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ABSTRACT Here, we report the complete genome sequence of the multidrug-
resistant Escherichia coli strain ATCC BAA-196, a model organism used for studying
possible antibiotic resistance reversion induced by FS-1, an iodine-containing complex.
Two genomes, representing FS-1-treated and negative-control variants and composed of
a chromosome and several plasmids, were assembled.

Escherichia coli ATCC BAA-196 was isolated in 1988 at a chronic-care facility in
Massachusetts and at first was misidentified as Klebsiella pneumoniae (1, 2). It

produces extended-spectrum beta-lactamases (3, 4). This strain was used as a model of
nosocomial drug-resistant infections for studying the effect of the iodine-containing
complex FS-1 in reverting drug resistance (5, 6).

The strain was cultivated for 10 daily passages in Mueller-Hinton broth (HiMedia,
India) with FS-1 (500 �g/ml) (FS genome) or without FS-1 (negative-control [NC]
genome), in three repeats. DNA was extracted using the PureLink genomic DNA kit
(Thermo Fisher). Samples were prepared according to the SMRTbell preparation guide
for the PacBio RS II system. Sequencing was performed at Macrogen (South Korea) with
SMRT Cell 8Pac v3 cells using the DNA polymerase binding kit P6, following the
SMRTbell 20-kb library preparation protocol. For the NC and FS genomes, 334,150 and
429,631 reads, respectively, were generated (N50, 9,500 kb). After read-quality trimming
using the UGENE v1.32.0 raw DNA-seq processing pipeline with default settings (7), the
genomes were assembled with SMRT Link v5.0.1 with default parameters (8). The FS
and NC genome assemblies are 4,682,561 and 4,682,572 bp, respectively (GC content,
51%; coverage, 250-fold); the genomes also include large plasmids of 266,396 and
279,992 bp, respectively (GC content, 47%), showing 90 to 99% sequence similarity to
Klebsiella pneumoniae plasmid pKP64477b. The FS genome plasmid has an insertion of
a prophage flanked by two copies of insH transposases. Moreover, the FS-1-treated
strain contains two smaller plasmids (44,240 and 11,153 bp), which are excision prod-
ucts of the large plasmid. A plasmid-destabilizing effect of FS-1 was hypothesized.

Genomes were annotated with the RAST server (9) and manually curated. Phylogenetic
inference based on concatenated alignments of 3,179 orthologous genes identified by
OrthoFinder (10) (default settings) that were shared by E. coli reference genomes (Fig. 1)
showed clustering of BAA-196 with the E. coli K12-related strains K12 (GenBank accession
number NC_000913), K12 substrain W3110 (GenBank accession number NC_007779),
and K12 substrain DH10B (GenBank accession number NC_010473).

Horizontally transferred genomic islands (Fig. 1) were identified by SeqWord Sniffer
(11). Genomic islands and plasmids contain genetic determinants associated with
antibiotic resistance, including beta-lactamases of the A and D classes, the tellurium
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resistance operon terABCDW, the arsenic resistance gene arsR, chloramphenicol and
aminoglycoside acetyltransferases, and several other genes for antibiotic-modifying
enzymes, drug resistance regulators, and multidrug efflux proteins. Virulence-associated
fimbrial adhesin genes ecpD and fimHBGFE were acquired horizontally.

The SMRT Link DNA modification pipeline (12) was used to profile epigenetic modifi-
cations in bacterial genomes. The most abundant DNA modification was N6-adenosine
methylation in both strands, at GATC and GCAC(N6)GTT restriction sites (methylated
nucleotides are underlined, and thymidine nucleotides opposing methylated ones on the
complement strand are in italic type), corresponding to typical findings for E. coli DAM
methyltransferases associated with EcoRV and EcoKI restriction-modification complexes (13,
14). Methylated GATC sequences often occurred in tandem with cytosine methylation in
CRGKGATC motifs. Two other cytosine methylation motifs, CCAGGRAH and WCCCTGGYR,
controlled by EcoRII family restriction-modification genes (15) showed alternative distribu-
tion patterns in the NC and FS genomes.

Data availability. NCBI accession numbers are CP042865 and CP042866 for the
chromosome and plasmid, respectively, of the variant NC genome (PacBio reads
SRR10112463, SRR10112464, and SRR10112472) and CP042867 to CP042870 for the
chromosome and three plasmids of the variant FS genome (PacBio reads SRR10112466
to SRR10112468).
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