[13] As CVID is defined 
by impaired antibody production, it is thus reasonable 
that IL-17 may play a role in this defect.[68-71]

As mentioned before, development and homeostasis of 
Th17 cells and memory B-cells share several aspects. 
Tumor growth factor-β is important in isotype 
switching to IgA[72] and is also essential for Th17 cell 
differentiation.[73,74] Thus, it is reasonable that the 
link between B-cell function and IL-17 production 
may lay on the isotype switching to IgA, an idea 
which is further supported by the fact that patients 
with both CVID and X-linked agammaglobulinemia 
have impaired IgA production.[13] Nevertheless, 
several studies suggested that the link between 
B-cells and IL-17 production is not dependent on 
the development of IgA-producing B-cells.[13] It is 
not plausible that a unique molecule or pathway 
determine the impact of B-cells in the homeostasis 
of the Th17 cells. Involving of several mechanisms 
either through direct or indirect interactions is more 
reasonable.[13]

Th17 cells abundantly produce IL-21 as well, 
which plays an important autocrine role in their 
differentiation and maintenance.[75] IL-21 which is 
shown to be involved in Th17 cell development,[73,74] 
was first described as a critical cytokine in the 
regulation of antibody production.[76,77] Cytokine IL-6, 
a major factor for the development of Th17 cells, also 
plays an important role in B-cell proliferation and 
antibody production.[78]

BAFF belonging to TNF family (BAFF) is an essential 
survival factor for follicular B-cells. Increased amount 
of BAFF may be considered as a determinant for B-cell 
dysfunction. In one study, a negative correlation is 
reported in healthy individuals between the frequency 
of Th17 cells and the serum concentrations of BAFF.[13] 
This may make stronger the idea of the link between 
IL-17 production and B-cell maturation.[13]

To evaluate the contribution of B-cells to the Th17 
subset, Barbosa et al., studied this population in 
CVID patients as well as in patients with congenital 
agammaglobulinemia.[13] Their results support a 
link between the circulating Th17 cells and B-cell 
differentiation. They found a direct correlation 
between the frequency of Th17 cells and the frequency 
of B-cells showing a switched memory phenotype. They 
showed a decrease in Th17 cell frequency in parallel 
with the expansion of activated non-differentiated 
B-cells (CD21lowCD38low) in CVID patients.[13]

In spite of the decreased Th17 frequency, CVID 
patients do not show an overt increase in the frequency 
of infections with Candida albicans. This may be 
due to the preservation of innate producers of IL-17, 
such as natural killer T-cells, γδ T-cells or innate 
lymphocyte cells (ILC).[13]
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Innate lymphoid cells are a recently found set of 
innate lymphocytes discovered at mucosal surfaces. 
The transcriptional and effector pathways of ILC are 
strikingly resemble to those of the conventional helper 
T-cells (Th1, Th2, Th9, Th17 and Th22).[79]

ILCs are concerned in defending the mucosal borders 
by producing tissue defensive factors.[79] Innate 
lymphocytes show various effector functions such as 
restraining the expansion of microorganisms.[80] In 
contrast with T and B-cells, they act without antigen 
specific receptors. All ILCs, including LTi, LTi-like, 
NK22 and CD4–NKp46– cells (except nuocytes) depend 
on expression of transcriptional regulators, inhibitor of 
DNA binding 2 (Id2) and retinoid-acid receptor-related 
orphan receptor gamma t (RORγt).[80] RORγt not only 
promotes the expression of IL-17 and IL-22 by Th17 
cells, but also induces the production of these cytokines 
by RORγt+ ILCs. This suggests analogous functions 
of ILCs and Th17 cells during immune responses.[80]

In a more recent study, we found that the overall 
expression of IL-17 as well as IL-17 producing ILCs 
count were decreased, while IL-9 was increased in 
the CVID patients (un-published data). In the context 
of autoimmune and inflammatory diseases, IL-9 has 
recently attracted more considerations. IL-9 is mainly 
considered as an inflammatory cytokine that produce 
especially by Th9 and Th17 cells.[81]

There are few studies regarding the effect of IL-9 in 
immunodeficiency, however its role in autoimmune and 
inflammatory diseases has been more considered.[82] 
It’s reported that increased expression of IL-9 level and 
high percentages of CD4+/IL-9+ T-cells correlate with 
more disease activity and severity of systemic lupus 
erythematosus (SLE) and suggests an important role of 
IL-9 in the immunopathogenesis of SLE.[83] Moreover, 
Th9 which characterized by producing a large amount 
of IL-9, provide important new information on the 
pathogenesis of autoimmune diseases such as SLE, 
rheumatoid arthritis (RA) and multiple sclerosis.[84]

Autoimmune diseases are commonly the first manifestation 
of CVID and affect about 20% of these patients.[68,85] In 
CVID, the most common autoimmune disorders are 
hemolytic anemia and thrombocytopenic purpura, but 
other autoimmune diseases including RA, pernicious 
anemia, SLE and inflammatory bowel disease have been 
reported so far.[86] Therefore, IL-9 may be involved in the 
pathogenesis of autoimmunity in CVID patients.

CONCLUSION

Regarding CVID, a number of genetic defects and 
immunologic insufficiencies have been described so 

far. However, the exact immunologic pathways and 
genetic defects leading to CVID are yet to be clarified. 
As CVID syndromes are not essentially a group of 
similar disorders per se and their manifestations are 
variable from a case to another, more detailed genetic 
and immunologic studies are required in this context. For 
example, IL-17 insufficiency in these patients may be due 
to a defect in Th17 and/or ILC development rising from 
a defect in RORC2, Signal transducer and activator of 
transcription 3 (STAT3) and other important molecules 
in this pathway. More recently, TLRs are getting more 
attractions in this field. IL-9, as elevates in CVID 
patients as well as in a number of autoimmune disorders, 
could be a suitable target for future investigations.
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