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Abstract

Accurate breath detection is crucial in sleep and respiratory physiology research and in sev-

eral clinical settings. However, this process is technically challenging due to measurement

and physiological artifacts and other factors such as variable leaks in the breathing circuit.

Recently developed techniques to quantify the multiple causes of obstructive sleep apnea,

require intermittent changes in airway pressure applied to a breathing mask. This presents

an additional unique challenge for breath detection. Traditional algorithms often require drift

correction. However, this is an empirical operation potentially prone to human error. This

paper presents a new algorithm for breath detection during variable mask pressures in

awake and sleeping humans based on physiological landmarks detected in the airflow or

epiglottic pressure signal (Pepi). The algorithms were validated using simulated data from a

mathematical model and against the standard visual detection approach in 4 healthy individ-

uals and 6 patients with sleep apnea during variable mask pressure conditions. Using the

flow signal, the algorithm correctly identified 97.6% of breaths with a mean difference±SD in

the onsets of respiratory phase compared to expert visual detection of 23±89ms for inspira-

tion and 6±56ms for expiration during wakefulness and 10±74ms for inspiration and 3±28

ms for expiration with variable mask pressures during sleep. Using the Pepi signal, the algo-

rithm correctly identified 89% of the breaths with accuracy of 31±156ms for inspiration and 9

±147ms for expiration compared to expert visual detection during variable mask pressures

asleep. The algorithm had excellent performance in response to baseline drifts and noise

during variable mask pressure conditions. This new algorithm can be used for accurate

breath detection including during variable mask pressure conditions which represents a

major advance over existing time-consuming manual approaches.

Introduction

Accurate breath detection is crucial in sleep and respiratory physiology research and in clinical

practice. Indeed, in order to quantify key breathing variables such as minute ventilation and
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peak inspiratory airflow, accurate identification of inspiration and expiration is required.

Breath detection also has multiple applied and cross-disciplinary applications. For instance,

breath detection is required to characterize interactions between the respiratory system and

other organs such as the heart (e.g. respiratory sinus arrhythmia [1] and cardiorespiratory syn-

chronization [1–4]), and neurological function [5, 6].

Despite its importance, breath detection is technically challenging. Physiological events

such as sighs, swallows, transient reductions and pauses (hypopneas and apneas) in breathing

during sleep recordings, as well as measurement artifacts including signal drift, EKG artifact,

electrical noise on the airflow signal and mask leaks, each present unique challenges when

attempting to quantify breath timing accurately. Manual detection and calculation of respira-

tory parameters are time-consuming and potentially prone to human error and impractical for

large data sets. Accordingly, several algorithms have been developed for automated breath

detection [7–9]. Most use an airflow signal, a volume signal, or both, and apply different

threshold criteria to identify breaths [7–9]. However, measurement artifacts, especially base-

line volume shifts, can render these algorithms inaccurate [7, 8]. Drift correction is often used

to counteract this problem. However, this is an empirical operation and is prone to error.

Recent advances in the pathophysiology of obstructive sleep apnea (OSA), a common

sleep-related breathing disorder characterized by repetitive narrowing and closure of the

upper airway during sleep, indicate that there are at least four key causes [10, 11]. These

include upper airway anatomy/collapsibility, the respiratory arousal threshold, pharyngeal

dilator muscle responsiveness and respiratory control instability [10]. Quantification of each

parameter relies heavily on accurate detection of respiratory phase. The gold standard

approach to measure these causes or “phenotypic traits” requires transient changes in mask

pressure (positive and negative suction pressure) to induce varying degrees of upper airway

collapse [10–18]. However, automated breath detection is particularly challenging during

these conditions due to frequent and large volume drifts that accompany the transient changes

in mask pressure and noise artifact from the pressure generation device. There are limited

effective computational tools available to deal with this problem. Thus, breath detection under

these conditions remains largely manual, labor intensive and is potentially prone to error.

Accordingly, to facilitate translation of these and related applications, development of accu-

rate, automated tools for breath detection to address these barriers is required.

Thus, the aim of this study was to develop an algorithm to accurately detect the onset of

inspiration and expiration in humans during variable mask pressure conditions and test its

accuracy using multiple approaches.

Materials and methods

Traditional approach and methodology for breath detection algorithms

Traditional breath detection algorithms define the onsets of inspiration and expiration as the

points at which the drift-corrected volume signal attains its minimum and maximum values,

or where the flow signal crosses zero [7–9]. The common signal processing tasks include: 1)

integration of the flow signal to obtain volume using a numerical integration algorithm, 2) vol-

ume drift correction, often performed by subtracting the straight line fitted to the end-expira-

tory points from the volume signal, and 3) minima and maxima of the drift-corrected volume

signal (possible onsets of inspiration and expiration, respectively) (see [8] for further detail).

However, the volume drift correction is an empirical process and becomes problematic when

the drift does not increase or decrease linearly. Thus, this approach is inaccurate during condi-

tions where mask pressure is variable or breathing is unstable (Fig 1).
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The zero-crossing algorithm approach to identify the onsets of inspiration and expiration

also has several limitations. This algorithm requires two conditions to be satisfied: 1) no signif-

icant zero offset in the flow signal, and 2) no oscillations around baseline flow as any flow

crossings including even small deviations unrelated to breathing will be incorrectly detected

[8]. Both of these conditions are violated when there is a strong drift in the flow baseline which

occurs as a consequence of air leaks and unstable breathing.

Novel breath detection algorithm

Physiological landmark of inspiratory and expiratory onsets. Our proposed algorithm

defines the “true” onset of inspiration as the points at which inspiratory effort commences.

This can be identified as an inflection point in the flow or epiglottic pressure (Pepi) signals

(Pepi, measured by an epiglottic catheter). Fig 2 shows that the inflection point in flow aligns

Fig 1. Volume drift during a transient reduction in continuous positive airway pressure delivered via a nasal

mask (Pmask). End of expiratory volume signal (red circles) often does not follow a linear upward/downward direction

during this period. Volume drift correction is an empirical process potentially prone to human error.

https://doi.org/10.1371/journal.pone.0179030.g001
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Fig 2. Physiological landmarks of true onsets of inspiration as inflection points (green diamonds) in flow (a) and epiglottic

pressure (Pepi) signals (b). Note the alignment of the inflection points in the flow and Pepi signals whereby Pepi sharply decreases

at the onset of inspiration. When the flow signal (b) is used, the onsets of expiration (red circles) are defined as the points at which the

algorithm corrected integrated volume signal (c) attains its maximum value between two adjacent inspiratory onsets. When the Pepi

signal (a) is used, the expiratory onsets (red circles) are defined as the interception points between the straight lines (connecting the

inspiratory onsets of two consecutive breaths, dash-dot lines) and Pepi waveform. The black arrow and blue vertical line indicate the

start of a transient reduction in continuous positive airway pressure (CPAP).

https://doi.org/10.1371/journal.pone.0179030.g002
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with the inflection point in the Pepi signal. Specifically, Pepi sharply decreases at the onset of

inspiration. The inflection point in Pepi also provides important physiological information

analogous to “breath timing” during situations where airflow is absent (e.g. during obstructive

apneas). Detection of the onset of inspiratory effort using airway pressure transducers such as

Pepi is also useful for estimating intrathoracic pressure gradients and for correcting baseline

drift in these signals. Accordingly, our proposed algorithm focuses on reliable detection of

inflection points in flow and Pepi signals. Once these components are clearly defined it is then

possible to calculate key respiratory (e.g. tidal volume, minute ventilation, peak flow) and

related variables that rely on accurate breath detection (e.g. airway resistance, pharyngeal

pressure swings, inspiratory and expiratory muscle activity). Accurate quantification of these

parameters is often crucial for sleep and respiratory research [19–22].

When using the flow signal, the onset of expiration is defined as the point at which the algo-

rithm corrected integrated volume signal (generated by integrating flow signal value between

two adjacent inspiratory onsets) attains its maximum (Fig 2b and 2c). However, it is more

challenging to identify expiratory onset using the Pepi signal alone as unlike inspiration there

is no clear marker on this signal that could be used to detect expiratory onsets. In this study,

expiratory onset using the Pepi signal was defined as the point of intercept between a straight

line (connecting the inspiratory onsets of two consecutive breaths) and the Pepi waveform

(Fig 2a).

Automated detection of the inflection points with noisy flow and pressure signals. The

inflection point of the flow signal is detected as the point where its second derivative reaches

its maximum value (reflecting the peak acceleration of changes in the shape of flow signal).

There are three main steps required to apply this concept to detect inflection points in noisy

flow and pressure signals (Fig 3). These include: 1) detection of signal peaks and valleys fol-

lowed by selection of each segment of the signal connecting the corresponding peak, valley

and possible inflection point (Fig 3a). A low pass filter with a cut-off frequency of 2 Hz was

applied to the signal and peak detection was performed on the filtered signal using the

MATLAB function ‘findpeaks’ with a threshold for breath duration of one second, 2) fitting a

smoothing spline with a smoothing parameter (SP) through the segment (Fig 3b, upper panel),

SP was set to 0.95, and 3) calculation of the second derivative of the fitted smoothing spline to

find the location where it attains the maximum value (Fig 3b, lower panel). Similarly, the

inflection point in the pressure signal is detected where its second derivative attains its mini-

mum value (Fig 3c).

Datasets for validation

Synthetic dataset from a mathematical model. We created a mathematical model to vali-

date our algorithm against different levels of noise and fluctuation in the flow amplitude and

baseline, and across a range of sampling frequencies. The model was comprised of combined

sine and cosine waveforms with known inflection points, which were set by a square wave-

form. Amplitude modulation, random trend and random noise were then added to the model

to simulate fluctuations in amplitude of flow, fluctuations in flow baseline and signal noise,

respectively (Fig 4 and see Figure A in S1 File for further details).

The signal with inflection points was generated according to the following model:

XðtÞ ¼ YðtÞ½A1sinð2pf1t=fs þ φÞ� þ A2cosð2pf1t=fs þ φÞ ð1Þ

where A1 = 0.25, A2 = 0.1, f1 is breathing frequency, fs is sampling frequency, Y(t) is a square

wave function with duty cycle = 50% and φ is an initial phase of the signal (rad), φ 2 [0,2π].

Automated breath detection during variable mask pressures in awake and sleeping humans
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Then random noise, amplitude modulation and random trend were added to the model:

XnoisyðtÞ ¼ ½XðtÞ þ xn�½1þ Amsinð2pfmt=fs þ φÞ� þ xtrend� ð2Þ

where ξn is Gaussian white noise with zero mean and standard deviation = noise level x square

root of amplitude of X(t); Am and fm are amplitude and frequency of the amplitude modulating

signal (Am = 0.5,fm = 0.005); ξtrend is fractal Gaussian noise with zero mean, standard devia-

tion = 0.1 and Hurst exponent = 0.9, generated using Davies and Harte’s algorithm [23]. The

amplitude and frequency modulation were used to simulate fluctuations in the amplitude and

frequency of the flow signals. Whereas, the fractal Gaussian noise with Hurst exponent = 0.9

was used to simulate the breath-by-breath fluctuation in flow baseline.

This model was used to generate a synthetic dataset as follows: 1) with each breathing fre-

quency (from 8 to 17 breath/min), a segment of 100 breaths was generated, and the signal of a

total of 1000 breaths was formed by concatenating these segments to cover a spectrum of the nor-

mal breathing frequency, 2) the process was repeated with each combination of sampling fre-

quency {fs = [50, 100, 250, 500 and 1000] Hz} and noise level {noiselevel = [0, 2, 5, 7 and 10] (%)},

Fig 3. Key steps of the proposed breath detection algorithm. Briefly, peaks and valleys of flow (or pressure) are identified (circles and

triangular points) (a), smoothing curves are fitted to raw data (b-c, upper panels) and the second derivatives of the fitted curves are

calculated (b-c, lower panels). Onsets of inspiration are located at the maximum and minimum points (diamonds) of the second derivate of

flow and pressure signal, respectively (b-c, lower panels). Pepi: epiglottic pressure.

https://doi.org/10.1371/journal.pone.0179030.g003
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to generate a dataset of 1000 breath signals with different breath frequency, sampling frequency

and noise levels (Fig 4).

Clinical dataset. A dataset derived from 6 obstructive sleep apnea (OSA) patients and 4

healthy controls was used to validate the breath detection algorithm. Participants were fitted

Fig 4. Mathematical model of a flow signal that contains inflection points. Amplitude modulation, random trend and random noise

were added to the model to simulate fluctuations in amplitude, baseline shift and noise, respectively. For further detail on the model refer

to the text and Figure A in S1 File. Note: the red line shows the random trend simulating fluctuations in baseline shift of the flow signal,

which consequently renders traditional volume-drift correction algorithms inaccurate. Noise level is set to 2% in this example.

https://doi.org/10.1371/journal.pone.0179030.g004
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with a CPAP mask (Gel Mask; Philips Respironics, Murrysville, PA) attached to a pneumota-

chograph (model 3700A; Hans Rudolf Inc., Kansas City, MO) and differential pressure trans-

ducers (Validyne Corporation, Northbridge, CA) to measure airflow and mask pressure. An

epiglottic pressure (Pepi) catheter (model MCP-500; Millar, Houston, TX) was placed 1 to 2

cm below the base of tongue. The epiglottic pressure sensor was taped to the nostril and passed

through a port in the CPAP mask. Flow was sampled at 250 Hz, and mask and epiglottic pres-

sures were sampled at 1000 Hz.

Participants were studied under several conditions, including: awake quiet breathing, dur-

ing stable non-rapid eye movement (NREM) sleep on therapeutic continuous positive airway

pressure (CPAP), and during transient reductions in CPAP to cause varying levels of airflow

limitation. Periods of wakefulness and NREM sleep were confirmed by electroencephalogra-

phy (EEG). EEG, electrooculograms, and surface submentalis electromyograms were used for

sleep staging and scoring arousals according to standard criteria by an experienced sleep tech-

nician. The study was approved by the University of New South Wales Human Research Ethics

Committee and all participants provided informed written consent to participate in the proto-

col. In each participant, 2 minutes of wakefulness data, 1 minute of sleep data on therapeutic

CPAP (or 4–5cmH2O in the healthy controls) immediately preceding each CPAP reduction

and data from 4 transient CPAP reductions also during NREM sleep, were extracted for man-

ual breath detection analysis. Two of the CPAP reductions were selected at random to yield

mild-moderate airflow limitation where peak inspiratory flow (PIF) for all of the breaths

were greater than 0.2 (L/s) during the reduction in CPAP. The remaining two CPAP reduc-

tions were randomly selected to yield low flow, where there were one or more breaths with

PIF� 0.2 (L/s) lasting greater than 10 sec. Manual breath detection was performed by placing

cursors at the onset of inspiration and expiration by an experienced investigator blinded to the

algorithm results using SPIKE2 software (Cambridge Electronic Design, UK).

Comparison process and statistical analyses

We have implemented our novel algorithm in a custom signal-processing module, developed

in MATLAB (version 8, The MathWorks, Natick, MA, USA). We applied our software to

detect inspiratory and expiratory onsets and compared the results against the true values (set

by square waves) in the synthetic dataset and the expert’s visual detection in the clinical data-

set. Within the clinical dataset, flow signals were used for breath detection during wakefulness,

therapeutic CPAP and mild-moderate airflow limitation conditions. Conversely, epiglottic

pressure signals were used for breath detection during low flow conditions. Key respiratory

parameters such as inspiratory time (Ti), expiratory time (Te), total breath timing (Ttot), peak

inspiratory flow (PIF), tidal volume (Vt) and minute ventilation (Vi) were then calculated

from the breath timing data. The algorithm data for each of these parameters was then com-

pared for the synthetic and clinical datasets.

Bias and variability of these differences are reported. Bland-Altman tests and linear regres-

sion were undertaken in MATLAB to assess the performance of the algorithm.

Results

Synthetic dataset

Effect of sampling frequency and noise on the algorithm. Fig 5 shows the effect of sam-

pling frequency and noise on bias and variability of the algorithm. Both bias and variability

increased with increased noise, while increased sampling frequency reduced both bias and var-

iability. Given the noise level in a typical flow signal is less than 5% (refer to Figure B in S1

File) and sampling frequency is greater or equal to 250 Hz (from our laboratory), the bias and

Automated breath detection during variable mask pressures in awake and sleeping humans
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Fig 5. Effect of sampling frequency and random noise on the accuracy of the proposed algorithm to

detect inspiratory (a-b) and expiratory onsets (c-d). Noise level of less than 5% in the flow signal is typical to

that seen in most experimental settings.

https://doi.org/10.1371/journal.pone.0179030.g005
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variability are less than 0.1 (s). Fig 6 shows the bias and variability of Ti and Te from a syn-

thetic signal of 1000 breaths generated by a mathematical model with sampling frequency = 250

Hz and noise level = 2%.

Bias and variability of fundamental respiratory parameters

In Fig 7 and Table 1, we report the results of the model with a sampling frequency = 250Hz

and noise level = 2% as these parameters reflect typical respiratory signals from our laboratory.

Fig 7 shows bias and variability of PIF and Vi. Table 1 shows errors of key respiratory parame-

ters. R2 values between the calculated and true respiratory parameters are all> 0.97.

Clinical dataset

Participant characteristics for the clinical dataset. Data were extracted from 6 people

with OSA and 4 healthy controls of similar age and BMI range (Table 2). In total, 20 minutes

of data during wakefulness, 40 minute of sleep data on therapeutic CPAP (or 4 – 5cmH2O in

the healthy controls) immediately preceding each CPAP reduction and 40 minutes of data dur-

ing transient CPAP reductions during NREM sleep were extracted for analysis.

Performance of the algorithm in the clinical dataset

Using the flow signal. Table 3 shows the performance of the proposed algorithm in

detecting inspiratory and expiratory onsets from the clinical dataset. Using the flow signal, the

inspiratory/expiratory onsets have bias� 0.023 (s) and variability� 0.089 (s), and only 2.4%

(8 breaths) of the total number of analyzed breaths (N = 333) were missed during wakefulness.

Similarly, the algorithm could detect the inspiratory/expiratory onsets with bias� 0.01 (s)

and variability� 0.08 (s) and missed 5% (28 breaths) of the total number of analyzed breaths

(N = 562) during sleep.

Table 4 shows the errors for each calculated respiratory parameter from the clinical dataset

compared to expert detected values. Using the flow signal, the calculated breath timing (Ti, Te

and Ttot) had a small absolute error with bias� 0.029 (s) and variability� 0.126 (s). R2 values

between the calculated and true breath timing parameters were all> 0.92. Fig 8 shows the

Bland Altman plot of the calculated breath timing versus true breath timing using the flow sig-

nal during wakefulness.

Table 5 shows the errors for each calculated respiratory parameter from the clinical dataset

compared to expert detected values during sleep. The absolute error was small with bias� 0.01

(s) and variability� 0.11 (s) when using the flow signal to calculate breath timing (Ti, Te and

Ttot). R2 values between the calculated and true breath timing parameters were all>0.9. Fig 9

shows the Bland Altman plot of the calculated breath timing versus true breath timing using

the flow signal during sleep.

Using epiglottic pressure signal (Pepi). Table 3 shows the performance of the proposed

algorithm in detecting inspiratory and expiratory onsets using the Pepi signal from the clinical

dataset during sleep. Specifically, the algorithm detected the inspiratory/expiratory onsets with

bias� 0.031 (s) and variability < 0.16 (s), and missed 11.6% (62 breaths) of the total number

of breaths detected manually (N = 534).

Table 5 shows the errors of all of the calculated respiratory parameters from the clinical

dataset compared to expert detected values during sleep. Using the Pepi signal, the

calculated breath timing (Ti, Te and Ttot) had an absolute error with bias� 0.033 (s) and

variability� 0.2 (s). R2 values between the calculated and true breath timing are all> 0.79. Fig

10 shows the Bland Altman plot of the calculated breath timing versus true breath timing

using the Pepi signal during sleep.
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Fig 6. Bias and variability of inspiratory time (Ti) (a-b) and expiratory time (Te) (c-d) when applying the

proposed algorithm on synthetic data of 1000 breaths generated by a mathematical model with a

sampling frequency fs = 250 Hz and noise level = 2%. True Ti and Te are the reference inspiratory and

respiratory times from the noise-free flow signal generated by our mathematical model. Calculated Ti and Te

are the calculated inspiratory and respiratory times from the noisy signal (after different types of noise were

added to disturb the baseline), generated by our model.

https://doi.org/10.1371/journal.pone.0179030.g006
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Fig 7. Bias and variability of peak inspiratory flow (PIF) (a-b) and minute ventilation (Vi) (c-d) when

applying the proposed algorithm on synthetic data of 1000 breaths generated by a mathematical

model with sampling frequency fs = 250 Hz and noise level = 2%. True PIF and Vi are the reference PIF

and Vi calculated from the noise-free flow signal, generated by our mathematical model. Calculated PIF and

Vi are the calculated PIF and Vi from the noisy signal (after different types of noise were added to disturb the

baseline), generated by our model.

https://doi.org/10.1371/journal.pone.0179030.g007
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Discussion

In this paper, we present a novel signal processing method for breath detection during variable

mask pressures in awake and sleeping humans. One of the major advantages of our algorithm

is that it can be applied on both flow and pressure signals, enabling automated breath detection

when one of the signals are not available due to technical artifacts and/or physiological events

such as obstructive apneas. This feature of the algorithm has important implications, including

facilitation of sleep apnea phenotyping approaches that require accurate breath detection in

large data sets, as well as multiple other research applications in which time-consuming, labor-

intensive, manual breath detection processes have traditionally been required. We have also

validated the algorithm under a variety of conditions to examine the effect of different types of

noise, sampling frequencies and variable mask pressures on its performance.

When applied to the flow signal, our algorithm is very accurate in detecting the onsets of

inspiration and expiration during both wakefulness and sleep and during variable mask pres-

sures. The results from our mathematical model indicate that higher sampling frequencies of

the flow signal improve the noise tolerance of the algorithm. The findings suggest that sam-

pling frequencies of equal to or greater than 250Hz are desirable for most research settings in

order to achieve accurate breath detection. In the clinical dataset, the algorithm correctly iden-

tified approximately 98% of the analyzed breaths and detected inspiratory and expiratory

Table 1. Errors of calculated respiratory parameters calculated from synthetic data of 1000 breaths generated by a mathematical model with sam-

pling frequency = 250 Hz and noise level = 2%.

Absolute Error Relative Error (%) R2 SSE

Ti (s) -0.036 ± 0.069 -1.544 ± 2.572 0.988 0.068

Te (s) 0.036 ± 0.066 1.555 ± 2.451 0.989 0.066

Ttot (s) 0.0001 ± 0.042 0.006 ± 0.851 0.999 0.042

PIF (L/s) 0.003 ± 0.020 0.556 ± 3.056 0.992 0.020

Vt (L) 0.009 ± 0.053 1.211 ± 5.686 0.982 0.052

Vi (L/min) 0.097 ± 0.602 1.206 ± 5.620 0.974 0.599

Ti: inspiratory time; Te: expiratory time; Ttot: total duration of a breath; PIF: peak inspiratory flow; Vt: tidal volume; Vi: minute ventilation; SSE: sum of

squared errors. R2 and SSE were calculated from linear regression analysis. Data are presented as mean ± SD.

https://doi.org/10.1371/journal.pone.0179030.t001

Table 2. Participant characteristics.

Controls OSA

# Subjects 4 6

Age (years) 37 ± 19 46 ± 15

Sex 2M / 2F 6M / 0F

BMI (kg/m2) 25 ± 3 27 ± 5

AHI (# events/h sleep) 1 ± 2 35 ± 14

# Analyzed breaths during wakefulness 152 181

# Analyzed breaths during sleep 464 632

Pmask (cmH2O)

Pre- CPAP reduction 5.6 ± 1.0 9.0 ± 3.7

During CPAP reduction -2.2 ± 2.8 2.8 ± 2.4

Difference 7.7 ± 3.2 6.2 ± 2.6

BMI: Body mass index; AHI: apnea hypopnea index; Pmask: mask pressure; CPAP: continuous positive

airway pressure; Data are presented as mean ± SD.

https://doi.org/10.1371/journal.pone.0179030.t002
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onsets with minimal difference (�23 ms) compared to expert visual detection during both

wakefulness and during sleep with variable mask pressures. This is comparable to the results of

the most accurate previously published algorithm which detected a mean difference in the

onset of inspiration of 34 ± 71 ms and 5 ± 46 ms for expiration with 98% of the breaths being

correctly identified [9]. However, our dataset contained much larger levels of baseline drift

introduced by variable mask pressures compared to previous work. Furthermore, the proposed

algorithm is simple to implement and operate, and does not require training datasets (with

expert scored data) compared to the previous one [9]. Unlike traditional breath detection algo-

rithms [7–9] that define the onsets of inspiration/expiration as the points where the flow signal

crosses zero, our algorithm defines the “true” onset of inspiration as the points at which inspi-

ratory effort commences as reflected by a sharp change in the shape of the flow signal—an

inflection point. This, therefore, can overcome the problematic volume drift correction during

conditions where mask pressure is variable or breathing is unstable [8].

Detecting breaths from the epiglottic pressure signal is more challenging compared to flow

due to higher level of noise and nonlinear variation of the baseline. This is the first study that

we are aware of that has attempted to automatically detect breaths using an epiglottic pressure

signal which has traditionally been reserved for time-consuming manual approaches. Our

algorithm correctly identified 89% of breaths and detected inspiratory and expiratory onsets

with a mean difference� 31 ms with variable mask pressures during sleep. Although accuracy

was reduced when using pressure compared to flow, the performance of our algorithm on

the pressure signal is still indistinguishable to a previously reported study on inter-expert

Table 3. Performance of the proposed algorithm (compared to visual expert analysis) in detecting inspiratory and expiratory onsets from flow sig-

nal and epiglottic pressure signal (Pepi).

Flow signal Pepi signal

Wakefulness Sleep Wakefulness Sleep

Number of breaths analyzed 333 562 N/A 534

Missed breaths (%) 2.4 4.9 N/A 11.6

Difference in inspiratory onsets (mean ± SD) (s) 0.023 ± 0.089 -0.010 ± 0.074 N/A -0.031 ± 0.156

Difference in expiratory onsets (mean ± SD) (s) -0.006 ± 0.056 -0.003 ± 0.028 N/A -0.009 ± 0.147

Difference in inspiratory onset = calculated inspiratory onset—expert detected inspiratory onset

Difference in expiratory onset = calculated expiratory onset—expert detected expiratory onset

Data are presented as mean ± SD.

https://doi.org/10.1371/journal.pone.0179030.t003

Table 4. Errors of calculated respiratory parameters calculated from flow signal of the clinical datasets during wakefulness.

Absolute Error Relative Error (%) R2 SSE

Flow signal (N = 333 breaths)

Ti (s) -0.029 ± 0.126 -1.141 ± 9.176 0.922 0.117

Te (s) 0.029 ± 0.113 2.043 ± 10.136 0.955 0.113

Ttot (s) 0.0001 ± 0.108 0.127 ± 4.192 0.984 0.107

PIF (L/s) -0.009 ± 0.089 0.121 ± 13.819 0.914 0.084

Vt (L) -0.026 ± 0.149 0.853 ± 22.083 0.922 0.129

Vi (L/min) -0.340 ± 2.535 0.073 ± 19.615 0.858 2.336

Nadir Pepi (cmH2O) 0.043 ± 0.682 1.797 ± 19.269 0.938 0.640

Ti: inspiratory time; Te: expiratory time; Ttot: total duration of a breath; PIF: peak inspiratory flow; Vt: tidal volume; Vi: minute ventilation; SSE: sum of

squared errors. R2 and SSE were calculated from linear regression analysis. Data are presented as mean ± SD.

https://doi.org/10.1371/journal.pone.0179030.t004
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Fig 8. Bias and variability of inspiratory time (Ti) (a-b) and expiratory time (Te) (c-d) when applying the

proposed algorithm on flow signals of clinical datasets during transient reductions in continuous

positive airway pressure during wakefulness. True values were visually scored by an expert investigator

blinded to the algorithm data.

https://doi.org/10.1371/journal.pone.0179030.g008
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variability, whereby five experts scored breaths using flow signals with 95% confidence inter-

vals of 220.5 ms and 100.6 ms for inspiration and expiration, respectively [9].

Some limitations need to be noted. Firstly, the use of the inflection point will be problematic

under certain conditions. For example in severe chronic obstructive pulmonary disease

(COPD) the flow and pressure inflection points will not be aligned in time due to the presence

of inspiratory PEEP (positive end expiratory pressure). However, this is also an issue for other

breath detection approaches such as zero crossing. Secondly, the algorithm relies on recogni-

tion of the inflection points to detect breaths. Hence, high signal-to-noise ratio is required for

the algorithm to operate correctly. Most of the breaths that failed to be detected in this study

were due to signal quality where it is difficult to detect inflection points in the signal, even with

a careful manual approach. Therefore, it should be noted that the proposed algorithm still

requires expert oversight for correction of occasional errors in breath detection where signal

quality is poor. Nonetheless, this is only a fraction of the time that would be required to com-

plete the entire task manually and arguably may be more accurate by avoiding potential

human error for the majority of the analysis tasks. The number of breaths used for validation

was also relatively small (~1000). Finally, this study has scored data from only one expert and

there can be inter-expert bias with manual scoring. This potential bias is another reason for

our desire to develop an automated approach. While including an extra scorer would provide

a measure of the degree of inter-expert bias, this was not the goal of the current study. Rather,

we believe that our dual approach of assessing the performance of the algorithm both with the

model simulation and an experienced scorer (current gold standard accepted in the published

literature) is appropriate.

In terms of future directions, it will be important to assess the performance of the algorithm

in different datasets. There is also potential to use the algorithm across a range of clinical set-

tings. For example, it could be used to gain an estimate of overnight mean and peak airflow

using standard airflow signals acquired during polysomnography similar to recent techniques

Table 5. Errors of calculated respiratory parameters calculated from flow and epiglottic pressure signal of clinical datasets during sleep on CPAP.

Absolute Error Relative Error (%) R2 SSE

Flow signal (N = 562 breaths)

Ti (s) -0.007 ± 0.088 -0.465 ± 4.748 0.919 0.088

Te (s) -0.006 ± 0.088 -0.363 ± 3.909 0.974 0.088

Ttot (s) 0.0001 ± 0.101 0.014 ± 2.361 0.977 0.101

PIF (L/s) 0.009 ± 0.052 2.283 ± 10.371 0.939 0.052

Vt (L) 0.015 ± 0.085 3.523 ± 13.455 0.874 0.084

Vi (L/min) 0.212 ± 1.387 3.069 ± 13.903 0.882 1.370

Nadir Pepi (cmH2O) -0.089 ± 0.477 4.818 ± 20.078 0.984 0.478

Pepi signal (N = 534 breaths)

Ti (s) 0.022 ± 0.211 1.629 ± 11.676 0.797 0.207

Te (s) -0.016 ± 0.222 -0.267 ± 11.291 0.883 0.220

Ttot (s) 0.007 ± 0.212 0.237 ± 5.128 0.899 0.212

PIF (L/s) 0.007 ± 0.111 3.265 ± 29.651 0.889 0.111

Vt (L) 0.004 ± 0.186 3.333 ± 34.145 0.663 0.181

Vi (L/min) 0.041 ± 2.710 3.687 ± 52.788 0.774 2.701

Nadir Pepi (cmH2O) -0.253 ± 0.969 9.375 ± 18.245 0.974 0.965

Ti: inspiratory time; Te: expiratory time; Ttot: total duration of a breath; PIF: peak inspiratory flow; Vt: tidal volume; Vi: minute ventilation; Nadir Pepi: Nadir

epiglottic pressure. SSE: sum of squared errors. R2 and SSE were calculated from linear regression analysis. Data are presented as mean ± SD.

https://doi.org/10.1371/journal.pone.0179030.t005
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Fig 9. Bias and variability of inspiratory time (Ti) (a-b) and expiratory time (Te) (c-d) when applying the

proposed algorithm on the flow signals of clinical datasets during transient reductions in continuous

positive airway pressure during sleep. True values were visually scored by an expert blinded to the

algorithm data.

https://doi.org/10.1371/journal.pone.0179030.g009
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Fig 10. Bias and variability of inspiratory time (Ti) (a-b) and expiratory time (Te) (c-d) when applying

the proposed algorithm on the epiglottic pressure signals of clinical datasets during transient

reductions in continuous positive airway pressure during sleep. True values were visually scored by an

expert investigator blinded to the algorithm data.

https://doi.org/10.1371/journal.pone.0179030.g010
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that have been proposed as simplified approaches to estimate airway collapsibility [24] to facili-

tate treatment decisions for sleep disordered breathing.

In conclusion, we have developed and validated a new breath detection algorithm based on

the inflection points of flow or epiglottic pressure signal. The algorithm has excellent perfor-

mance and is robust to baseline drifts and noise during variable mask pressures. This algo-

rithm has major implications in terms of reducing the highly time-consuming, labor-intensive

burden that has traditionally been required for accurate breath detection for sleep apnea phe-

notyping techniques and respiratory physiology research.
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Monograph: Obstructive Sleep Apnoea. Plymouth, UK: European Respiratory Society; 2015. p. 9–23.

19. Henke KG. Upper airway muscle activity and upper airway resistance in young adults during sleep. J

Appl Physiol. 1998; 84(2):486–91. PMID: 9475857.

20. Verin E, Tardif C, Marie JP, Buffet X, Lacoume Y, Delapille P, et al. Upper airway resistance during pro-

gressive hypercapnia and progressive hypoxia in normal awake subjects. Respir Physiol. 2001; 124

(1):35–42. PMID: 11084201.

Automated breath detection during variable mask pressures in awake and sleeping humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0179030 June 13, 2017 20 / 21

https://doi.org/10.1073/pnas.1204568109
http://www.ncbi.nlm.nih.gov/pubmed/22691492
http://www.ncbi.nlm.nih.gov/pubmed/11969830
https://doi.org/10.5665/sleep.2236
https://doi.org/10.5665/sleep.2236
http://www.ncbi.nlm.nih.gov/pubmed/23204607
https://doi.org/10.1109/TBME.2011.2179937
https://doi.org/10.1109/TBME.2011.2179937
http://www.ncbi.nlm.nih.gov/pubmed/22186929
https://doi.org/10.1152/japplphysiol.00653.2011
http://www.ncbi.nlm.nih.gov/pubmed/21885797
https://doi.org/10.5665/sleep.5522
https://doi.org/10.5665/sleep.5522
http://www.ncbi.nlm.nih.gov/pubmed/26612389
http://www.ncbi.nlm.nih.gov/pubmed/9843627
http://www.ncbi.nlm.nih.gov/pubmed/11292125
https://doi.org/10.1109/TBME.2002.803514
https://doi.org/10.1109/TBME.2002.803514
http://www.ncbi.nlm.nih.gov/pubmed/12374337
https://doi.org/10.1164/rccm.201303-0448OC
http://www.ncbi.nlm.nih.gov/pubmed/23721582
https://doi.org/10.1152/japplphysiol.00972.2010
http://www.ncbi.nlm.nih.gov/pubmed/21436459
https://doi.org/10.1152/japplphysiol.00747.2012
http://www.ncbi.nlm.nih.gov/pubmed/23349453
https://doi.org/10.1152/japplphysiol.00561.2007
https://doi.org/10.1152/japplphysiol.00561.2007
http://www.ncbi.nlm.nih.gov/pubmed/17823298
https://doi.org/10.1152/japplphysiol.00312.2011
http://www.ncbi.nlm.nih.gov/pubmed/21921245
https://doi.org/10.1164/rccm.200307-1023OC
http://www.ncbi.nlm.nih.gov/pubmed/14684560
https://doi.org/10.1164/rccm.200302-201OC
http://www.ncbi.nlm.nih.gov/pubmed/12773321
http://www.ncbi.nlm.nih.gov/pubmed/9475857
http://www.ncbi.nlm.nih.gov/pubmed/11084201
https://doi.org/10.1371/journal.pone.0179030


21. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive

sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013; 188(8):996–

1004. Epub 2013/06/01. https://doi.org/10.1164/rccm.201303-0448OC PMID: 23721582.

22. Saboisky JP, Gorman RB, De Troyer A, Gandevia SC, Butler JE. Differential activation among five

human inspiratory motoneuron pools during tidal breathing. J Appl Physiol. 2007; 102(2):772–80.

PMID: 17053105. https://doi.org/10.1152/japplphysiol.00683.2006

23. Davies RB, Harte DS. Tests for Hurst Effect. Biometrika. 1987; 74(1):95–101. https://doi.org/10.1093/

biomet/74.1.95

24. Azarbarzin A, Sands SA, Taranto-Montemurro L, Oliveira Marques MD, Genta PR, Edwards BA, et al.

Estimation of pharyngeal collapsibility during sleep by peak inspiratory airflow. Sleep. 2016. PMID:

27634788.

Automated breath detection during variable mask pressures in awake and sleeping humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0179030 June 13, 2017 21 / 21

https://doi.org/10.1164/rccm.201303-0448OC
http://www.ncbi.nlm.nih.gov/pubmed/23721582
http://www.ncbi.nlm.nih.gov/pubmed/17053105
https://doi.org/10.1152/japplphysiol.00683.2006
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1093/biomet/74.1.95
http://www.ncbi.nlm.nih.gov/pubmed/27634788
https://doi.org/10.1371/journal.pone.0179030

