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Abstract Next-generation sequencing has allowed identification of millions of somatic mutations in

human cancer cells. A key challenge in interpreting cancer genomes is to distinguish drivers of can-

cer development among available genetic mutations. To address this issue, we present the first web-

based application, consensus cancer driver gene caller (C3), to identify the consensus driver genes

using six different complementary strategies, i.e., frequency-based, machine learning-based, func-

tional bias-based, clustering-based, statistics model-based, and network-based strategies. This appli-

cation allows users to specify customized operations when calling driver genes, and provides solid

statistical evaluations and interpretable visualizations on the integration results. C3 is implemented

in Python and is freely available for public use at http://drivergene.rwebox.com/c3.
u Q).
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Introduction

The continued advancement of next-generation sequencing
(NGS) technology has allowed for the sequencing of large sets

of cancer samples for somatic mutation discovery [1,2]. How-
ever, one of the main challenges in interpreting the cancer gen-
omes is to efficiently distinguish the driver mutations from the
Figure 1 Guideline of C3 web server
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tions and strategies [4–16]. Intuitively, all these driver gene
identification strategies exhibit the biased signals of positive
selection exploited by corresponding mechanisms at varied

degrees. Several studies have been reported on benchmarking
these methods with consensus cancer driver genes derived
from individual model [8,17,18]. Collin et al. [8] proposed

an evaluation framework to benchmark several existing mod-
els based on several measurements including precision, con-
sistency, and mean log fold change (MLFC). Matan et al.

[17] also benchmarked the available methods by using mea-
surements such as precision and recall. Eduard et al. [18] clas-
sified four subtypes of driver gene calling methods at a
subgene resolution. Denis et al. [19] provided the most com-

prehensive benchmarking of 21 driver gene prediction meth-
ods and proposed a Borda-based integration approach
ConsensusDriver.

Despite these efforts, the available tools are often challeng-
ing for biologists or clinicians to carry out the related analysis
directly, given the technical hurdles ranging from setting up the

software to tuning parameters. A web-based user-friendly con-
sensus driver gene prediction with intuitive visualization of the
consensus mutation calling is needed. Here, we present the first

web server-based consensus cancer driver gene caller (C3) plat-
form to derive the consensus mutation calling results [4–17],
using six state-of-the-arts and complementary prediction
strategies. These include frequency-based (MutSigCV) [6],

machine learning-based (20/20 + ) [8], functional bias-based
(OncodriveFM) [10], clustering-based (OncodriveCLUST)
[11], statistics model-based (DrGaP) [5], and network-based

(MUFFINN) [7]. Various calling evaluation and visualization
strategies are incorporated in C3 as follows. (1) C3 provides
a solid evaluation of the consensus mutation calling results

with Top-N-Precision and Top-N-nDCG [20]. (2) C3 provides
an efficient integration strategy to derive the consensus results
by Robust Rank Aggregation (RRA) [21] and statistical

model-based intersection visualization [22]. (3) Circos plots
are presented in C3 to visualize the consensus mutation calling
results [22,23].

Method

General workflow of C3

C3 accepts mutation annotation format (MAF) [24] file as

input. The MAF file is annotated from variant calling format
(VCF) [25] file, which can be acquired by using variant calling
tool like Mutect on the NGS data. A schematic representation
of the C3 workflow is shown in Figure 1A. The selected pro-

grams, including 20/20+, MutSigCV, OncodriveFM, Onco-
driveCLUST, DrGaP, and MUFFINN (Figure 1A and B;
File S1 Part 1), run in the Ubuntu sever 16.04 system. Then

all preprocessed input mutation data are processed in C3 to
obtain candidate driver genes list for each strategy separately.
We use SuperExactTest model to evaluate the statistical signif-

icance of the intersection of individual calling results using all
Weight of a gene ¼ 0 gene not avail

Weight of a reference gene gene availab

�

the protein-coding gene as a whole background gene set. In
addition, based on each discrepant driver gene list, a rank
ensemble method, RobustRankAggreg, is used to obtain a con-

sensus driver gene list. Four databases including the Cancer
Gene Census (CGC) [26], Integrative Onco Genomics (IntO-
Gen) [10], Network of Cancer Genes (NCG) [27], and Online

Mendelian Inheritance in Man (OMIM) [28] are used to anno-
tate the predicted driver genes. Two evaluation measurements,
i.e., the Top-N-Precision and Top-N-nDCG, are applied to

evaluate the calling performance. Finally, the KEGG [29] path-
way and Gene Ontology analyses are also performed on the
consensus driver genes for comprehensive annotations.

Performance measurement

Previously, Collin et al. proposed a novel measurement of
mean log fold change between the observed and desired theo-

retical P values [8]. Matan et al. [17] and Eduard et al. [18]
applied measurements of precision and recall. Denis et al. also
applied precision, recall, and F1 score [19] (File S1 Part 1). In

our study, we applied the Top-N-Precision (using CGC data as
a reference driver gene set [26]) and Top-N-nDCG (using IntO-
Gen as a reference ranking driver gene set [30]) to facilitate the

quantitative comparison and evaluation, focusing on the top n
performance of the ranking results.

Precision

We evaluated the precision performance among the results
acquired by the previous strategies based on the top 100 genes
with respect to CGC cancer database through Equation (1).

The average precision can measure a general predicting ability
of individual methods among the pan-cancer cohort samples.
We calculate the precision scores for each of 27 cancer types,
and the SUM (precision) represents the sum of respective pre-

cision score of 27 cancer types (Equation (2)).

Top-n-precision

¼ top n identified drvier genes overlapping with CGC

top n identified driver genes
ð1Þ

Average precision ¼ SUMðprecision of each individual cancer typeÞ
Number of cancer types

ð2Þ
nDCG

Meanwhile, normalized discounted cumulative gain (nDCG)
was applied to measure the ranking quality of the results using

the IntOGen as a reference cancer driver gene set.

Weight of a reference gene

¼ driver mutation counts in IntOGen

SUM of drvier mutation counts in IntOGen

� ðNo: of cancer driver genes in IntOGen

� gene ranking by drvier mutation countsÞ ð3Þ
able in the IntOGen dataset

le in the IntOGen dataset
ð4Þ



Figure 2 General framework of C3
web application

C3 web application provides a user-friendly and simple five-step workflow. These include (1) selecting tools used for analysis, (2) choosing

a data file to upload from user’s own computer (refer to our file format to verify the integrity of the input data), (3) selecting parameters

for the selected tools (refer to the help documentation), (4) entering a name of the task (make sure to provide a valid e-mail address), and

(5) inquiring and downloading the results with the request ID at ‘‘Recent Request” page. The request ID is sent to the user via e-mail upon

the completion of the analysis.
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CGn ¼ SUMðweight of the top n predicted genesÞ ð5Þ

DCGn ¼ CG1 þ
Xn

i¼2

CGn

log2i
ð6Þ

IDCGn ¼ DCGnðranked by IntOGenÞ ð7Þ
Top-n-nDCG ¼ DCGn

IDCGn

ð8Þ

Average nDCG ¼ SUMðnDCG of each individual cancer typeÞ
Number of cancer types

ð9Þ
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Here, n represents the number of top predicted genes; i rep-
resents the rank of predicted genes; CGn represents cumulative
weight of top n predicted genes; DCGn represents CGn multi-

plied by a discount factor 1
log2 i

(i> 1); IDCGn represents a

DCGn under the ideal condition, that is, the rank of predicted

genes is exactly the same as that in the reference dataset. Top-
N-nDCG represents normalized DCGn and measures the rank-
ing performance of predicted genes.

To obtain the Top-N-nDCG, firstly, we download IntOGen

cancer driver gene set (URL: https://www.intogen.org/) [31]
and assign a weight for each reference driver gene in IntOGen
based on their proportion of driver mutation counts [30] (Ver-

sion 2014.12) calculated according to Equation (3). Specifically,
the total number of cancer driver genes in IntOGen is 459. The
weights of the predicted driver genes overlapping with the

benchmark IntOGen dataset are calculated according to
Equation (4). The weights of the predicted genes that are not
available at the benchmark IntOGen dataset are set to 0. The
Top-N- nDCG can be calculated through Equations (5)–(8) [20].

Rank aggregation

The RRA algorithm [21] is applied to obtain a consensus driver

gene list, which aggregates the ranking driver genes predicted
by individual tools. Comparing with the original RankAggreg
Table 1 Number of tested tumor samples and mutations

Cancer type
No. o

Abbreviation Full name

BLCA Urothelial bladder cancer 142

BRCA Breast cancer 889

CESC Cervical cancer 38

CLL chronic lymphocytic leukemia 224

COAD Colon adenocarcinoma 244

DLBCL Diffuse large B-cell lymphoma 57

ESCA Esophageal cancer 160

GBM Glioblastoma multiforme 365

HNSC Head and neck squamous cell carcinoma 407

KIRC Kidney renal clear cell carcinoma 484

KIRP Kidney renal papillary cell carcinoma 112

LAML Acute Myeloid Leukemia 197

LIHC Liver hepatocellular carcinoma 151

LGG Lower Grade Glioma 227

LUAD Lung adenocarcinoma 394

LUSC Lung squamous cell carcinoma 175

MB Medulloblastoma 332

MESO Mesothelioma 289

MM Multiple Myeloma 205

NBL Neuroblastoma 352

OV Ovarian serous cystadenocarcinoma 480

PAAD Pancreatic ductal adenocarcinoma 234

PRAD Prostate adenocarcinoma 420

STAD Stomach adenocarcinoma 244

SCLC Small cell lung cancer 31

THCA Papillary thyroid carcinoma 326

UCEC Uterine corpus endometrial carcinoma 255
algorithm [32], the RRA algorithm has three advantages: (1) it
deals with incomplete rankings, which is common in practice,
(2) it performs robustly with tolerance to the data noise, and

(3) it is fast to be integrated for interactive data analysis.

Intersection visualization and evaluation with SuperExactTest

and Circos

We applied SuperExactTest [22] and Circos [23] to organize
our visualization results. The former is a scalable visualization

tool to illustrate high-order relationships among multi sets
beyond Venn diagrams [33]. It evaluates the overlap of each
of tools and presents a circular plot illustrating all possible

intersections with statistical methods. The latter visualizes
the predicted driver gene sets intuitively (Figure 1C and D; File
S1 Part 5).
Implementation

As Figure 2 shows, C3 web application accepts MAF [24] file or

a modified micro-MAF file (Table S1) as the input. After users
select driver gene calling strategies and parameters, C3 runs as
the back-end Ubuntu 16.04 system (with python-2.7, R-3.3.4

and MATLAB Runtime 2014). When the job is successfully
f samples
Total No. of

mutations per cancer type

Average No. of

mutations per sample

33,772 237.83

51,766 58.23

6115 160.92

3491 15.58

32,192 131.93

5785 101.49

19,141 119.63

21,923 60.06

60,074 147.60

28,483 58.85

7541 67.33

4180 21.22

7648 50.65

9965 43.90

106,613 270.59

53,528 305.87

3615 10.89

97,806 338.43

10,781 52.59

6453 18.33

28,136 58.62

7939 33.93

16,784 39.96

42,456 174.00

8378 270.26

6424 19.71

39,234 153.86

https://www.intogen.org/


Figure 3 Comparison of cancer driver gene calling performance using Consensus and the six individual strategies on 27 cancer datasets

The performance for Consensus and the six individual strategies on 27 cancer datasets is presented in radar plots in terms of the Top-N-

precision (A) (calculated according to Equation (1)) and Top-N-nDCG (B) (calculated according to Equations (3)–(7)). Cancer types are

labeled on the outmost circle. Values of precision in panel A and nDCG in panel B are labelled on each circle. The range of these values is

between 0.1 and 1. For each cancer type, a higher value indicates a better performance and for each cancer driver gene calling strategy, the

larger area means the better performance. nDCG, normalized discounted cumulative gain.
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finished, users will be notified through email including a

‘‘Request ID”. At the ‘‘Recent Request” page, users can pre-
view and obtain candidate driver gene list by querying the
‘‘Request ID”. The output is directly viewable on the website
and is available to downloaded for further analyses. The data

submitted by every user are kept private. If there are any
questions, users can visit the ‘‘Help” page for a detailed
guidance.
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Detailed information of the test datasets

We test the stability of C3 web application by selecting tumor
datasets collected from The Cancer Genome Atlas (TCGA) [2]
databases. Initially, the whole dataset includes 34 cancer types

with 7724 samples and 729,235 mutations, curated from the
published whole-exome sequencing or whole-genome sequenc-
ing studies which are also used by TUSON [9] and Collin study
[8]. Since some tools (such as MutSigCV and DrGaP) need

additional cohort mutation information, we removed 7 cancer
types with 290 samples and 5164 mutations through data pre-
processing. Finally, we curated 27 cancer types with 7434 sam-

ples and 724,071 mutations for the final analysis, which
constitute the updated comprehensive test datasets finally for
driver gene calling (Table 1 and File S1 Part 2).

Performance of C3

We benchmarked the performance of the consensus results
comparing with each alternative. As shown in Figure 3, the
integration results of C3 application outperformed other meth-

ods evaluated with Top-N-Precision and Top-N-nDCG, reveal-
ing its superiority in driver genes prediction (File S1 Part 4).

C3 also helps to identify reliable potential driver genes by

SuperExactTest intersection between different driver gene call-
ing strategies with reference to CGC and literature review.
Detailed results are shown in Table S2 and Table S3.

In summary, although there exists a high discrepancy
among different driver gene identification strategies, the inter-
section by individual strategies not only identifies the most reli-
able driver genes, but also helps to find potential novel driver

genes that are not well-characterized.

Future developments

Currently C3 has some limitations and warrants future
updates. (1) C3 is currently deployed on the Ali Cloud server,

which requires a lot of memory and space to process the data.
Any variant file exceeding 40,000 records may fail when run-
ning DrGaP. Since the Random Forest Model 20/20 + occu-
pies too much CPU resources, it also takes a long time

(>3 h for sample of 50,000 mutations with 8 cores of Intel
Xeon E5-2643 3.3 GHz) to run a whole pipeline of C3. Future
optimizations are required to accelerate C3. (2) Current version

of C3 only supports the GRCH37 reference genome, and a new
version of the reference genome such as GRCH38 will be
added in the next version. (3) One potential application of

C3 is to identify the target driver genes for drug discovery.
However, the computationally predicted drivers should not
be over-interpreted without additional experimental evidence.

Availability

C3 is freely available for public use at http://drivergene.

rwebox.com/c3.
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