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Abstract: In epidemiological studies, samples are often collected long before disease onset or outcome
assessment. Understanding the long-term stability of biomarkers measured in these samples is
crucial. We estimated within-person stability over 10 years of metabolites and metabolite features
(n = 5938) in the Nurses’ Health Study (NHS): the primary dataset included 1880 women with
1184 repeated samples donated 10 years apart while the secondary dataset included 1456 women
with 488 repeated samples donated 10 years apart. We quantified plasma metabolomics using two
liquid chromatography mass spectrometry platforms (lipids and polar metabolites) at the Broad
Institute (Cambridge, MA, USA). Intra-class correlations (ICC) were used to estimate long-term
(10 years) within-person stability of metabolites and were calculated as the proportion of the total
variability (within-person + between-person) attributable to between-person variability. Within-
person variability was estimated among participants who donated two blood samples approximately
10 years apart while between-person variability was estimated among all participants. In the primary
dataset, the median ICC was 0.43 (1st quartile (Q1): 0.36; 3rd quartile (Q3): 0.50) among known
metabolites and 0.41 (Q1: 0.34; Q3: 0.48) among unknown metabolite features. The three most
stable metabolites were N6,N6-dimethyllysine (ICC = 0.82), dimethylguanidino valerate (ICC = 0.72),
and N-acetylornithine (ICC = 0.72). The three least stable metabolites were palmitoylethanolamide
(ICC = 0.05), ectoine (ICC = 0.09), and trimethylamine-N-oxide (ICC = 0.16). Results in the secondary
dataset were similar (Spearman correlation = 0.87) to corresponding results in the primary dataset.
Within-person stability over 10 years is reasonable for lipid, lipid-related, and polar metabolites, and
varies by metabolite class. Additional studies are required to estimate within-person stability over
10 years of other metabolites groups.

Keywords: lipids and lipid-related metabolites; polar metabolites; within-person stability; unknown
metabolite features

1. Introduction

In epidemiological studies, samples are often collected long before disease onset or
outcome assessment. Within the Nurses’ Health Studies (NHS) and NHSII, several nested
case–control studies investigated prospective associations of plasma biomarkers measured
in samples collected >10 years before disease onset with risk of developing cancer and other
chronic diseases. For example, total circulating carotenoids measured up to 20 years before
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diagnosis were associated with decreased risk of developing breast cancer [1]. In contrast,
high plasma prolactin levels measured≥10 years before diagnosis were not associated with
increased risk of breast cancer while measures <10 years before diagnosis were associated
with increased risk [2], emphasizing that understanding how the timing of biomarkers is
related to risk is critical to elucidating disease etiology. Thus, understanding the long-term
within-person stability of biomarkers measured in these samples is crucial.

The metabolome, which reflects the integrated effects of the genetic background,
lifestyle, and environmental factors [3], is of particular interest in epidemiologic studies.
Metabolites measured up to 23 years before diagnosis were associated with risk of ovarian
cancer in NHS and NHSII [4,5] reflecting long-term disease–biomarker associations. Multi-
ple studies reported on the stability of metabolomics profiles with respect to preanalytical
conditions, storage time, and repeated freeze–thaw cycles [6–21], and participant charac-
teristics such as gender, age, fasting status, and body mass index (BMI) [22–32]. We and
others reported previously on the short-term within-person stability or metabolites [33–35].
However, data on the long-term within-person stability of metabolomics are lacking. Here,
we assessed metabolomics within-person stability over 10 years in two separate prospective
case–control studies nested within a large epidemiological study, the NHS.

2. Results
2.1. Study Population Characteristics

Women in the primary dataset had a mean age of 56 years at the first blood collection
(n = 1880) and 66 years at the second blood collection (n = 1184). Participant characteristics
were similar at the two blood collections with some exceptions: more women reported
being postmenopausal, past smokers, and fasting >8 h at the second blood collection
compared to the first blood collection. Women in the secondary dataset (first collection
n = 1456, second collection n = 488) were similar to the fasting women (first collection
n = 1309, second collection n = 1062) in the primary dataset.

2.2. Metabolite Profile Stability over 10 Years in the Primary Dataset

Metabolites had a median intra-class correlation (ICC) of 0.43 (1st quartile (Q1):
0.36; 3rd quartile (Q3): 0.50; Table 1). ICCs among lipids and lipid-related metabolites
were similar to ICCs among polar metabolites (median ICC = 0.44 vs.0.42; Wilcoxon test
p = 0.06). ICCs differed significantly comparing metabolites with coefficient of variation
(CV) among quality control samples < 25% to metabolites with CV ≥ 25% (median ICC:
0.44 vs. 0.34; Wilcoxon test p < 0.01). The median % difference in metabolite levels be-
tween the two collections, calculated from raw values, was −5.25% (Q1: −14.80%, Q3:
0.92%; Supplementary Table S1). ICCs among known metabolites were slightly different
from ICCs among unknown metabolite features (median ICC: 0.43 vs. 041; Wilcoxon test
p < 0.01) but showed similar patters across metabolite subsets (Supplementary Material;
Supplementary Table S2). The three most stable metabolites were N6,N6-dimethyllysine
(ICC = 0.82), dimethylguanidino valerate (ICC = 0.72) and N-acetylornithine (ICC = 0.72)
while the three least stable metabolites were palmitoylethanolamide (ICC = 0.05), ectoine
(ICC = 0.09), and trimethylamine-N-oxide (ICC = 0.16). Results for all known metabolites,
including CVs from blinded quality control samples, between- and within-person CV, mean
% difference, and ICCs across participant strata are included in Supplementary Table S1.
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Table 1. Intra-class correlations (ICC) among 295 metabolites, by metabolite subsets, in the pri-
mary dataset.

Metabolites Median Quartile 1−Quartile 3

All metabolites 0.43 0.36–0.50
Lipids and lipid-related metabolites 0.44 0.38–0.51

Polar metabolites 0.42 0.33–0.49
Metabolites with CV < 25% 0.44 0.38–0.51
Metabolites with CV ≥ 25% 0.34 0.28–0.42

CV: coefficient of variation from blinded quality control samples.

Metabolite ICCs also varied by metabolite class (Figure 1). The most stable metabolite
classes were nucleosides, nucleotides, and analogues (median ICC: 0.57), phosphatidyl-
choline (PC) plasmalogens (median ICC: 0.54), diglycerides (DG; median ICC: 0.53), and
cholesteryl esters (CE; median ICC: 0.53). The least stable metabolite classes were steroids
and steroid derivatives (median ICC: 0.26), benzene and derivatives (median ICC: 0.35),
and pyridines and derivatives (median ICC = 0.36).
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Figure 1. Metabolomic profiles stability over 10 years by metabolite class. Results from known
metabolites are included in this figure. Metabolite classes with less than two metabolites were added
to the class Other. ICCs beyond the whiskers (outliers) are plotted individually as black dots. The left
whisker extends from the left hinge of the box (25th percentile) to the smallest value but no further
than 1.5*IQR (inter-quartile range). The right whisker extends from the right hinge of the box (75th
percentile) to the largest value but no further than 1.5*IQR (inter-quartile range).
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We observed statistically significant, albeit small, differences in metabolite ICCs
across participant strata in sensitivity analyses (Table 2, Supplementary Table S1, and
Supplementary Figure S1). Metabolite ICCs estimated among all women (median ICC = 0.43)
were slightly different from ICCs estimated among fasting women (median ICC = 0.45;
paired Wilcoxon test p < 0.01), from ICCs estimated among women with stable BMI (median
ICC = 0.43; paired Wilcoxon test p < 0.01), from ICCs estimated among women with a
change in BMI (median ICC = 0.41; paired Wilcoxon test p < 0.01), from ICCs estimated
among postmenopausal women not using hormone therapy at either collection (median
ICC = 0.44; paired Wilcoxon test p < 0.01), and from ICCs estimated among control women
(median ICC = 0.44; paired Wilcoxon test p < 0.01). While statistically significant, the magni-
tude of impact on ICCs by these characteristics is fairly small. Similar patters were observed
among unknown metabolite features (Supplementary material, Supplementary Table S3).

Table 2. Metabolomic profiles stability over 10 years for known metabolites (n = 295). ICCs were
estimated among all women (n = 1880 of which 1184 donated 2 samples), fasting women (n = 1309
of which 765 donated 2 samples), among women with stable BMI (n = 706) or with a change in
BMI (n = 478 samples), postmenopausal women not using hormone therapy (n = 577 of which
223 donated 2 samples), and control women (n = 940 of which 592 donated 2 samples). The stable
BMI group includes participants with ≤2 kg/m2 change in BMI between the two blood collections.
The groups with a change in BMI includes participants with >2 kg/m2 change in BMI between the
two blood collections.

Participants Median Quartile 1–Quartile 3

All women 0.43 0.36–0.50
Fasting women 0.45 0.37–0.52

Women with stable BMI 0.43 0.36–0.51
Women with a change in BMI * 0.41 0.33–0.48

Postmenopausal women not
using hormone therapy 0.44 0.36–0.53

Control women 0.44 0.37–0.51

* BMI change >2 kg/m2.

Notably, metabolites stable among all women were also stable when assessed in
different participant strata (for example, N6,N6-dimethyllysine ICC ranges between 0.82
and 0.84 across participant strata; Table 3). Similarly, metabolites with low ICC among all
women were also not stable when assessed in the different participant strata (for example,
palmitoylethanolamide ICC ranges between 0.03 and 0.06 across subgroups; Table 3).

2.3. Metabolite Profile Stability over 10 Years in the Secondary Dataset

Results in the secondary dataset, which included known polar metabolites and fasting
women, were similar to results for known polar metabolites among fasting women in the
primary dataset (Spearman correlation = 0.87; Figure 2, Supplementary Table S4). In the
secondary dataset, the median ICC among known metabolites was 0.43 (Q1: 0.34; Q3: 0.51),
similar to the median ICC of 0.43 (Q1: 0.35; Q3: 0.52) among unknown metabolite features.
Among known metabolites for which we were able to estimate ICCs in both datasets
(n = 105), 52 (50%) metabolites had % ICC absolute difference <10% and 82 (78%) had
% absolute difference <20%. The metabolites with the lowest % absolute ICC difference
between the two datasets were 1,7-dimethyluric acid (primary dataset ICC: 0.42; secondary
dataset ICC: 0.42), caffeine (primary dataset ICC: 0.42; secondary dataset ICC: 0.43), and
creatinine (primary dataset ICC: 0.60; secondary dataset ICC: 0.60). Similarly, 17 metabolites
ranked among the top 25 most stable metabolites in the primary dataset were also ranked
among the 25 most stable metabolites in the secondary dataset.
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Table 3. Most and least stable metabolites. ICCs were estimated among four participant subgroups:
all participants (n = 1184 repeated samples and n = 696 unique samples), fasting participants (n = 765
repeated and n = 544 unique samples), and among participants with stable (n = 706 repeated samples)
or unstable BMI (n = 478 repeated samples). The stable BMI group includes participants with
≤2 kg/m2 difference in BMI between the two blood collections. The unstable BMI group includes
participants with >2 kg/m2 difference in BMI between the two blood collections.

Intra-Class Correlation

Metabolite Name Metabolite Class All Fasting Stable BMI Unstable BMI

M
os

ts
ta

bl
e

m
et

ab
ol

it
es

N6,N6-dimethyllysine Organic acids and derivatives 0.82 0.84 0.83 0.83
Dimethylguanidino valerate Other 0.72 0.73 0.73 0.71

N-acetylornithine Organic acids and derivatives 0.69 0.72 0.70 0.68

C34:2 PC plasmalogen Phosphatidylcholine
plasmalogens 0.66 0.67 0.66 0.61

C38:4 PC Phosphatidylcholines 0.65 0.66 0.66 0.63
Glycine Amino acids 0.65 0.64 0.65 0.62

C5-DC carnitine Carnitines 0.64 0.63 0.66 0.62

N4-acetylcytidine Nucleosides, nucleotides,
and analogues 0.64 0.62 0.68 0.62

(A)Symmetric dimethylarginine Organic acids and derivatives 0.62 0.63 0.66 0.65

C36:1 PE plasmalogen Phosphatidylethanolamine
plasmalogens 0.62 0.62 0.64 0.59

Le
as

ts
ta

bl
e

m
et

ab
ol

it
es 1-methylhistidine Other 0.21 0.18 0.21 0.25

4-hydroxyhippurate Other 0.21 0.19 0.18 0.26
Acetaminophen * Other 0.2 0.18 0.21 0.21

Guanosine Other 0.2 0.20 0.17 0.23
Allantoin Other 0.18 0.21 0.15 0.20

Hydroxyproline Carboxylic acids and derivatives 0.18 0.12 0.17 0.17
Methyl N-methylanthranilate Other 0.17 0.13 0.14 0.22

Trimethylamine-N-oxide Other 0.16 0.15 0.12 0.24
Ectoine Other 0.09 0.08 0.08 0.10

Palmitoylethanolamide Other 0.05 0.03 0.05 0.06

* exogenous metabolite.
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Figure 2. Metabolomics stability over 10 years in the primary and secondary datasets. The primary
dataset was restricted to polar metabolites and fasting women to match the secondary dataset. Intra-
class correlations (ICCs) in the two datasets are shown as boxplots (panel A) and by metabolite
class in a scatter plot (panel B). The correlation was estimated using Spearman’s rank correlation
coefficient. In panel (A), ICCs beyond the whiskers (outliers) are plotted individually as black dots.
The lower whisker extends from the lower hinge of the box (25th percentile) to the smallest value but
no further than 1.5*IQR (inter-quartile range). The upper whisker extends from the upper hinge of
the box (75th percentile) to the largest value but no further than 1.5*IQR (inter-quartile range).

3. Discussion

We estimated within-person stability over 10 years for 5938 metabolites (295 known
compounds and 5643 unknown metabolite features) among 1880 women. Most metabolites
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were reasonably stable over 10 years with a median ICC of 0.43 for known metabolites
and 0.41 from unknown metabolite features. Within-person stability over 10 years varied
by metabolite class. In secondary analyses, we performed a partial replication of polar
metabolites in another data set of 1456 fasting women; findings were similar.

To the best of our knowledge, this is the first study to assess within-person stability of
metabolomic profiles over 10 years. Within-person stability over 10 years was attenuated
when compared to within-person stability over 1–2 years [33–35]. While 61% of metabolites
showed ICCs > 0.5 over 1 year, only 25% of the metabolites in our study had similar ICCs
over 10 years [35]. However, the metabolite classes that were the most stable over 1–2 years
were also the most stable over 10 years [33]. For example, cholesteryl esters, phosphatidyl-
choline plasmalogens, and diglycerides had high median ICCs over 1–2 years (median ICC:
0.73–0.76) and over 10 years (median ICC: 0.53–0.55). Nucleosides, nucleotides, and ana-
logues were the most stable class over 10 years (10 years ICC = 0.57, 1–2 years ICC = 0.55).
Steroid and steroid derivatives was the least stable class over 1–2 years (median ICC = 0.36)
and over 10 years (median ICC = 0.26) [33]. Although metabolite levels are associated
with personal characteristics [22–32], these characteristics have significant but small ef-
fects on both short-term (age, gender, fasting [35]) and long-term within-person stability
(fasting, BMI, postmenopausal hormone therapy use) with effects varying by metabolite
class [21,34].

Our results show that although the within-person stability decreases over time, metabo-
lites are reasonably stable over 10 years. Homeostasis, the body’s ability to maintain fairly
steady conditions, may be one of the underlying factors driving stability in some metabo-
lites. The reduced long-term stability over 10 years compared to 1–2 years reflects greater
within-person variation over longer periods of time. True changes in metabolite levels
over long periods of time represent the most important source of variability. Changes over
10 years in personal, behavioral, and lifestyle factors such as age, BMI, menopausal status,
exposure to postmenopausal hormone therapy, diet, and physical activity are likely to affect
metabolite levels. For example, acetaminophen, a drug often used sporadically for differ-
ent types of aches and pains, had a low within-person stability, likely reflecting different
windows of exposure. Furthermore, some diet-related metabolites (e.g., trimethylamine-
N-oxide (TMO) [36], pipecolic acid [37]) tended to show low within-person stability over
10 years. Notably, within person stability over time among triglycerides (TAG) varied by
saturation level and length of the fatty acyl chains. Most highly unsaturated TAGs with
long fatty acyl chains, which are associated with long-term vegetable intake [37], tended to
be more stable over time compared to less unsaturated TAGs with shorter fatty acyl chains.
While changes in behaviors and exposures result in a reduced 10 years within-person
stability of metabolites, it is important to note that we expect changes in metabolite levels
in response to changes in these factors. Furthermore, we study metabolites to identify new
risk and disease biomarkers because they reflect changes in these factors and are considered
a representation of the metabolic state of an individual, the integrated effects of their genetic
background, lifestyle, and environmental exposure [3]. A critical feature of some of the
most widely applied clinical disease risk markers, such as standard blood lipids, is their
responsiveness to pharmacological and lifestyle-based risk prevention. Long-term storage
may represent another source of variation. However, the samples in these cohorts are stored
at ultra-low temperatures (≤−130 ◦C) which were shown to limit the negative effects of
long-term storage [38]. Additionally, we have identified metabolites measured in these
long-term stored samples that were significantly associated with cancer and other chronic
diseases in multiple studies (e.g., pancreatic [39], ovarian [4,5], breast [40,41] and prostate
cancer [42], rheumatoid arthritis [43], and cardiovascular disease [44]), suggesting that stor-
age time does not substantially impact biomarker–disease associations. Furthermore, for a
considerable subset of metabolites (e.g., cotinine, trigonelline, caffeine, pantothenate, C45:3
TAG, C54:9 TAG), we also observed relatively large median % differences over 10 years
(−47%/+58%) and, at the same time, reasonably high ICCs (>0.4), suggesting that potential
changes in metabolite levels due to long term-storage are similar across individuals.
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For a subset of metabolites, two additional sources of variation must be considered. To
leverage the large coverage of the assay, we did not exclude metabolites with low technical
reproducibility from the analysis. Furthermore, the samples in this analysis are subject to
delayed processing (24–48 h after sample collection). We excluded metabolites where we
have documented variation with a delay in processing [33], but this information was not
available for all known metabolites, and not available for any of the unknown metabolite
features. Notably, both factors would result in a potential underestimation of long-term
within-person stability.

The 10-year within-person stability of metabolites is similar to other plasma biomarkers
measured in the NHS. For example, postmenopausal hormone levels (estradiol ICC = 0.69,
testosterone ICC = 0.71, sex hormone-binding globulin ICC = 0.74, and dehydroepiandros-
terone sulfate ICC = 0.54) [45], 25-hydroxyvitamin D (ICC = 0.51) [46], and prolactin
(ICC = 0.39) [2] all showed high or moderate within-person reproducibility over 10 years,
whereas dietary biomarkers such as carotenoids (ICCs ranged between 0.3 for β-carotene
and 0.54 for lutein and zeaxanthin) [1] and fluorescent oxidation products (ICCs range from
0.14 to 0.30) [47] showed moderate or modest long-term within-person stability. While
long-term stability should be factored into result interpretation, many of the most predic-
tive and widely used biomarkers have similar within-person stability over 10 years in this
cohort. For example, plasma cholesterol has a 10-year ICC of 0.39 and is highly predictive
of coronary artery disease risk in our [48–50] and other cohorts.

Our study has several strengths and limitations. We were able to assess within-person
stability over 10 years for over 295 known metabolites (polar metabolites and lipids and
lipid-related metabolites) and 5643 unknown metabolite features. However, our study
did not include other metabolite groups such as fatty acids, carbohydrates, alcohols, and
vitamins. We had a large sample size and were able to conduct a partial replication for a
subset of the measured metabolites among fasting women, but our study included mostly
Caucasian women limiting its generalizability. It should also be noted that the samples
used in this analysis were subject to delayed processing (blood collection characteristic
in the NHS). While we excluded metabolites known to vary with a delay in processing,
this information was not available for all analyzed metabolites. Additionally, we did not
exclude metabolites with low technical reproducibility. Due to these factors, the ICCs
presented here may include variation due to technical reproducibility and/or differential
delay in processing between the two blood collections which can potentially result in an
underestimation of within-person stability over time.

In summary, our study showed that metabolites are reasonably stable over 10 years,
a time interval characteristic of prospective epidemiologic studies of chronic disease. In
a secondary dataset, we were able to replicate our findings for a subset of metabolites
among fasting women. Stability over 10 years varied by metabolite class. While the 10-year
stability of metabolites should be an important factor when interpreting results, it is equally
important to consider the sources of variation that influence long-term within-person
stability of metabolites. Findings from this study represent a comprehensive resource for
the design of future studies into disease risk associations of specific metabolites and/or
metabolite classes.

4. Materials and Methods
4.1. Study Population

In 1976, 121,701 female registered nurses aged 30–55 years enrolled in the NHS with
the return of a mailed questionnaire [51]. Participants have been followed biennially
with questionnaires collecting information on reproductive history, lifestyle factors, diet,
medication use, and new disease diagnoses. In 1989–1990, 32,826 NHS participants aged
43–69 years contributed blood samples, as previously described [52]. In 2000–2002, 18,473 of
these women aged 53–80 years donated a second sample using a similar protocol. The
study design and timeline are summarized in Figure 3.
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Figure 3. Timeline of the two blood collections and metabolomic profiling in the primary and
secondary datasets within the Nurses’ Health Study.

The primary dataset was obtained from a prospective breast cancer case–control study
nested within the NHS (Table 4) [40,41]. Incident cases of breast cancer (n = 940) were
identified after the second blood collection among women who had no reported cancer
(other than non-melanoma skin). In total, 1880 women donated a sample during the
first blood collection and 1184 women donated a second blood sample approximately
10 years later. Samples from the first collection were stored for approximately 28 years
while samples from the second collection were stored for approximately 18 years before
metabolomic profiling.

Table 4. Characteristics of study participants in the primary dataset.

First Collection Second Collection

n 1880 1184
Age, y 55.57 (6.92) 66.46 (6.87)
BMI, kg/m2 25.37 (4.53) 26.57 (5.11)
Physical activity, MET-hrs/wk 16.34 (20.00) 19.58 (20.78)
Alcohol consumption, g/day 6.71 (10.95) 5.81 (9.45)
AHEI ˆ 47.31 (10.67) 50.16 (9.98)
Menopausal status, %

Premenopausal 479 (25.5) 8 (0.7)
Postmenopausal, no PMH # use 577 (30.7) 374 (31.6)
Postmenopausal, PMH # use 587 (31.2) 788 (66.6)
Missing/Dubious 237 (12.6) 14 (1.2)

Fasting (>8 h), % 1309 (69.6) 1062 (89.7)
Smoking, %
Never 888 (47.4) 551 (46.7)
Past 748 (39.9) 575 (48.7)
Current 238 (12.7) 55 (4.7)

Race, %
White 1853 (98.6) 1173 (99.1)
Black 14 (0.7) 4 (0.3)
Asian 10 (0.5) 5 (0.4)
Other/missing 3 (0.2) 2 (0.2)

ˆ Alternative Healthy Eating Index, calculated without alcohol consumption, # Postmenopausal Hormone.

The secondary dataset is from a prospective diabetes case–control study nested within
the NHS (Supplementary Table S5) [53]. Incident cases of diabetes (n = 728) were identified
after the second blood collection. In total, 1456 women donated samples during the
first blood collection and 488 women donated a second blood sample approximately
10 years later. Samples from the first collection were stored for approximately 31 years
while samples from the second collection were stored for approximately 21 years before
metabolomic profiling.
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The study protocol was approved by the institutional review boards of the Brigham
and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of
participating registries as required. The return of the self-administered questionnaire and
blood sample was considered to imply consent.

4.2. Blood Collection Methods

The same protocol was used for both blood collections. Briefly, participants had their
blood drawn in sodium heparin tubes at a nearby clinic or by their colleagues, and the blood
samples were shipped with an ice pack via overnight courier to our laboratory. Whole
blood samples were centrifuged (2500 revolutions per minute (RPM) for 20 min at 4 ◦C) and
aliquoted into 5 mL plasma, red blood cells and white blood cells cryotubes. Plasma samples
were stored in the vapor phase of liquid nitrogen (LN2) freezers (temperature ≤ −130 ◦C;
alarmed and monitored 24 h a day) with LN2-rated gasketed screw tops since collection.
At the time of blood collection, participants also completed a questionnaire regarding time
since last meal and time of day when they completed blood collection.

4.3. Metabolite Profiling

Metabolic profiles were assayed through a metabolomic profiling platform at the
Broad Institute using a liquid chromatography tandem mass spectrometry (LC-MS) method
designed to measure polar metabolites such as amino acids and lipids [54–56]. The relative
abundance of each metabolite was determined by the integration of LC-MS peak areas,
which are proportional to metabolite concentrations. For each measurement method (polar
metabolites and lipids), pooled plasma reference samples were included every 20 samples
and results were standardized using the ratio of the value of the sample to the value of the
nearest pooled reference multiplied by the median of all reference values for the metabolite.
In each dataset, samples collected at both collections from the same individual and matched
case–control pairs were run adjacent to each other. Therefore, variability in platform
performance across samples within individuals was limited. In addition, 426 quality control
(QC) samples, to which the laboratory was blinded, were also profiled; coefficients of
variation (CV) were calculated from these samples and presented in Supplemental Table S1.
QC samples were randomly distributed among the participants’ samples.

Hydrophilic interaction liquid chromatography (HILIC) analyses of water-soluble
metabolites in the positive ionization mode were conducted using an LC-MS system
composed of a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA,
USA) coupled to a Q Exactive mass spectrometer (Thermo Fisher Scientific; Waltham,
MA, USA). Metabolites were extracted from plasma (10 µL) using 90 µL of acetoni-
trile/methanol/formic acid (74.9:24.9:0.2 v/v/v) containing stable isotope-labeled internal
standards (valine-d8, Sigma-Aldrich; St. Louis, MO; and phenylalanine-d8, Cambridge
Isotope Laboratories; Andover, MA, USA). The samples were centrifuged (10 min, 9000× g,
4 ◦C), and the supernatants were injected directly onto a 150 × 2 mm, 3 µm Atlantis HILIC
column (Waters; Milford, MA, USA). The column was eluted isocratically at a flow rate of
250 µL/min with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid
in water) for 0.5 min followed by a linear gradient to 40% mobile phase B (acetonitrile
with 0.1% formic acid) over 10 min. MS analyses were carried out using electrospray
ionization in the positive ion mode using full scan analysis over 70–800 m/z at 70,000 reso-
lution and 3 Hz data acquisition rate. Other MS settings were: sheath gas 40, sweep gas
2, spray voltage 3.5 kV, capillary temperature 350 ◦C, S-lens RF 40, heater temperature
300 ◦C, microscans 1, automatic gain control target 1 × 106, and maximum ion time 250 ms.
Metabolites measured with this method will be referred to as HILIC-positive metabolites.

Plasma lipids were profiled using a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.;
Marlborough, MA, USA). Lipids were extracted from plasma (10 µL) using 190 µL of iso-
propanol containing 1,2-didodecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids;
Alabaster, AL, USA). After centrifugation, supernatants were injected directly onto a
100 × 2.1 mm, 1.7 µm ACQUITY BEH C8 column (Waters; Milford, MA, USA). The column
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was eluted isocratically with 80% mobile phase A (95:5:0.1 v/v/v 10 mM ammonium ac-
etate/methanol/formic acid) for 1 min followed by a linear gradient to 80% mobile-phase
B (99.9:0.1 v/v methanol/formic acid) over 2 min, a linear gradient to 100% mobile phase
B over 7 min, then 3 min at 100% mobile-phase B. MS analyses were carried out using
electrospray ionization in the positive ion mode using full scan analysis over 200–1100 m/z
at 70,000 resolution and 3 Hz data acquisition rate. Other MS settings were: sheath gas 50,
in source CID 5 eV, sweep gas 5, spray voltage 3 kV, capillary temperature 300 ◦C, S-lens
RF 60, heater temperature 300 ◦C, microscans 1, automatic gain control target 1 × 106, and
maximum ion time 100 ms. Lipid identities were denoted by total acyl carbon number and
total double bond number. Metabolites measured with this method will be referred to as
C8-positive metabolites.

Raw data from orbitrap mass spectrometers were processed using TraceFinder 3.3
software (Thermo Fisher Scientific; Waltham, MA, USA) and Progenesis QI (Nonlinear
Dynamics; Newcastle upon Tyne, UK). For analytical quality control, pooled plasma
reference samples and mixtures of synthetic metabolite reference standards were analyzed
at the beginning and end of sample queues to assure stable analytical performance, internal
standard signals were evaluated in each sample to ensure consistent sample volume
injections, and pooled plasma QC samples were inserted into the analytical queue at a
frequency of 5% to evaluate analytical repeatability of each metabolite. Plasma samples
were thawed on ice prior to aliquoting. As the aliquots for the LC-MS methods were
prepared from each sample, a pooled plasma sample was created by placing an additional
10 µL aliquot from each sample into a 50 mL conical centrifuge tube. The pooled plasma
sample was maintained on dry ice while samples were being aliquoted to promote rapid
freezing and stored at−80 ◦C in between sample batches until all additions were made. The
pooled plasma was then thawed on ice, mixed by vortexing, and sub-aliquoted to create
pooled plasma QC samples for each LC-MS method. For each method, metabolite identities
were confirmed using mixtures of authentic reference standards (that were previously
individually identified in human plasma based on matching retention times, m/z, and
MS/MS spectra) or reference samples (see Supplementary Table S6).

After exclusion of metabolites not stable with a delay in processing which is character-
istic of the two blood collections [33] (n = 35) and those missing in >10% of the participants
who donated two samples (20 known compounds and 1069 unknown metabolite features),
the primary dataset included 5938 metabolites (295 known compounds and 5643 unknown
metabolite features) measured at both blood collections. In total, 2519 lipids and lipid-
related metabolites (153 known compounds and 2366 unknown metabolite features) were
measured with the C8 column in positive mode while 3419 polar metabolites (142 known
compounds and 3277 unknown metabolite features) were measured with the HILIC column
in positive mode. Most of the known metabolites (n = 253; 86%) and 47% (n = 2655) of the
unknown metabolite features had coefficients of variation (CV) <25%. All metabolites were
included in this study.

Similarly, after exclusion of metabolites not stable with a delay in processing which
is characteristic of the two blood collections [33] (n = 34) and those missing in >10% of
the participants who donated two samples (16 known compounds and 427 unknown
metabolite features), the secondary dataset included 3209 polar metabolites (202 known
compounds and 3007 unknown metabolite features) measured at both blood collections.
The secondary dataset did not include lipids and lipid-related metabolites. Most of the
known metabolites (n = 171; 85%) and 44% (n = 1326) of the unknown metabolite features
had CV < 25%. All metabolites were included in this study.

4.4. Statistical Analysis

Metabolite values were transformed to probit scores within each blood collection
and dataset. We estimated within-person stability over 10 years by calculating intra-
class correlation (ICC) using liner mixed models with participant IDs as a random effect.
We followed the approach developed by Dr. Rosner et al. [57] to estimate ICCs on the
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probit scale and transform these back to the original scale. Within-person variability was
estimated among participants who donated two blood samples approximately 10 years
apart (n = 1184) while between-person variability was estimated among all participants
(n = 1880). ICCs were calculated as the proportion of the total variability (within-person
+ between-person) attributable to between-person variability. ICCs range between 0 and
1, with 0 indicating no stability over time (no between-person variability; all variability
is attributable to within-person variability) and 1 indicating perfect stability over time
(no within-person variability; all variability is attributable to between-person variability).
ICCs close to 1 reflect a higher proportion of the total variability due to between-person
variability. We also calculated median % change in metabolite levels over 10 years on the
original scale. In sensitivity analyses, we restricted to fasting women (n = 1309 of which
765 donated 2 samples), women with stable BMI (≤2 kg/m2 change in BMI between the two
blood collections, n = 706), women with change in BMI (>2 kg/m2 change in BMI between
the two blood collections, n = 478), postmenopausal women not using postmenopausal
hormone therapy at either time point (n = 577 of which 223 donated 2 samples), and women
without breast cancer at both blood collections (n = 940 of which 592 donated 2 samples).
We compared ICCs between metabolite groups (e.g., ICCs for lipids vs. ICCs for polar
metabolites) using the Wilcoxon rank sum test and between participant groups (e.g., ICCs
estimated among all women vs. ICCs estimated among fasting women) using the Wilcoxon
signed rank test for paired observations. The secondary dataset included only women who
were fasting for >8 h. To assess differences in ICCs between the two datasets, we estimated
the Spearman correlation and calculated % absolute change in ICCs between the primary
and secondary dataset.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050372/s1, Figure S1. Intra-class correlations for known
metabolites and unknown metabolite features by participant strata, Table S1. Within-person stability
over 10 years across different participant strata; Table S2. Intra-class correlations among unknown
metabolite features in the primary dataset; Table S3. Intra-class correlations among unknown
metabolite features across participant strata in the primary dataset; Table S4. ICCs for known
metabolites measured in the primary and secondary dataset; Table S5. Characteristics of fasting
participants in the primary dataset and all participants in the secondary dataset; Table S6. Reference
standards and spectral evidence used to identify metabolites.
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