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Systematic Dimensionality 
Reduction for Quantum Walks: 
Optimal Spatial Search and 
Transport on Non-Regular Graphs
Leonardo Novo1,2,*, Shantanav Chakraborty1,2,*, Masoud Mohseni3, Hartmut Neven3 & 
Yasser Omar1,2,4

Continuous time quantum walks provide an important framework for designing new algorithms 
and modelling quantum transport and state transfer problems. Often, the graph representing the 
structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace 
of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed 
systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the 
dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we 
apply this method to obtain new instances of graphs where the spatial quantum search algorithm 
is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star 
graph. These examples show that regularity and high-connectivity are not needed to achieve optimal 
spatial search. We also show that this method considerably simplifies the calculation of quantum 
transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from 
highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an 
upper bound for the fidelity of a single qubit transfer on an XY spin network.

Quantum walks1–7 are an important framework to model quantum dynamics, with applications ranging 
from quantum computation to quantum transport. Being the quantum mechanical analogue of classical 
random walks, quantum walks can outperform their classical counterparts by exploiting interference in 
the superposition of the various paths in a graph as well as by taking advantage of quantum correlations 
and quantum particle statistics between multiple walkers8. In fact, for multiparticle quantum walks, inter-
actions lead to an efficient simulation of the circuit model of quantum computation9.

Quantum walks can be formulated in both the discrete time1 and continuous time2 frameworks, 
where the latter can be obtained as a limit of the former10. In this article we focus on single particle 
continuous time quantum walks (CTQWs), where the knowledge of the adjacency matrix of the graph 
is sufficient to completely describe the walk. Several interesting algorithms have been developed in this 
framework11,12. In fact, CTQWs in sparse unweighted graphs are equivalent to the circuit model of quan-
tum computation, although the corresponding simulation is not efficient13. Besides quantum algorithms, 
CTQWs are applied in areas such as quantum transport14–17 and state transfer18,19.

In most CTQW problems, the quantity of interest is the population (or probability amplitude) at a 
particular node of the graph. For example, in the spatial search algorithm11, the purpose is to maximize 
the probability amplitude at the solution node in the shortest possible time. In the glued trees algorithm 
demonstrated in12, which has an exponential speed up over its classical counterpart, the walker traverses 
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the graph therein in order to find an exit node. On the other hand, quantum transport problems involv-
ing a single excitation, for example, exciton transport in photosynthetic complexes, can be modelled by 
CTQWs14–17,20. In such cases, the figures of merits are typically the transport efficiency or the transfer 
time to a special node, known as the trap. As for state transfer, the task is to send a qubit from one point 
of a spin-network to another with maximum fidelity18,19,21. In many of these problems, the graph in which 
the walk takes place possesses some symmetry11,22,23 which implies that the dynamics of the walker is 
restricted to a subspace that is smaller than the complete Hilbert space spanned by the nodes of the 
graph. In this work, we use invariant subspace methods, that can be computed systematically using the 
Lanczos algorithm24, to obtain a reduced model that fully describes the evolution of the probability 
amplitude at the node we are interested in. This method involves obtaining the minimal subspace which 
contains this node and is invariant under the unitary evolution. This is simply the subspace that contains 
the node of interest w , and all powers of the Hamiltonian applied to it, also known as a Krylov subspace. 
Henceforth, this subspace will be denoted by H w( , ). This subspace can be systematically obtained 
without taking into consideration the symmetries of the Hamiltonian, using, for example, the Lanczos 
algorithm24. This algorithm iteratively obtains the basis for the invariant subspace: the first basis element 
is the special node w ; the ith basis element is calculated by applying the Hamiltonian to the (i −  1)th 
element and orthonormalizing with respect to the previous basis elements. When expressed in the 
Lanczos basis, any Hermitian matrix becomes a tridiagonal matrix. Thus, any problem in quantum 
mechanics wherein the dynamics is described by a time independent Hamiltonian can be mapped to a 
CTQW on a weighted line, where the nodes are the elements of the Lanczos basis. In this way, we explore 
the notion of invariant subspaces to systematically reduce the dimension of the Hamiltonian that com-
pletely describes the dynamics relevant to our problem. We use this method to obtain new results on 
several CTQW problems, as well as re-derive some other known results in a simpler manner.

First, we consider the spatial search algorithm11, which searches for an element contained in one of 
the N nodes of the graph in N( ) time, which is optimal23. This algorithm is known to hold optimally 
for structures such as the complete graph, hypercubes, lattices of dimension greater than four and more 
recently, for strongly regular graphs22. In two dimensional lattices, the lower bound of N Nlog( ) 
could only be achieved when the dispersion relation of the spectrum is linear at a certain energy, i.e., it 
contains a Dirac point, as in honeycomb (e.g. graphene) lattices25, and crystal lattices26. However, the 
characteristics that a graph must possess, in general, for this algorithm to run optimally remains an open 
question. In fact in27, where the authors present a different spatial search algorithm based on the divide 
and conquer approach, their main criticism towards the CTQW version of the spatial search was the fact 
that an upper bound on the running time is unknown even if “minor defects are introduced”. Here, we 
show that the algorithm runs optimally on the complete graph with imperfections in the form of broken 
links, and also for complete bipartite graphs (CBG). In both cases, the graphs are, in general non-regular, 
i.e. not all the nodes of the graph have the same degree. A particular case of the CBG is the star graph 
where N −  1 nodes are connected only to a central node, which is a planar structure with link connec-
tivity one. Thus, this example shows that high connectivity is not a requirement for optimal quantum 
search. Moreover, on removing k links, such that k N , from a star graph, the emerging graph is robust 
as it preserves its star connectivity and search is still optimal provided that the broken link does not 
contain the solution. In all the graphs mentioned thus far, the Hamiltonian of dimension N, describing 
the dynamics of the algorithm, can be reduced to a Hamiltonian of dimension at most four. The dynam-
ics, driven by this reduced Hamiltonian, can be viewed as a CTQW on a smaller graph, which provides 
an intuitive picture of the algorithm, similar to a quantum transport problem. It is worth noting that the 
reduced Hamiltonians presented here describe the dynamics of the problem exactly and are not obtained 
by approximating the search Hamiltonian at the avoided crossing as in25. Thus, this is a simple way to 
analyse the algorithm that, in some cases, allows us to understand why search is optimal in a certain 
graph without having to explicitly calculate the eigenstates of the Hamiltonian.

Furthermore, we consider quantum transport on a graph, where an exciton is to be transferred from one 
node to a special node where it gets absorbed, known as the trap15,17. In the scenario where there is no 
disorder, decoherence or losses, it was shown in17 that the transport efficiency is given by the overlap of the 
initial condition with the eigenstates having a non-zero overlap with the trap. We prove that this subspace 
is the same as the invariant subspace H trap( , ). This observation allows us to compute transport effi-
ciencies without having to diagonalize the Hamiltonian. We calculate the efficiency in the complete graph 
(CG) with this method (obtaining the same result as in17, which uses the eigenstates of the graph). 
Furthermore, we obtain the transport efficiency on binary trees and hypercubes as a function of the number 
of generations and dimension respectively, for various initial conditions. Finally, we show that the efficiency 
in all these structures increases on average, when a few links are broken randomly from the graph. A par-
ticularly interesting example is the one of breaking the link from the complete graph which connects the 
initial and trap nodes. In such a case, the efficiency increases to 1, in the absence of decoherence and losses, 
irrespective of the size of the network. For this case, we also calculate analytically the trapping time, which 
does not depend on N. This counter-intuitive result can be interpreted by looking at the reduced subspace 
of the graph, where the problem reduces to an end to end transport in a line of three nodes. Similar results 
were obtained in21, in the context of state transfer, although different methods were used for the analysis of 
the problem. Overall, the instances presented herein show that even small perturbations to the symmetry 
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of a structure lead to a drastic improvement of the transport efficiency in the absence of decoherence. When 
decoherence is present, the effect of geometry in the transport efficiency was numerically studied in28, for 
random disordered structures.

Finally, we connect the results obtained for transport to the problem of state transfer in a quantum 
network. In the single excitation framework, the state transfer problem is equivalent to a CTQW of a 
single particle. We show that the fidelity of transferring an excitation from one node of the network i to 
another node j, is upper bounded by the square root of the transport efficiency in the analogous transport 
problem wherein i is the initial state and j is the trap node. This gives a simple way to upper bound the 
fidelity of transferring a qubit in any spin network.

Overall, we demonstrate that dimensionality reduction using the notion of invariant subspaces can 
be a useful tool to analyse CTQW based problems. By mapping a QW problem on a graph to one on a 
much smaller structure, the analysis of the problem becomes easier and the dynamics of the walk can be 
intuitively understood. Krylov subspace methods and the Lanczos algorithm for the analysis of CTQWs 
have also been used in29, but different results were obtained therein. In the discrete time framework, the 
role of symmetry and invariant subspaces were studied in30,31. Krylov subspace approaches were used 
to analyse adiabatic quantum search on structured database in32, and to obtain bounds for information 
propagation on lattices in33. The notion of invariant subspaces is also exploited in34 to simplify the anal-
ysis of parametrized Hamiltonians of quantum many body systems.

This paper is structured as follows: In Sec. Methods, the systematic method to obtain the reduced 
subspace H ω( , ) is demonstrated. Sec. Results comprises of the various applications of the reduction 
method, namely in quantum spatial search, quantum transport and state transfer. Finally, we present our 
conclusions in Sec. Discussions.

Methods
Dimensionality reduction of continuous time quantum walks.  Let us consider a graph G(V, E) 
of N nodes, where V is the set of nodes and E, the set of links. The adjacency matrix A of G(V, E) is of 
dimension N ×  N and is defined as follows:

A i j1 if E
0 otherwise 1ij =





( , ) ∈ .
( )

Formally, a CTQW on the graph G(V, E) takes place on a Hilbert space  of dimension N that is spanned 
by the nodes of the graph i  with I ∈  V. A particle starting in a state 0 ψ ∈  evolves according to the 
Schrödinger equation where the Hamiltonian H that governs the system dynamics is the adjacency 
matrix, i.e., H =  A. After time t, the particle is in the state

t e 2iHt
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So tψ ( )  is contained in the subspace  ψ ψ( , ) = ( ), ∀ ∈ H H kspan k
0 0 . This subspace of  is 

invariant under the action of the Hamiltonian and thus also of the unitary evolution. Trivially, the 
dimension of this subspace is at most N. However, if the Hamiltonian is highly symmetrical, only a small 
number of powers of H wk  are linearly independent and the dimension of H 0 ψ( , ) can be much 
smaller than N. Thus, we can reduce the dimension of the problem in the following way. Let P be the 
projector onto H 0 ψ( , ). Then
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where Hred =  PHP is the reduced Hamiltonian. In the derivation we used the fact that P2 =  P, P 0 0ψ ψ=  
and PU t U t0 0ψ ψ( ) = ( ) . Now, for any state φ ∈ , we have
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φ ψ= , ( )−e 6iH t
red 0

red

where, the reduced state, Predφ φ= . The same reasoning could be applied using the projector P′  onto 
the subspace H φ( , ), in which case we obtain

U t e 7
iH t

0 0
red

red
φ ψ φ ψ( ) = , ( )

− ′

with H P HPred′ = ′ ′ and ψ ψ| 〉 = ′P0 0red
. This way, a reduced Hamiltonian can be obtained which can be 

seen as the Hamiltonian of a weighted graph that in some cases, can be much simpler than the original 
graph we started with. Here, φ  can be the solution node for search algorithms, the trap for quantum 
transport and the target node for state transfer problems (see Sec. Results).

A systematic way to calculate an orthonormal basis of H φ( , ) is given by the Lanczos algorithm24. 
This basis, which we denote by | 〉, …, | 〉l l{ }m1 , can be obtained as follows: the first element is l1 φ=
; the kth element lk  is obtained by orthonormalizing H k φ  with respect to the subspace spanned by 
| 〉, …, | 〉−l l{ }k1 1 . The procedure stops when we find the minimum m such that 

φ| 〉 ∈ ( | 〉, …, | 〉 )+H l lspan { }m
m

1
1 . It can be shown that H projected in this basis has a tridiagonal form:
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This implies that, in fact, any problem in quantum mechanics with a time independent Hamiltonian can 
be mapped to an equivalent problem governed by a tight-binding Hamiltonian of a line with m sites, 
with site energies Ei and couplings Vi.

To illustrate the reduction method, we give a simple example of the quantum walk on the complete 
graph of N nodes, a graph wherein every node is connected to every other node, as shown in Fig. 1a. 
The Hamiltonian is given by the adjacency matrix of the graph

∑= .
( )≠

H i j
9i j

In this case, if |w〉  is a node of the graph, we have that

Figure 1.  (a) A complete graph with 7 nodes, with the target node in red. (b) Line with two nodes 
representing the reduced Hamiltonian of the complete graph with N nodes (see Eq. (13)), The solution node 
w  is represented in red and the other node sw  represents the equal superposition of all nodes except w . 
E1 and E2 represent their respective site energies and V the coupling between them. (c) The search 
Hamiltonian in the reduced picture (see Eq. (15)). In contrast to Fig. 1b, the site energies of both the nodes 
are equal, leading to perfect transport between them. Also, the transport time is given by the inverse of the 
coupling, which yields the running time of the algorithm T N= ( ).
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H w N
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where we define the equal superposition of all nodes except w  as

s
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1 11w
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Furthermore,

H s N s N w2 1 12w w= ( − ) + − . ( )

It is easy to see now that any state H wk  can be written as a linear combination of w  and sw . Thus, to 
calculate U t w( ) , it is enough to consider the dynamics in this two dimensional subspace spanned by 
| 〉, | 〉w s{ }w  driven by the reduced Hamiltonian

H N
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This approach reduces the problem of calculating U t w( )  to the calculation of the exponential of a 2 ×  2 
matrix instead of a N ×  N matrix. We can see Hred as a tight-binding Hamiltonian of a structure with two 
sites w  and sw , with site energies 0 and N −  2, respectively and a coupling of N 1− , as shown in 
Fig. 1b. Another interesting example is the reduction of the quantum walk on the glued trees of height l 
with 2l( ) nodes to the 2l +  1 column states as done in12, which is crucial to prove the exponential 
speed-up of this algorithm with respect to its classical counterpart. Even when some symmetry of the 
graph is broken, say by breaking a link of the graph, this reduction is still very useful and captures the 
symmetry that remains (see Sec. Results).

This reduction method can also be used in the context of quantum transport. In fact, in the 
Supplementary Information, we show that H w( , ) is equal to the subspace spanned by the eigenstates 
of the Hamiltonian which have a non-zero overlap with w . This subspace is referred to as the 
‘non-invariant subspace’ in17 where w  is the trapping site. Let us denote this subspace as H wΛ( , ). 
The calculation of H wΛ( , ) is important for computing the transport efficiency in various networks, 
in the absence of interaction with the environment. The Lanczos method provides a simpler way to 
calculate this subspace which eliminates the need to compute the eigenstates of the full Hamiltonian. This 
way, it also enables us to efficiently analyse the effects of perturbing the symmetry of networks in trans-
port dynamics, as described in Subsec. Applications to Quantum Transport of Results.

In the following section, we use this method to analyse spatial search in highly symmetric graphs, 
calculate efficiency of transport in several structures and obtain bounds on the fidelity of single qubit 
state transfer in spin networks.

Results
Applications to spatial search.  The goal of the spatial search algorithm in the CTQW formalism is 
to find a marked basis state w 11,22 and proceeds by evolution of the initial state s i

N i
1= ∑ , according 

to the Hamiltonian

γ= − − , ( )H A w w 14

where A is the adjacency matrix of G and γ is the coupling between connected nodes that is tuned so 
as to run the algorithm optimally. As described in Sec. Methods, the Hamiltonian of a complete graph 
can be reduced to a two dimensional subspace, which can be seen as a line with two nodes. The reduced 
Hamiltonian is given by

γ γ= −










−

− −








 ( )

H
N

N N

1 1

1 2 15
search

and is depicted in Fig. 1c. The optimal value of γ is proven to be 1/N such that the dynamics is simply 
a rotation between s  and w 11. This value is optimal because it ensures that the site energies of both the 
nodes w  and sw  are equal, thus optimizing transport between these nodes. The initial state is approx-
imately sw  so the probability amplitude at w  becomes approximately 1 after a time that is of the order 
of the inverse of the coupling. Hence, the running time of the algorithm is N( ). Here, we give exam-
ples of non-regular graphs where the algorithm runs optimally, by making use of the reduction method 
explained in Sec. Methods. First, we analyse the effect of breaking links from this graph and show that 
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the optimal running time is maintained. This can be interpreted as an inherent robustness of the algo-
rithm to imperfections of this form. Furthermore, we prove that the spatial search algorithm also runs 
optimally for complete bipartite graphs.

Optimal spatial search on complete graphs with broken links.  Here, we consider the case of 
breaking k links from a complete graph and show analytically that the optimality of the algorithm is 
maintained. We assume that at most one link is removed per node and hence

≤






/ ,
( − )/ , .

k
N N

N N
2 if is even
1 2 if is odd

In this scenario, there exist two cases that require separate analytical treatment, namely one where none 
of the broken k links were connected to the solution state w , and the other where one of the broken 
link was connected to w . We analyse the former in this section while the latter is explained in the 
Supplementary Information.

Let us consider that the links broken correspond to the set = ( , ), , ( , )−E i i i i{ }k kbroken 1 2 2 1 2 , that 
is, at most one link is removed from each node, as shown in Fig. 2a. Also, let = , , , ,−V i i i i{ }k kbroken 1 2 2 1 2  
be the set of nodes comprising of the broken links. The graphs obtained by breaking links from a com-
plete graph are not regular and hence violates the requirement for regularity in networks in order to 
achieve a quadratic speed up. Applying the Lanczos algorithm, we obtain the reduced basis 
( , ) = ( , , )⊥H w w s sspan w w , where sw  is defined as

s
N

q1
1 16

w
q w
∑=

−
,

( )≠

i.e., the equal superposition of all nodes of the graph except the solution and thus s sw ≈ . sw
⊥  is a 

state that is orthogonal to both w  and sw  and is constructed as,

s k
N

s N k
N

s2
1

2 1
1 17w k k=

−
−

− −
−

,
( )

⊥

where s k j1 2k j V broken
= ( / ) ∑ ∈  and s N k j1 2 1k j V wbroken

= ( / − − ) ∑ ∉( , ) .
Also, let k =  αN such that α ∈ , and, 0

N
1
2

1α≤ ≤ − . Thus, for large N, the search Hamiltonian in 
this basis is,

Figure 2.  (a) Complete graph with 7 nodes and 3 broken links (dashed links). No more than one link per 
node is broken. (b) Representation of the reduced search Hamiltonian for the complete graph with N nodes 
and k broken links where at most one link is broken per node. The coupling V2 to the third node sw

⊥  is 
much weaker than the coupling V1 and can be neglected. Thus, the dynamics is the same as in Fig. 1c.



www.nature.com/scientificreports/

7Scientific Reports | 5:13304 | DOI: 10.1038/srep13304

γ
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α α

α α α
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We shall use degenerate perturbation theory to estimate the running time of the algorithm in this sce-
nario22. We write, Hsearch =  H(0) +  H(1) +  H(2) with

γ=








−
−


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0 0 0 19
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γ α α γ α

=











− ( − )

− ( − ) − ( − )











,

( )

( )H
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2

such that H(0) has terms of 1( ), H(1) has terms of order 
N
1( ) while H(2) contains 

N
1( ) terms (see 

Fig. 2b). H(0) has eigenstates w  and sw  with eigenvalues − 1 and − γN respectively and thus, in order 
for the dynamics to rotate between s  (which is approximately sw  for large N) and the solution state w , 
the eigenvalues must be degenerate, making 

N
1γ = . The eigenstates of the perturbed Hamiltonian are 

s ww
1
2

λ = ( )± 

 having eigenvalues = − ±±E 1
N
1 . This gives the running time of the algo-

rithm to be

T
E

N
2 22

π π
=
∆
= , ( )

thereby preserving the optimal quadratic speed up.
This result can be perceived as an inherent robustness of the algorithm to imperfections in the form 

of broken links. One could argue that this robustness has to do with the high connectivity of the struc-
ture. However, in the following subsection, we give the example of the star graph, a structure with low 
connectivity where the algorithm runs optimally that is also robust to broken links. Also, in the context 
of quantum transport, we show that breaking a link from the complete graph can affect severely the 
dynamics if one starts with a localized initial state.

Optimal spatial search on complete bipartite graphs.  Another example of a highly symmetrical 
structure, that is in general non-regular, is the complete bipartite graph (CBG). Here, we show that spa-
tial search is optimal for this class of graphs. A complete bipartite graph G(V1, V2, E) has two sets of 
vertices V1 and V2 such that each vertex of V1 is only connected to all vertices of V2 and vice-versa. This 
set of graphs is also denoted as K m m1 2,

, where m V1 1=  and m V2 2=  and we have m1 +  m2 =  N. This 
is a non-regular graph, as long as m1 ≠ m2. The complete bipartite graph K4,3 is shown in Fig. 3a. Quantum 
search was also analysed in these graphs in the formalism of discrete-time scattering quantum walks in31. 
However, in that framework, the algorithm does not run optimally if m m1 2

. In this case, although 
each run of the algorithm takes m2( ) time, the same must be repeated, on average, m1/m2 times to 
find the solution state with high probability. So, if m2 is of 1( ), then m N1 = ( ) and the total running 
time is linear in N.

In our analysis, we show that the CTQW algorithm works in N( ) time for all possible values of 
m1 and m2. To analyse the problem, we first assume, without loss of generality, that the solution state w  
belongs to the set of vertices V1 (we shall eliminate this requirement later). The subspace H wCBG( , ) 
is spanned by w , | 〉 = / − ∑ ∈ , ≠s m i1 1m i V i w11 1

 and | 〉 = / ∑ ∈s m i1m i V22 2
. The reduced 

Hamiltonian can be written as:
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Let α =  m1/N, m2 =  (1 −  α)N and, N 1α  . Following the procedure in the previous subsection, we 
calculate γ= − −H w w Asearch , where A is the adjacency matrix of the CBG, and divide it in terms 
of 1( ) and N1( / ) with

γ α α

γ α α

=


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





−
− ( − )

− ( − )
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N
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− ( − )










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( )

( )H
N

N

0 0 1
0 0 0

1 0 0 25

1

This Hamiltonian can be seen as a line with three nodes as shown in Fig. 3b. In order to use perturbation 
theory we need to diagonalize H(0). The eigenstates of H(0) are w  with eigenvalue λw =  − 1, 
| 〉 = (| 〉 + | 〉)/e s s 2m m1 1 2

 with eigenvalue λ γ α α= − ( − )N 11  and | 〉 = (| 〉 − | 〉)/e s s 2m m2 1 2
 with 

eigenvalue N 12λ γ α α= ( − ) .
Since e1  has the largest overlap with s , we choose γ α α= ( ( − ) )−N 1 1 such that e1  and w  form 

a degenerate eigenspace of H(0). The reduced search Hamiltonian in the eigenbasis of H(0), depicted in 
Fig. 3c, gives a clearer idea as to why the search is optimal for this graph. The matrix element responsible 
for the speed of the search is e H w N1 21 α= / . Thus, we obtain the running time:

T N
2 26π
α

= .
( )

However, unlike previous cases, the success of the algorithm will not be 1 since this will be given by the 
overlap of the initial state s  with e1 . The dynamics will rotate between e1  and w , leaving e2  approx-
imately invariant. Thus, the probability of finding the solution by measuring at time T is

Figure 3.  (a) Complete bipartite graph K4,3 with the solution node w , represented in red. (b) The reduced 
search Hamiltonian for the complete bipartite graph Km m1 2,

 with m1 +  m2 =  N in the Lanczos basis. 
| 〉, | 〉s sm m1 2

 are the equal superposition of the nodes in partition 1 (excluding w ) and 2, respectively. 
However, the understanding of why the search is optimal in this graph is shown in Fig. 3c. (c) The same 
Hamiltonian as in Fig. 3b, after a basis rotation gives us an idea as to why the algorithm works optimally. 
The resultant basis is | 〉 = (| 〉 + | 〉)/e s s 2m m1 1 2

, w  and | 〉 = (| 〉 − | 〉)/e s s 2m m2 1 2
. The degeneracy between 

site energies of e1  and w  facilitates transport between these two nodes while transport between w  and 
| 〉sm2

 is inhibited by the energy gap between them (much larger than the coupling V2). Since there is a 
considerable overlap between the initial superposition of states s  and e1 , there is a large probability 
amplitude at w  after a time T V1 1= ( / ).
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P e s 1
2

1 27suc 1
2 α α= = + ( − ) . ( ).

We have Psuc. =  1 only if α =  1/2, in which case the graph is regular. It is important to note that one is 
unaware of which partition contains the solution state. The optimal measurement time depends on 
whether the solution node is in the partition of m1 nodes or in the partition of m2 nodes. Depending on 
this, the optimal measurement time would be T N 21 π α= /  and T N1 22 π α= ( − ) /  respectively. 
Thus, the strategy would be to measure interchangeably at time T1 and then at time T2 until the solution 
is found. Thus, in such a scenario the expected running time would be 

π α α= + = + ( − ) /T T T N {1 2 1 }1 2
1 2, thereby preserving the quadratic speed up. In fact, this is 

an upper bound for the expected running time obtained by neglecting the probability of finding the 
solution even on measurement at the wrong time.

In the extreme case when m1 =  N −  1 and m2 =  1 i.e., α =  1 −  1/N, we obtain a star graph. In this 
scenario, the optimal γ is given by N N1 1γ ≈ / + ( / ) and the algorithm works with 
P N1 2 1suc ≈ / + ( / ). . Thus on average, we have to repeat the algorithm twice to find the solution. 
We discuss this case in more detail next.

Optimal spatial search on the star graph.  The case of the star graph is particularly interesting 
because it is a planar structure with node and link connectivity equal to 1. The structures for which 
quantum search is known to hold optimally are those with typically high connectivity (complete graphs, 
hypercubes). The quantum search algorithm also works with full quadratic speed-up on lattices of 
dimension greater than four11 and in two dimensional lattices with a Dirac point in N Nlog( ) 
time25. We will focus on the case where m1 =  N −  1, m2 =  1, i.e. the solution is not contained in the cen-
tral node of the star graph. The case m1 =  1, m2 =  N −  1, where the solution is in the central node, is 
trivial because the graph is biased towards the solution and by starting in state s , we can measure the 
solution with probability ≈ 1, in a time T =  π/2, which does not depend on N.

So, let the central node be denoted as c , and assume w c≠ . Since this is a particular case of the 
CBG, Eqs (24) and (25) with α =  1 −  1/N, N1γ = / , yield

=








−
−

−








,

( )

( )H
1 0 0

0 0 1
0 1 0 28

0

=




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


− /

− /









,

( )

( )H
N

N

0 0 1
0 0 0

1 0 0 29

1

in the basis | 〉, | 〉, | 〉−w s c{ }N 1 . The eigenstates of H0 are w , e s c 2N1 1= ( + )/−  and 
e s c 2N2 1= ( − )/− . In this basis we have

=











− − / /

− / −

/









 ( )

H
N N

N

N

1 1 2 1 2

1 2 1 0

1 2 0 1 30

search

Using degenerate perturbation theory, we obtain the ground and first excited eigenstates.

w s c2
2 31

N 1λ =
± ( + )

, ( )±
−

with energies = − /± E N1 1 2 . The running time is given by T N
2

π=  and probability of success, 
for the initial state s  is

P e s N1
2

1 32suc 1
2 = = + ( / ). ( ).

It is interesting to note that the algorithm also works, with probability 1/2, if one starts the quantum walk 
at the central node c , since e s N1 2 11

2 = / + ( / ). This way, one avoids the cost of preparing the 
initial superposition of states s  to run the algorithm. Furthermore, for the star graph, it is easy to analyse 
the robustness of the algorithm to imperfections in the graph in the form of broken links since the graph 
obtained after removing k links is still a star graph. We assume k links can be randomly broken so that 
we possess no knowledge of the links that were broken, nor of the value of k. Furthermore, we consider 
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k constant such that k N . We assume that the link containing the solution is not removed; this prob-
ability is N1( / ) and therefore negligible for large N. In this scenario, the optimal value of γ is 

N k N1 ≈ / + ( / ), so degenerate perturbation theory is still valid and the running time is:

T N k N
2 33π= + ( / ).

( )

with success probability 1/2. Thus, quantum search on the star graph is not only optimal but also is fairly 
robust to defects to the structure in the form of broken links.

Applications to quantum transport.  Let us consider the dynamics of an exciton in a network with 
N sites, governed by a tight binding Hamiltonian with nearest neighbour couplings, defined as

∑ ∑ε= + ( + ),
( )= ,

H m m V m n n m
34

TB
m

N

m
m n

mn
1

where εm is the site energy at site m and Vmn is the coupling between site m and n. For our analysis, we 
shall assume that all the site energies are uniform and thus can be set to zero, simply by an overall energy 
shift. Also, we assume Vmn =  V, ∀m, n and choose our energy units such that V =  1. Thus, HTB is nothing 
but the adjacency matrix of a graph with N nodes, whose links connect nearest neighbours of the net-
work (henceforth, we shall use sites and nodes interchangeably). We consider that in one of the nodes of 
the graph, there is a trap that absorbs the component of the exciton’s wave function at this node at a rate 
κ, known as the trapping rate. This model is motivated by the study of exciton transport in natural light 
harvesting systems14,15,17,20. To model the trapping dynamics, we introduce the trapping Hamiltonian:

κ= − . ( )H i trap trap 35trap

This matrix is anti-hermitian and leads to the expected non-unitary dynamics described above. We con-
sider as figure of merit the efficiency of transport14, defined as

dt trap t trap2 360∫η κ ρ= ( ) ( )
∞

which gives the probability that the exciton is absorbed at the trap integrated over time. The total 
Hamiltonian describing the dynamics is given by

H A i trap trap 37κ= − , ( )

where A is the adjacency matrix of the graph. The scenario assumed here is the ideal one, i.e, there is no 
disorder in the couplings or site energies of the Hamiltonian nor decoherence during the transport. In 
this regime, in17, the authors calculate the transport efficiency as the overlap of the initial state with the 
subspace spanned by the eigenstates of the Hamiltonian that have a non-zero overlap with the trap. 
Earlier in Sec. Methods, it was stated that this subspace is the same as the invariant subspace H w( , ), 
which can be obtained without diagonalizing the Hamiltonian. So the dynamics is such that the compo-
nent of the initial condition within the space H trap( , ) is absorbed by the trap node whereas the 
component outside this subspace remains in the network (see proof in Supplementary Information). 
Thus, computing the transport efficiency boils down to finding the overlap of the initial condition with 

H trap( , ).
In the following subsections, we give examples of how to analytically calculate transport efficiency 

on various structures given different initial conditions. We also analyse how transport efficiency can 
be improved by perturbing the symmetry of the complete graph by breaking one link. Finally, we give 
numerical evidence that breaking a few links in highly symmetric structures leads to the improvement 
of transport efficiency, if the initial state is localized at one node.

Calculation of transport efficiencies for some graphs with symmetry.  Complete graph.  As in 
Sec. Methods, we obtain that the reduced subspace for the complete graph with N nodes is given by 

,trap s{ }t  with

s
N

i1
1 38

t
i trap
∑=

− ( )≠

The reduced Hamiltonian for the transport problem is:
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κ=




− −
− −




 ( )

H i N
N N

1
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red

in the aforementioned basis. If the initial state is localized at a node i trap≠ , the efficiency is given 
by

i s
N

1
1 40t

2η = =
−
. ( )

This way, we recover the result obtained in17 without the need to solve the equations of motion or requir-
ing to find the eigenstates of the system.

Binary tree.  Here we consider our graph to be a binary tree with l levels, where the number of nodes 
is 2l −  1. The Hamiltonian of the graph is given by:

∑= ( + + + . .)
( )=

−−

H i i i i h c2 2 1
41i

tree
1

2 1l 1

We place the trap at the root of the tree, i.e. trap 1≡ . It is well known that a quantum walk on a 
binary tree can be reduced to the quantum walk on a line12 where each node represents a column state

j acol 1

2 42j a j1 column
∑=

( )− ∈

These column states are readily obtained by applying the Lanczos algorithm with the root node 1  (we 
define col 1 1≡ ) as the initial node. If the initial state of the transport problem is a state b  localized 
in column j, the transport efficiency is:

b jcol 1
2 43j

2
1η = = .

( )−

Thus, we find that, in such a localized case, the efficiency decreases exponentially with the distance to 
the trap.

Hypercube.  Another highly symmetric structure that appears frequently in the literature is the hyper-
cube in the context of quantum computation, quantum transport and state transfer19,35–37. Here, we con-
sider transport on a hypercube of dimension d with 2d sites. We label the sites of the hypercube by strings 
of d bits such that each site is connected to another site if they differ by a single bit flip. This way, the 
Hamiltonian of the graph can be written as:

H
44i

d

x
i

hyp
1
∑σ=

( ).
=

( )

where x
iσ( ) is the Pauli matrix σx acting on the ith bit. Using symmetry arguments, it is shown in35,36 that 

the dynamics in this structure can be reduced to the subspace spanned by the symmetric states with k 
bits 1 and n −  k bits 0:

D d
k

z z z
45

k
d

z z z k
d

1 2

1 2
d1 2

∑=





 … ,

( )

− /

+ +…+ =

also known as Dicke states. This is done in the context of the search problem where the solution state is 
assumed to be at w 0 d= ⊗  In this picture, the hypercube can be seen as a chain with d +  1 nodes. Here 
we also assume, without loss of generality, that our trap state is trap 0 d= .⊗  Applying the Lanczos 
algorithm, we also obtain that the invariant subspace, H trap( , ) is spanned by the Dicke states in 
Eq. (45) without using any symmetry arguments. This implies that, if the initial state is localized at a site 
b j , labelled by a bit string with j bits 1, the transport efficiency to the trap is

b D d
k 46j j

d 2 1
η = =






 . ( )

−

It is interesting to note that the efficiency is not a monotonic function of the distance from the trap.
If we consider the initial condition to be a statistical mixture of all sites we obtain the average efficiency:
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

 =

+
,
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+

reproducing analytically the numerical result of37 for transport on the hypercube of dimension 4 (in the 
limit of no disorder and no dephasing).

Improving transport efficiency by removing links from highly symmetric graphs.  Complete 
graph with one broken link.  For a complete graph with N nodes, the transport efficiency is given by 

N
1

1
η =

−
 provided the transport begins from a localized state. We find that breaking one link from a 

complete graph increases the transport efficiency. In fact breaking a link that connects the starting node 
to the trap makes the efficiency of transport go up to 1. Let | 〉trap  denote the trap node, | 〉i  denote the 
starting node and sit  be the equal superposition of the remaining nodes. The reduced space H trap( , ) 
is spanned by trap i s{ }it, ,  and thus,

i i 1 482η = = . ( )

This is counter-intuitive, as of all the available links, breaking the link that directly connects the starting 
node to the trap gives the maximum efficiency. Similarly, it can be shown that removing a link between 
the initial node and another arbitrary node other than the trap gives η =  1/2.

The above phenomenon can be better understood by calculating the dynamics of the resultant graph. 
In the reduced picture, the trap is coupled to sit  which is in turn coupled to the starting node i . The 
reduced Hamiltonian of the graph in the basis | 〉, | 〉, | 〉¯i s trap{ }it  is,

H
N

N N N
N

0 2 0
2 3 2
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Incorporating the anti-Hermitian term of the trap and considering large N, for simplicity, results in,

H
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N N N
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Let the state of the exciton at time t, t A i A s A trapit1 2 3ψ ( ) = + + . The dynamics of the system 
is thus,

κ

= − ,

= − ( + + ),

= − + . ( )







A i N A

A i N A N A N A

A i N A i A 51

1 2

2 1 2 3

3 2 3

It is important to notice that due to adiabatic elimination, A 02 = , resulting in an effectively two level 
system whose dynamics is governed by A1 and A3. The Schrödinger equation simplifies to

A
A

i i
A
A

1 1
1 1
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The eigenstates and eigenvalues of H′  are

z i trap z

z i trap z

1 2 1

1 2 1 53
1 1

2 2

λ λ

λ λ

= / ( + ), = +

= / (− + ), = − . ( )

Here, z i1 2 4 2( )κ κ= / − − − . It is worth noting that the two eigenstates are not orthogonal and the 
corresponding eigenvalues have both real and imaginary parts which is due to the fact that H′  is not 
Hermitian. Now, expressing trap  and i  in terms of the two eigenstates enables us to calculate the prob-
ability of reaching the trap. Thus,

τ( ) = ( ) =
Ω

(Ω ).
( )

κ−

p t trap U i e tsin 54trap

t
2

2
2

Here, U t e iH t( ) = − ′  and 41
2

2κΩ = − . The transport efficiency η in this case is 1.
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The trapping time or the transfer time, which is the average time required by the exciton to get 
absorbed by the trap is another relevant measure in quantum transport15. The trapping time is given by,

dt t p t2
55trap0∫τ

κ
η

= ( ).
( )

∞

In this scenario, η =  1 and,

dt t e t2 sin

1
2 56

t
2 0

2∫τ
κ

κ
κ

=
Ω

(Ω )

= + . ( )

κ
∞

−

A closer look at τ shows that for κ very small, there is no trapping at all while for a large κ, one observes 
freezing of the evolution of the exciton owing to the quantum Zeno effect. The optimal value of the 
transfer time is obtained for 2κ = . This is in accordance to38,39, wherein the authors find that the 
optimal conditions for transport of an exciton in photosynthetic complexes, are when the time scales of 
hopping and trapping converge.

Highly symmetric graphs with broken links.  Here, we show how the transport efficiency changes as we 
break links in the graphs mentioned previously in this section. For a graph with r broken links, we cal-
culate the average transport efficiency by projecting the initial state, onto the subspace H trap( , ) for 
each of the possible configurations of the graph with r broken links and average over all of them. The 
initial state is set as as a statistical mixture of all nodes for the complete graph and the hypercube, while 
it is a statistical mixture of all leaf nodes in the case of a binary tree. The results are shown in Fig. 4.

Note that this approach is much faster than diagonalizing the graph Hamiltonian and finding the 
overlap of the initial state with the eigenstates having non-zero overlap with the trap.

For all these structures, we observe that the average transport efficiency always improves by breaking 
a few links from the graph. This can be attributed to the fact that by breaking a small number of links, the 
symmetry is reduced and the dimension of the subspace to which the dynamics is restricted increases. 
Thus, this can be thought of as increasing the number of possible paths from the starting node to the 
trap, which previously lied outside this space owing to symmetry. However, we expect that when the 
number of broken links is comparable to the total number of links in the graph, the size of the reduced 

Figure 4.  Plots of average efficiency versus number of broken links for graphs. (a)Binary tree with l 
levels, (b) complete graph with n nodes, (c) hypercube with dimension d. Clearly, the efficiency obtained by 
breaking some links is higher than the corresponding efficiency without broken links. This trend continues 
as long as the number of broken links is not of the order of the total number of links.
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space would be very low as the trap gets decoupled from the graph in a large number of configurations, 
and hence the efficiency is low. This is visible for the case of a binary of three levels and four broken links 
as shown in Fig. 4a with the average transport efficiency being lower than in the case of no broken links.

Bounds on fidelity of state transfer.  In this section we show that the considerations made thus 
far for quantum transport can also be applied to the transfer of a qubit state in a network of spins with 
nearest neighbour interactions. We show that the square root of the efficiencies obtained for transport 
in various graphs are also upper bounds for the fidelity of the equivalent state transfer problem in the 
same graph. Thus, all the results obtained for quantum transport can be can also be interpreted in the 
context of qubit transfer in a network. In particular, we conclude that the fidelity of state transfer can be 
enhanced by removing links in the network.

Let us assume we have N spins disposed in the nodes of a graph, where each pair of spins interact 
if and only if they are connected by an edge. We model the interaction via the XY-Hamiltonian with 
uniform coupling J:

∑ σ σ σ σ= + ,
( )( , )∈ ( )

( ) ( ) ( ) ( )H J1
2 57

XY
i j E G

x
i

x
j

y
i

y
j

where the sum runs over the pairs (i, j) that represent an edge of the graph, and x
iσ( ) and y

iσ( ) are Pauli 
matrices acting on the ith spin. The Hamiltonian HXY can be written equivalently as

∑ σ σ σ σ= + ,
( )( , )∈ ( )

+
( )

−
( )

−
( )
+
( )H J

58
XY

i j E G

i j i j

using the spin ladder operators i 2i
x

i
y

i( )σ σ σ= + /+
( ) ( ) ( )  and i 2i

x
i

y
i( )σ σ σ= − /−

( ) ( ) ( ) . This Hamiltonian 
conserves the number of excitations, i.e. it commutes with the operator Sz i

N
z

i
1σ= ∑ =
( ). If we restrict 

ourselves to the single excitation subspace of the total Hilbert space, and define the basis

j 0 1 0 59j N j1= ⊗ ⊗ , ( )⊗ − ⊗ −

we can write

H i j j i
60

XY
i j E G

{1 exc } ∑= + ,
( )

.

( , )∈ ( )

which is the same Hamiltonian defining a continuous time quantum walk used previously. This way, if 
our initial state is i , the fidelity of transfer to a node w  is upper bounded by the overlap of i  with the 
subspace H wXY( , ), since this is an invariant subspace of the Hamiltonian. This way,

w U t i i P imax 61t
H w

max
XYF I= ( ) ≤ , ( )( , )

where P H wXY( , ) is the projection operator onto H wXY( , ). But as i P iH w
i

XY η<( , )  (the effi-
ciency of transport in the graph defined by HXY starting from a localized state i ), the fidelity of transfer 
to state i  is bounded by iη . It is important to note that the bound is, in general, not tight. The bound 
will only be tight when the reduced Hamiltonian (HXY projected onto H wXY( , )) is the same as the 
reduced Hamiltonian of a graph where there is perfect state transfer (PST), i.e., a graph where the max-
imum fidelity of state transfer is one19. Also, in the cases where the reduced Hamiltonian is the same as 
the reduced Hamiltonian of a graph where there is pretty good state transfer (PGST), i.e., the maximum 
fidelity, i P iH w

max
XYF I ε= −( , ) , where ε can be arbitrarily close to 0, the bound is arbitrarily 

tight40. This can be fulfilled, for example, if the reduced Hamiltonian is a line having number of nodes 
N equal to p −  1, 2p −  1, where p is prime, or 2m −  1 with m ∈ . A graph where this is observed is a 
binary tree with with l levels such that l fulfils these criteria. With this observation, one could think of 
CTQWs as a way to prepare some multipartite entangled states with high fidelity, which is, in general, a 
difficult task. A quantum walk on the binary tree starting at the root node (i.e., col 1 1= ), would 
evolve, after some time, to a state arbitrarily close to a W-state

l jcol 1

2 62l j l1 column
∑=

( )− ∈

with j  defined in Eq.  (42). This can be perceived as a way to prepare genuine multipartite entangled 
states with no time dependent control.

Another way to create such a highly entangled state is by tuning the couplings and site energies of the 
complete graph as in the spatial search (see Eq. (15)) such that the dynamics oscillates between a special 
node, with energy − 1, and the equal superposition of all other nodes as depicted in Fig.  1c. Thus, by 
starting the quantum walk at this special node, after a time T N

2
π= , the quantum walk would be in 
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the highly entangled state sw  (see Eq.  (11)). A physical implementation of a complete graph can be 
achieved in ions traps where the interaction between the ions can be approximately distance 
independent41.

Discussion
In this work, we explore the notion of invariant subspaces to simplify the analysis of continuous time 
quantum walk (CTQW) problems, where the quantity of interest is the probability amplitude at a par-
ticular node of the graph. This way, we obtain new results concerning the spatial search algorithm, 
quantum transport and state transfer.

First, we present an intuitive picture of the spatial search algorithm by mapping it to a transport 
problem on a reduced graph whose nodes represent the basis elements of the invariant subspace. 
Furthermore, we show that the algorithm runs optimally (in N( ) time) on the complete graph with 
broken links and on complete bipartite graphs (CBG). These constitute one of the first examples of 
non-regular graphs where this happens. A particular case of the CBG is the star graph, which is planar, 
has low connectivity and is robust to imperfections in the form of missing links. Presently, we are con-
sidering the robustness of this algorithm to other kinds of defects. During the completion of this article, 
we came across Refs [42,43]. In the former, it is shown that high connectivity is not a good indicator for 
optimal spatial search by giving an example of a graph with low connectivity where the algorithm runs 
optimally, and another graph with high connectivity, where the running time is not optimal. In43, a dia-
grammatic picture of the spatial search algorithm is presented.

Furthermore, we present a simple method to calculate transport efficiency in graphs without having to 
diagonalize the Hamiltonian. The efficiency is given by the overlap of the initial state with the invariant 
subspace. Thus, we calculate analytically the transport efficiency in structures such as the complete graph, 
binary tree and hypercube, given various initial conditions. Moreover, we explore the change in transport 
efficiency with broken links in these graphs. For the complete graph, breaking a link from the starting 
node increases the efficiency from 1/(N −  1) to a constant: 1, if the link broken was connected to the trap 
and 1/2 otherwise. In the former case, we analytically calculate the transfer time which is independent 
of N and is a function of the trapping rate.

Finally, we show that the square root of the efficiency of transport on a graph from a starting node 
to a destination (trap) node gives an upper bound on the fidelity of a single qubit transfer between these 
two nodes. This bound is tight if and only if the reduced Hamiltonian is that of a spin network wherein 
perfect state transfer takes place.

In summary, dimensionality reduction is an intuitive way to understand the behaviour of CTQWs 
in graphs with symmetry. Hence, this might lead to the design of new continuous time algorithms, the 
analysis of the robustness of CTQW algorithms to imperfections, and to novel state transfer and state 
engineering protocols.
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