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Abstract: Psoriasis is a chronic systemic inflammatory disease with various co-morbidities, having been
recently considered as a comprehensive disease named psoriatic disease or psoriatic syndrome.
Autoimmune diseases are one form of its co-morbidities. In addition to the genetic background,
shared pathogenesis including innate immunity, neutrophil extracellular trap (NETs), and type I
interferon, as well as acquitted immunity such as T helper-17 (Th17) related cytokines are speculated
to play a significant role in both psoriasis and connective tissue diseases. On the other hand, there are
definite differences between psoriasis and connective tissue diseases, such as their pathomechanisms
and response to drugs. Therefore, we cannot expect that one stone kills two birds, and thus caution is
necessary when considering whether the administered drug for one disease is effective or not for
another disease. In this review, several connective tissue diseases and related diseases are discussed
from the viewpoint of their coexistence with psoriasis.

Keywords: psoriatic disease; innate immunity; SLE; dermatomyositis; systemic sclerosis;
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1. Introduction

Psoriasis is a chronic systemic inflammatory disease affecting not only the skin but also various
internal organs. Recently, multisystemic involvements other than the skin and joints, such as gut,
eye, and metabolic and cardiovascular systems, have been demonstrated in association with psoriasis
(Figure 1). Psoriasis may not only be a skin-directed disorder, but also associated with systemic
inflammatory features. Therefore, terms such as psoriatic disease or psoriatic syndrome have been
proposed [1,2]. A similar concept is proposed as psoriatic march, laying stress on the time course of
disease progression [3].

In particular, autoimmune disorders with significantly higher frequencies included rheumatoid
arthritis (RA), alopecia areata, celiac disease, systemic sclerosis (SSc), Crohn’s disease, Sjögren syndrome
(SjS), vitiligo, ulcerative colitis, systemic lupus erythematosus (SLE), and giant cell arteritis [4]. Common
underlying immunological defects may be important in the pathogenesis of these complications.
Autoimmune bullous disorders have also been reported, including bullous pemphigoid, anti-laminin
gamma-1 (p-200) pemphigoid, and others. Additionally, SSc, SjS, sarcoidosis, autoimmune thyroiditis,
alopecia, and vitiligo have also been associated.

Psoriasis is triggered by some external factors, such as mechanical stimuli (isomorphic response
of Köbner), followed by a complex of self-DNA/RNA and cathelicidin(LL37) incorporated into
plasmacytoid dendritic cells (pDCs), which then upregulates toll-like receptor-7 (TLR-7) and -9,
leading to production of large amounts of interferon (IFN)-α. Interleukin 23 (IL-23), mainly produced
by myeloid dendritic cells (mDC), plays a significant role in differentiating, amplifying, and maintaining
Th17 differentiation of naïve T-cells. Additionally, IL-17 is produced by not only T-cells but also various
other cells, such as innate cells. Thus, the IL-23/Th17 axis is the main stream of the inflammatory
pathway of psoriasis. IL-17, IL-22, and IL-23 have been reported to play an important role not only in
psoriasis but also in other autoinflammatory disorders.
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The overlapping of psoriasis and connective tissue disorders has been occasionally reported [5].
In the current review, connective tissue diseases including SLE, SSc, dermatomyositis (DM), and SjS,
as well as adult-onset Still’s disease, Behçet disease, and sarcoidosis, are discussed in terms of their
relationship with psoriasis.

2. Psoriasis and SLE

Among the connective tissue diseases, SLE has often been reported in association with psoriasis [6–10].
The prevalence of SLE in patients with psoriasis has been reported to be estimated at 0.69% [9]. In a
recent report from a lupus clinic in a single-center study, 63 psoriasis patients were observed among
the 1823 SLE patients (3.46%). The 63 patients consisted of 49 females and 14 males (female/male
= 3.5:1). Psoriasis was diagnosed at a mean of 9 years after the diagnosis of SLE, whereas psoriasis
preceding SLE diagnosis was observed in only one case [10]. The types of psoriasis were plaque-type
(87.3%), pustular type (4.8%), scalp psoriasis (7.9%), and psoriatic arthritis (PsA) (1.6%), suggesting that
co-existence of SLE and PsA is rare. Childhood cases of psoriasis and SLE coexistence are extremely
rare [11].

Several similarities have been suggested between psoriasis and SLE, including genetic, epigenetic,
and pathogenic factors. The shared pathomechanisms include innate immunity, type I interferon,
plasmacytoid dendritic cells, neutrophil extracellular trap (NETs), and Th1/Th17-type cytokines [12,13],
which are supposed to play a significant role in the induction of both diseases. The co-existence of
psoriasis and SLE has sometimes been observed, and both diseases share some common pathogenesis,
such as Th1/Th17 type-dominant cytokine imbalance, pDC activation via TLRs, and IFN-α release. Type I
interferon is known to drive cytotoxic cellular inflammation, and IFN-α induces expression of cutaneous
lymphocyte antigen (CLA) on cytotoxic T-cells, helping their homing to the skin. CD123-positive pDC is
observed in the lesional skin of LE [14,15]. As compared with SLE, association of cutaneous LE, such as
LE profundus, has been rarely reported in association with psoriasis [16]. One of other similarities is
comorbidities. Similar to psoriasis, SLE has also recently been suggested to be highly related to various
comorbidities such as cardiovascular disease and metabolic syndrome [17]. Among connective tissue
diseases, patients with SLE have impaired endothelial cells and compromised repair of the damaged
endothelial cells [18], which may promote endothelial dysfunction and development of cardiovascular
disease, as well as dysregulation of the innate immune response.

Recent studies of the pathogenesis of psoriasis have indicated that, following external triggers,
a complex of self-DNA/RNA and LL37 is incorporated into plasmacytoid dendritic cells, which then
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upregulates IFN-α, leading to the induction of psoriasis. Making use of its mode of action in activating
TLR7, imiquimod-induced psoriasis is frequently used in a mouse model for psoriasis. Although
the morphology of topical imiquimod-induced lesional skin mimics human psoriasis, histopathology
does not exhibit any of the aspects of human psoriasis. Furthermore, lesions induced by topical
imiquimod treatment are transient, and are therefore different from human chronic psoriasis. In humans,
several cases of imiquimod-induced de novo psoriasis or psoriasis-like lesions and exacerbation of
pre-existing psoriasis have been reported to date [19]. In addition, systemic administration of imiquimod
was reported to induce lupus-like symptoms in mice [20]. LL37, an endogenous antimicrobial peptide,
has recently been suggested to be involved in SLE, as well as psoriasis. LL37 triggers IFN-α production
in pDCs, and SLE patients had circulating T-cells responding to LL37, which correlated with anti-LL37
antibodies and disease activity [21]. As compared with psoriasis, LL37-specific T-cells in SLE displayed
a T-follicular helper-like phenotype, implicating a pathogenic role in SLE [21].

By contrast, tumor necrosis factor-α (TNF-α) and IFN-α mutually exert inhibitory effects on each
other, and biologics targeting TNF-α may be one of the possible candidates to modulate the immune
balance via activation of nascent autoreactive T-cells, altered autoimmunity, imbalance between TNF-α
and IFN-α, and induction of IL-17- and IL-22-producing CD4+ T-cells in the peripheral blood [22].

Alternatively, in a smaller number of cases, drugs can be attributed to the induction of other
diseases such as (i) psoriasis induced by drugs used for SLE, or (ii) SLE or lupus-like lesions induced
by biologics used for psoriasis (paradoxical reaction). Regarding therapies, caution is required because
some drugs for one disease can sometimes deteriorate the other. Ultraviolet irradiation is effective
for psoriasis, whereas it can worsen or trigger malar rash in SLE. Hydroxychloroquine is one of the
standard drugs for SLE, which exerts its effects by suppression of TLRs and inhibition of type I cytokine
production such as IFN-γ. By contrast, hydroxychloroquine sometimes deteriorates psoriasis [23].
Therefore, caution is necessary when we choose therapy in patients with both diseases. Regarding
therapies using biologics, ustekinumab, which targets IL-12/23, is expected to have favorable effects on
SLE [24], as well as psoriasis.

3. Psoriasis and SSc

Co-existence of psoriasis and SSc is rare, since previous studies have shown that psoriasis is
Th1-dominant while SSc is a Th2-dominant disease [25]. In addition, histopathological collision of
psoriasis and scleroderma has been observed relatively rarely (Figure 2). However, the recent growing
body of evidence has shown that psoriasis is a Th1/Th17 disease, and that Th17 is also involved in
SSc [26]. On the other hand, localized scleroderma in association with psoriasis is rare [27].

IL-17 subfamilies include IL-17A, IL-17B, IL-17C, IL-17D, and IL-17F. IL-17A is mainly involved in
a number of autoimmune disorders. The serum levels of IL-17A and mRNA levels in peripheral blood
of SSc patients are elevated [26]; however, the effects of IL-17 on fibrosis are controversial. In vitro, IL-17
stimulates fibroblast proliferation in SSc fibroblasts [26]. IL-17 has been reported to show no effects on
collagen synthesis in SSc fibroblasts [26], while another study showed that IL-17A suppressed type I
collagen expression [28]. IL-17A did not affect the induction of myofibroblasts [29]. In vivo studies have
shown that IL-17A-deficient mice were partially protected by bleomycin-induced scleroderma [30],
and bleomycin-induced scleroderma was attenuated by anti-IL-17A antibody [31]. These results
suggest that IL-17 is one of the main targets for treating SSc [32–34]. By contrast, a recent study
has shown that IL-17 softens the skin through induction of matrix metalloproteinase-1(MMP-1) [35].
These results may support the findings that psoriasis, in which IL-17A is increased, and SSc are
rarely associated.
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Innate immunity is important in both psoriasis and SSc. In psoriasis, IL-17 is secreted by various
innate cells, such as γδT cells, neutrophils, mast cells, and NK T-cells. In SSc, mast cells increase
in number in the scleroderma skin. Upon activation, degranulated mast cells produce a number
of mediators such as inflammatory and fibrogenic cytokines. Innate lymphoid cell type 3 has been
suggested to play a role in psoriasis and PsA [36], whereas type 2 is important in fibrosis [37].
Damage-associated molecular patterns (DAMPs)/alarmins are endogenous molecules released from
necrotic or stressed cells to trigger subsequent immune responses. Various molecules such as
high mobility group box 1 (HMGB-1), S100A8, S100A9, S100A12, heat shock protein, tenascin-C,
serum amyloid A, and IL-33. Hyaluronic acid (hyaluronan) (HA) is one of the danger signals.
Recent progress has demonstrated that hyaluronan is an important immune regulator in various diseases.
In particular, low molecular weight hyaluronan is a ligand for TLRs that induces inflammatory cytokine
gene expression. TLRs play an important role in innate immune responses, and in psoriasis, activation
of TLR7 and TLR9 via autoimmune plasmacytoid dendritic cell activation releases interferon-α,
which further stimulates mDCs to secrete IL-23. Additionally, other TLRs, i.e., TLR2 and TLR4, are also
involved in the pathogenesis of psoriasis and psoriatic arthritis [38]. HA is abundant in the psoriatic
skin, and hyaluronan fragments signal through TLR4 and TLR2 [39]. In particular, breakdown of high
molecular weight HA following injury/damage into low molecular weight HA triggers the release of
proinflammatory mediators. CD44, a major cell-surface hyaluronic acid binding protein, is expressed
in T-cells. Ligation of CD44 in T-cells and neutrophils induces IL-6 secretion and inflammation [40],
and TLR4 is upregulated in the lesional skin of SSc [41]. The ligands of TLR4 are tenascin-C and
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fibronectin extra-domain A (EDA), and tenascin-C and fibronectin EDA have been found to be elevated
in human SSc as well as in a bleomycin-induced murine model [41].

Recently, an imbalance in DAMP release and/or signaling has been found to potentially lead to
sustained inflammatory cytokine production by fibroblasts or macrophages, which may be important
in the pathophysiology of SSc. pDC and type I IFN production is involved in the innate immunity of
the SSc pathogenesis [42,43]. pDCs were detected in the affected skin of SSc patients [44,45], as well as
in the bleomycin-induced murine model [44]. Moreover, depletion of pDC reduced fibrosis, immune
cell infiltration, and expression of genes and proteins involved in fibrosis [45].

Psoriasis is highly related to metabolic syndrome, and patients often develop obesity, hypertension,
diabetes mellitus, hyperlipidemia, and hyperuricemia. It has been remarked that the representative
psoriasis comorbidities are cardiovascular diseases and metabolic syndrome, including obesity,
hypertension, diabetes mellitus, insulin resistance, hyperlipidemia, and atherosclerotic diseases.
Patients with psoriasis are at an increased risk of developing metabolic syndrome, and patients
with severe, resistant psoriasis are reported to be significantly more likely to have metabolic
syndrome compared with hospital-based controls (odds ratio: 5.92; 95% confidence interval:
2.78-12.8) [46]. Adipose tissues produce several proinflammatory cytokines such as TNF-α, leptin,
resistin, and adiponectin, which have been suggested as being responsible for linking obesity and
metabolic syndrome. Recent studies showed elevated circulating leptin levels in patients with
psoriasis [47]. Leptin is derived from adipocytes and regulates the immune and inflammatory process
via proinflammatory cytokine production. Expression of leptin and its receptor was significantly
higher in the involved skin of psoriasis [48]. Thus, leptin may play an important role in the induction
of psoriasis, especially in patients with obesity. On the other hand, plasma adiponectin levels were
found to be decreased in psoriatic patients [49]. Adiponectin has anti-inflammatory effects and
regulates insulin sensitivity. A negative correlation was demonstrated between plasma adiponectin
levels and both the Psoriasis area and severity index (PASI) score and plasma TNF-α levels in
psoriatic patients [49]. Chronic inflammation and persistent release of TNF-α and IL-6 are both
produced by adipose tissues and may contribute to the comorbidities of psoriasis and metabolic
syndrome. Leptin is a representative adipokine that induces human lung fibroblasts to differentiate
from myofibroblasts [50]. Adipokines play various roles in the induction of inflammation, vascular
damage, fibroblast proliferation, and collagen production [49].

Dickkopf-related protein-1 (DKK-1) is also a Wnt inhibitor that inhibits osteoblast function [51].
DKK-1 is also induced by TNF signaling [51]. DKK-1 plays an important role in bone remodeling [51].
Recently, the role of DKK-1 in fibrosis was suggested to have a protective role against fibrosis [52].
Expression of DKK-1 in the biopsied scleroderma skin has been reported to be decreased, as compared
with normal skin, while circulating levels were found to be normal [53].

Tissue resident memory T-cells (TRM) exist in the epidermis of scars only, but to a lesser extent
than that of the psoriasis-developed epidermis. It remains unclear whether psoriasis arises only in
TRM highly frequent areas or whether psoriatic development simply results in the increment of TRM.
Psoriasis recurs in previously affected sites, and CD8+ TRM enriched in the resolved lesion preferentially
produces IL-17 and IL-22 upon restimulation [54,55]. The number of CD8+CD103+ TRM in the psoriatic
epidermis correlates with epidermal thickness, and psoriatic skin-derived CD103+TRM produce IFN-γ,
IL-17A, and IL-22, suggesting the important roles of TRM in the formation of psoriasis [56]. In addition,
epidermis from never-lesional skin from psoriasis patients skews the populations of CD8+TRM [57].
Given that scars provide a susceptible environment for psoriasis, epidermal TRM should be elevated in
scars and reactivated by additional local or systemic factors. In this scenario, it is possible that unknown
factors or antigens activate TRM presumably via T-cell receptors, and the excreted cytokines stimulate
keratinocytes to initiate the amplification loop. A very recent report shows that CD8+TRM with
IL-17A-producing potential are accumulated in psoriatic disease-naïve non-lesional skin, correlated
with disease duration [58]. Unfortunately, we could not clarify the frequency of epidermal TRM on
non-lesional skin in our patient. Nevertheless, our finding provides another new example of the
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Köbner phenomenon in which epidermal TRM may be involved. By contrast, studies on TRM in SSc
are few in number. CD8+ T-cells are increased in number in the peripheral blood of SSc patients.
Recent studies have shown that skin-resident effector memory CD8+CD28- T-cells are increased in
the peripheral blood and affected skin of SSc patients [59]. Most CD8+CD28- T-cells in the SSc skin
are CD69+CD103- TRM, and these T-cells are suggested to induce vascular damage. Furthermore,
CD8+CD28-IL-13+ T-cells are profibrotic [59]. By contrast, another study showed a diminishment of
CD4+CD103+ TRM in SSc skin [60].

In the cutaneous fibrosis, crosstalk between keratinocytes and fibroblasts may be a clue to
understanding the complex pathophysiology. Previously, crosstalk between epidermis and dermis
mediated by mast cells was suggested in dermatofibroma, which was proposed a possible local model
of cutaneous fibrosis [61]. Recently, contribution of the overlying epidermis in SSc has been highlighted,
which plays as a driver or modifier of dermal sclerosis [62]. Keratinocyte-derived IL-1α is suggested to
play an important role in stimulating dermal fibroblasts to produce type I collagen.

4. Psoriasis and DM

Co-existence of psoriasis and DM is extremely rare, and only several cases have been reported [63–67].
Clinically, keratotic erythemas are frequently observed on the extensor aspect of the elbows and knees
in both diseases. A case with DM who developed psoriasis in parallel with exacerbation of interstitial
lung disease was previously reported, wherein there was speculation that viral infection caused IFN-α
release, leading to the induction of psoriasis [66]. pDC and type I IFN has been suggested in DM [68–70],
which is shared with the pathogenesis of psoriasis. IFN-inducible proteins such as myxovirus-resistance
protein (MxA) and CXC chemokines (CXCL9, CXCL10, and CXCL11) are commonly overexpressed in
DM skin and muscle [71]. By contrast, a recent study demonstrated that epidermal expression of MxA
differs among groups with different autoantibodies, and is rarely expressed in the finger lesions of
patients with anti-aminoacyl transfer RNA synthetase antibody [72]. In addition, serum IL-17 levels
are increased in dermatomyositis with a relationship to disease activity [70]. Expression of IL-17 in the
cellular infiltrates in both skin lesions may suggest that IL-17 possibly contributes to the development
of DM as well as psoriasis.

Serum levels as well as culture supernatant from peripheral blood mononuclear cells were found
to be elevated in patients with DM and polymyositis. IL-17 and IL-23 levels were elevated in patients
with early disease durations [73]. In a murine model of myositis, IL-23 played an important role in
muscle damage [74]. A recent report showed successful use of ustekinumab, an anti-IL-12/23 p40
monoclonal antibody useful for psoriasis therapy, for refractory mechanic’s hand in a patient with
antisynthetase syndrome [75].

5. Psoriasis and SjS

Type I IFNs, such as IFN-α and IFN-β, drive the inflammatory pathways in the pathogenesis
of autoimmune diseases, including rheumatoid arthritis and SjS. Activated CD4+ T-cells, especially
IFN-γ-producing Th1 cells and IL-17-producing Th17 cells, contribute to the pathogenesis of
SjS [76]. Skin manifestation of SjS includes annular erythema, hypergammaglobulinemic purpura,
cryoglobulinemia, as well as various non-specific manifestations such as vitiligo, livedo, xeroderma,
localized amyloidosis, and lymphoproliferative diseases [77], and there are several case reports on
the association of psoriasis and SjS [78–80]. In addition, an increased number of IL-17-positive T-cells
was reported in the lesional skin of annular erythema associated with SjS [81]. Therapy targeting
IL-23/IL-17 as well as IL-23/IL-12 may be expected for cases involving psoriasis and SjS [82].

6. Psoriasis and RA

RA presents various cutaneous manifestations, either specific or nonspecific skin features,
which are induced by the activation of inflammatory cells (neutrophils, lymphocytes, macrophages),
vasculopathy, vasculitis, acral deformity, drugs, and so on [83]. These include (i) specific findings,
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(ii) findings due to vascular impairment, (iii) findings due to immune dysfunction, (iv) characteristic
neutrophilic conditions, and (v) miscellaneous conditions. It is not uncommon for patients with RA to
develop symptoms overlapping those of other connective tissue disorders, such as SSc, SLE, and SjS.
Moreover, overlapping cutaneous disorders such as morphea and discoid lupus erythematosus have
been reported. Autoimmune bullous dermatoses including bullous pemphigoid, pemphigus vulgaris,
pemphigus foliaceus, cicatricial pemphigoid, and linear IgA dermatosis have been reported in RA.

According to a previous study, the highest odd ratio among psoriatic disease in 25,341 psoriasis
patients was RA [4], although PsA should be differentiated. Differentiation of PsA and RA is occasionally
difficult, although a Th1-dominant cytokine balance has been suggested in both RA and PsA. However,
IL-17 blockers are effective for psoriasis and PsA, whereas they did not have favorable effects on RA.
By contrast, IL-6 receptor antibody is effective for RA, but its effect on PsA is currently not established.

Mast cell is a rich source of various growth factors and mediators. In RA, mast cells are increased
in the synovial tissues. Moreover, mast cells secrete proinflammatory cytokines, angiogenic cytokines,
and fibrogenic cytokines. In addition, mast cell-derived proteinases including tryptase and MMPs,
such as MMP-2 and MMP-9, are suggested to play a role in the degradation of cartilage.

7. Psoriasis and Adult-Onset Still’s Disease

Systemic inflammatory conditions of adult-onset Still’s disease (AOSD) characterized by fever,
systemic symptoms (i.e., anemia, arthralgia, liver dysfunction, lymphoadenopathy), and increased
levels of acute-phase protein are suggestive of autoinflammatory diseases, in which innate immunity
is mainly involved. A predominant shift towards Th1-type cytokines was shown in the peripheral
blood and tissues of patients with active AOSD. Serum levels of a number of inflammatory cytokines
were significantly higher in patients with active AOSD compared with those in healthy controls.
In particular, IL-18 activates Th1-type cytokine response and induces IFN-γ and TNF-α production.
IL-18 functions as stimulation of neutrophil migration and activation, enhancement of expression of
adhesion molecules, and activation of natural killer cells. IL-18 enhances FasL-mediated cytotoxicity of
Th1-type cells [84], and increased apoptosis of peripheral blood lymphocytes is induced in active stage
AOSD [85]. IL-18 is also involved in Th17 cell response synergistically with IL-23 [86]. In addition,
sustained macrophage activation may result in tissue inflammation; production of ferritin; increased
secretion of inflammatory cytokines including IL-1, IL-6, IL-18, IFN-γ, and TNF-α; and reactive
hemophagocytic syndrome. Many cell types exemplified by macrophages produce pro-IL-18 that is
cleaved by IL-1β-converting enzyme (caspase-1). It has been suggested that IL-18, as well as IL-1,
IL-6, and TNF-α, may stimulate ferritin synthesis or inhibit its clearance. IL-18 is suggested to induce
IL-1β production. IL-1β is a key mediator of acute inflammation, innate immunity, and adaptive
immune response. In addition, recently, IL-1 family proteins such as IL-33 and IL-36 have also been
found to be important in autoinflammatory disorders. IL-33 binds to its receptor ST2L, which then
activates Myeloid differentiation factor 88 (MyD88) and nuclear factor kB (NF-kB), mediated via IL-1R
accessory protein. The trigger of AOSD is supposed to be viral infection, and TLRs are activated,
leading to pro-IL-1β and pro-IL-18 synthesis via activation of the NF-kB signaling pathway. Activation
of TLR induces enhanced production of IL-1β, IL-6, IL-18, and IFN-α by peripheral blood mononuclear
cells [87].

It is well-known that skin rash of AOSD is typically salmon-pink, macular, or maculopapular
erythema, which appears in parallel with the onset of fever and disappears in accordance with
the decrease in fever; however, recent findings clarify that AOSD presents with various cutaneous
manifestations other than typical skin rash [88]. Concurrent psoriasis and AOSD is very rare [89,90],
and a case presenting with psoriasiform eruption has been reported [90], but cutaneous manifestation
of AOSD does not include psoriasis/psoriasis-like lesions.

Still’s disease was initially reported as a childhood disease. Still’s disease, systemic juvenile
idiopathic arthritis (sJIA), and AOSD exist on a spectrum, and it has been generally considered
that some cases occurring before age 16 years are sJIA while cases presenting after age 18 years are
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AOSD [91]. However, there are indeterminate cases in which sJIA is identical to adolescent-onset
Still’s disease. The skin rashes of both disorders are similar, and transient, salmon-pink, macular,
or urticarial erythema appear on the face, trunk, and extremities, along with fever spikes. Dactylitis is
sometimes seen in association with various diseases such as psoriatic arthritis, tuberculosis, injury,
gout, and sarcoidosis; however, cases with either sJIA or AOSD presenting with dactylitis have been
scarcely reported [92].

8. Psoriasis and Behçet’s Disease

Behçet’s disease is a Th1-dominant disease, and recent studies have furthermore shown that
Th17-related cytokines are also involved [93]. However, association of Behçet’s disease and psoriasis
is rare [94,95]. Musculoskeletal involvement is frequent in Behçet’s disease, and enthesopathy is
also observed in Behçet’s disease. Recently, BD is proposed to be included in “MHC-I-opathy” with
prevalence of HLA-B 51, in which CD8+ T-cells activate neutrophils and drive inflammation [96,97].
Apremilast blocks phosphodiesterase-4, which regulates immune and inflammatory processes through
modification of the levels of intracellular cyclic adenosine monophosphate, protein kinase A, and various
forms of inflammatory cytokine production. Apremilast is used for both psoriasis and Behçet’s disease.

9. Psoriasis and Granulomatous Diseases

Non-infectious granulomatous conditions such as granuloma annulare and sarcoidosis are
rarely associated with psoriasis [98]. Th1 type cytokines are favored in the initial phase of
sarcoidosis. In particular, TNF-α is important in the formation of sarcoidal granuloma [99]. A shared
TNF-α-mediated pathogenesis between psoriasis and sarcoidosis may exist. TNF-α activates Th17 cells
to lead IL-17 production, and the IL-17 inflammatory pathway has been suggested to be important
in psoriasis. Moreover, recent studies have suggested an important role of IL-17 in sarcoidosis,
and enhanced expression of IL-17A+IFN-γ+ and IL-17A+IL-4+ memory T-cells was shown in sarcoidal
lungs [100]. Thus, Th17 profile has been implicated to play a role in sarcoidosis, possibly by inducing
granuloma formation via suppression of regulatory T-cells [100]. Another study showed upregulation
of IL-23 and IL-21 in the lesions of cutaneous sarcoidosis [101]. In addition, pso p27 is a protein detected
in mast cells in psoriatic lesions and extractable from psoriatic scales. Pso p27 is abundantly expressed
in psoriatic lesional skin, and also expression of pso p27 is increased in the lungs of pulmonary
sarcoidosis [102]. Further study is needed to determine the role of pso p27 in sarcoidosis.

Granuloma annulare has been considered to be driven by a Th1-mediated process via upregulation
of TNF-α. Moreover, MMPs such as MMP-2 and MMP-9 are important to degrade the extracellular
matrix, leading to necrobiosis in the center of granuloma annulare. Recent studies have shown
Th2 (i.e., IL-4 and IL-31) and Janus kinase pathways are involved in the pathogenesis of granuloma
annulare [103]. Alternatively, IL-17 was abundantly detected in psoriasis, which may induce granuloma
formation by suppressing regulatory T-cells.

10. Conclusions

Several external triggers have been proposed not only in psoriasis but also in connective tissue
disorders (Table 1). They are termed the Köbner phenomenon, internal Köbner phenomenon,
photo-Köbner phenomenon, deep Köbner phenomenon, and so on. Infection and drugs are also
important precipitating factors. Cases of association with other disorders or drug-induced psoriasis
provide a good opportunity for approaching the pathogenesis of psoriasis as well as connective tissue
diseases. Further studies are necessary to gain deeper insights into the pathogenesis of, and eventually
lead to new therapies for, psoriasis and connective tissue diseases.
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Table 1. Possible precipitating external factors for the induction of skin lesions of psoriasis and
connective tissue diseases.

External Triggers for Induction of Skin Lesions

Psoriasis

Köbner (physical stress, vaccination, minor trauma, etc.)
Drug

Infection
Microorganism

SLE Photo-Köbner (ultraviolet)
Drug

SSc Coldness
Köbner for calcified nodule

Dermatomyositis Köbner for Gottron’s sign

RA Köbner for rheumatoid nodule

SjS Unknown for annular erythema
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