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Identifying drivers of transmission—especially of emerging pathogens—is

a formidable challenge for proactive disease management e�orts. While

close social interactions can be associated with microbial sharing between

individuals, and thereby imply dynamics important for transmission, such

associations can be obscured by the influences of factors such as shared

diets or environments. Directly-transmitted viral agents, specifically those that

are rapidly evolving such as many RNA viruses, can allow for high-resolution

inference of transmission, and therefore hold promise for elucidating not only

which individuals transmit to each other, but also drivers of those transmission

events. Here, we tested a novel approach in the Florida panther, which is

a�ected by several directly-transmitted feline retroviruses. We first inferred

the transmission network for an apathogenic, directly-transmitted retrovirus,

feline immunodeficiency virus (FIV), and then used exponential random graph

models to determine drivers structuring this network. We then evaluated the

utility of these drivers in predicting transmission of the analogously transmitted,

pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based

predictions of outbreak dynamics against empirical FeLV outbreak data. FIV

transmission was primarily driven by panther age class and distances between

panther home range centroids. FIV-based modeling predicted FeLV dynamics

similarly to common modeling approaches, but with evidence that FIV-based

predictions captured the spatial structuring of the observed FeLV outbreak.

While FIV-based predictions of FeLV transmission performed only marginally
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better than standard approaches, our results highlight the value of proactively

identifying drivers of transmission—even based on analogously-transmitted,

apathogenic agents—in order to predict transmission of emerging infectious

agents. The identification of underlying drivers of transmission, such as through

our workflow here, therefore holds promise for improving predictions of

pathogen transmission in novel host populations, and could provide new

strategies for proactive pathogen management in human and animal systems.

KEYWORDS

transmission tree, exponential random graph model, network modeling, disease

model, Florida panther, transmission heterogeneity

Introduction

Infectious disease outbreaks can have profound impacts on

conservation, food security, and global health and economics.

Mathematical models have proven a vital tool for understanding

transmission dynamics of pathogens (1), but struggle to predict

the dynamics of novel or emerging agents (2). This is at least

partially due to the challenges associated with characterizing

contacts relevant to transmission processes. Common modeling

approaches that assume all hosts interact and transmit infections

to the same degree ignore key drivers of transmission. Such

drivers can include specific transmission-relevant behaviors

including grooming or fighting in animals (3), concurrent

sexual partnerships in humans (4), or homophily (5), and

result in flawed epidemic predictions (6, 7). Further, identifying

drivers of transmission and consequent control strategies for

any given pathogen is typically done reactively or retrospectively

in an effort to stop or prevent further outbreaks or spatial

spread [e.g., (8, 9)]. These constraints limit the ability to

perform prospective disease management planning tailored to

a given target population, increasing the risk of potentially

catastrophic pathogen outbreaks, as observed in humans (10),

domestic animals (11), and species of conservation concern

[e.g., (12–14)].

A handful of studies have evaluated whether common

infectious agents present in the healthy animal microbiome

or virome can indicate contacts between individuals that may

translate to interactions promoting pathogen transmission (15–

22). Such an approach circumvents some of the uncertainties

associated with more traditional approaches to contact detection

(6). In these cases, genetic evidence from the transmissible agent

itself is used to define between-individual interactions for which

contact was sufficient for transmission to occur. Results of such

studies show mixed success (15–18). For example, members

of the same household (19, 20) or animals with close social

interactions (21, 22) have been found to share microbiota, but

disentangling social mechanisms of this sharing is complicated

by shared diets, environments, and behaviors (23).

These studies have, however, revealed ideal characteristics

of non-disease inducing infectious agents (hereafter, apathogenic

agents) for use as markers of transmission-relevant interactions.

Such apathogenic agents should have rapid mutation rates to

facilitate discernment of transmission relationships between

individuals over time (24, 25). Furthermore, these agents should

be relatively common and well-sampled in a target population,

have a well-characterized mode of transmission that is similar

to the pathogen of interest, and feature high strain alpha-

diversity (local diversity) and high strain turnover (25, 26).

RNA viruses align well with these characteristics (27) such that

apathogenic RNA viruses could act as “proxies” of specificmodes

of transmission (i.e., direct transmission) and indicate which

drivers underlie transmission processes. Such drivers, including

but not limited to host demographics, relatedness, specific

behaviors, or space use, could subsequently allow prediction of

transmission dynamics of pathogenic agents with the samemode

of transmission (25).

Here, we develop a novel workflow for identifying drivers

of transmission in a naturally occurring host-pathogen system,

and test the relevance of these drivers in the transmission of

an analogously transmitted pathogenic virus. Florida panthers

(Puma concolor coryi) are an endangered subspecies of puma

found only in southern Florida. We have documented that this

population is infected by several feline retroviruses relevant to

our study questions (28, 29). Feline immunodeficiency virus

(FIVpco; hereafter, FIV) occurs in ∼50% of the population

and does not appear to cause significant clinical disease (28).

FIV is transmitted by close contact (i.e., fighting and biting),

generally has a rapid mutation rate [intra-individual evolution

rate of 0.00129 substitutions/site/year; (30)], and, as a chronic

retroviral infection, can be persistently detected after the time

of infection. Panthers are infected with feline leukemia virus

(FeLV), also a retrovirus, which caused a well documented,

high mortality outbreak among panthers in 2002–2004 (29).

FeLV infrequently spills over into panthers following exposure

to infected domestic cats (31, 32). Once spillover occurs, FeLV

is transmitted between panthers by close contact and results
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in one of three infection states: progressive, regressive, or

abortive infection (29). Progressive cases are infectious and

result in mortality; regressive infections are unlikely to be

infectious—though this is unclear in panthers—and recover

(29, 33, 34). Abortive cases clear infection and are not themselves

infectious (33).

The objectives of this study were therefore: (1) to determine

which drivers shape FIV transmission in Florida panthers, and

(2) test if these drivers are consistent with and can predict

transmission of analogously transmitted FeLV in panthers.

Success of this approach in our panther system would encourage

testing similar apathogenic agents in other host-pathogen

systems, with potential to improve our understanding of

drivers of individual-level heterogeneity in transmission and

consequently our ability to predict transmission dynamics of

novel agents in human and animal populations.

Materials and methods

Dataset assembly

We assembled an extensive dataset covering almost 40 years

of Florida panther research and including panther sex and age

class. A subset of the population is monitored using very high

frequency (VHF) telemetry collars, with relocations determined

via aircraft typically three times per week. Previous panther

research has generated a microsatellite dataset for monitored

panthers (35), and a dataset of 60 full FIV genomes [proviral

DNA sequenced within a tiled amplicon framework in (36)].

In addition, to augment observations from the 2002–04 FeLV

outbreak (29), we leveraged an FeLV database which documents

FeLV status (positive and negative) for 31 sampled panthers

from 2002–04 as determined by qPCR.

FIV transmission inference

To determine drivers of FIV transmission, we first generated

a “who transmitted to whom” transmission network using 60

panther FIV genomes collected from 1988 to 2011 [note that

the panther population is small, with the average minimum

annual panther counts across this period being 62.3 panthers;

(37)]. We used the program Phyloscanner (38) (see Figure 1

for workflow across all analyses), which assumes both within-

and between-host evolution when inferring transmission

relationships between sampled and even unsampled hosts (38).

Phyloscanner operates in a two step process, first inferring

within- and between-host phylogenies in windows along the

FIV genome. Then, using the within-host viral diversity

gleaned from deep sequencing, Phyloscanner functionally

performs ancestral state reconstruction to infer transmission

relationships between hosts, outputting transmission trees or

FIGURE 1

Conceptual workflow across all analysis steps. Processes are

shown on the left in blue; specific outcomes are shown on the

right in green; the final analysis outcome is in yellow at the

bottom right. Solid lines show direct flows or outcomes. Dashed

lines show processes acting on or in concert with prior

outcomes: for example, exponential random graph modeling

(ERGM) was performed using the FIV transmission network, and

the combination of the two produced the ERGM coe�cients

outcome.

networks. For Phyloscanner’s step one, we used 150bp windows,

allowing 25bp overlap between windows. To test sensitivity

to this choice, we separately ran a full Phyloscanner analysis

with 150bp windows, but without overlap between windows

(Supplementary methods). The tiled amplicon PCR approach

used to generate our FIV genomic data biases for detection

of one known variant, such that we did not expect detectable

superinfections. In the second step of Phyloscanner, we therefore

set the parameter which penalizes within-host diversity (k)

to 0. We used a patristic distance threshold of 0.05 and

allowed missing and more complex transmission relationships.

Because we had uneven read depth across FIV genomes, we

downsampled to a maximum of 200 reads per host. The output

of the full Phyloscanner analysis was a single transmission

network (hereafter,main FIV network).

To test sensitivity of our subsequent inference to variations

in Phyloscanner output (e.g., due to the effects of random read

downsampling, Phyloscanner windows, or sequencing errors),
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we also generated two summary FIV networks, varying the

degree of window overlap in the first step of Phyloscanner

analysis and re-running the random read downsampling in the

second step. With Phyloscanner step one set to 25bp overlap,

we generated four additional FIV transmission networks, but

kept only those edges that were found in at least two of these

four networks. We repeated this process with Phyloscanner

step one set to 0bp overlap, again keeping only those

edges found in at least two of four resulting transmission

networks.

Statistical analysis of FIV transmission
networks

Phyloscanner transmission tree output suggests direction

of transmission, but in our case, the direction was often

uncertain (see Results). To avoid putting undue emphasis

on an uncertain direction of transmission, we simplified the

transmission tree output to undirected, unweighted (binary)

networks and performed statistical analysis of these networks

using exponential random graph models [ERGMs; (39)].

ERGMsmodel the edges in networks, with explanatory variables

representing the potential structural drivers of the observed

network (39). By including network structural variables, ERGMs

account for the inherent non-independence of network data.

As such, we modeled “transmission relationships” (i.e., being

connected in the transmission network) as a function of

network structural variables and transmission variables we

a priori expected to influence direct transmission processes

in panthers. We considered several structural variables: an

intercept-like edges term (39); geometrically weighted edgewise

shared partner distribution (gwesp; representation of network

triangles); alternating k-stars (altkstar; representation of star

structures); and 2-paths [2 step paths from i to k via j;

(40)]. In addition, we considered a suite of transmission

variables (see Supplementary methods for additional variable

details): panther sex; age class (subadult or adult); pairwise

genetic relatedness [panther microsatellite data from (35)];

position of panther home range centroid (95% minimum

convex polygon) or capture location (hereafter, centroid) relative

to the major I-75 freeway (locations could be north or

south of this east-west freeway); distance from centroid to

nearest urban area [in km; USA Urban Areas layer, ArcGIS;

(41)]; pairwise geographic distance between centroids (log-

transformed; Supplementary Figure S1); and pairwise home

range overlap [utilization distribution overlap indices of 95%

bivariate normal home range kernels; (42, 43)]. We fit ERGMs

for the main FIV network and the two summary FIV networks

to verify robustness of inference.

Because ERGMs are prone to degeneracy with increasing

complexity, we followed Silk and Fisher (39) and first performed

forward selection for network structural variables, followed

by forward selection of dyad-independent variables, while

controlling for network structure. Model selection was based on

AIC and goodness of fit, and MCMC diagnostics were assessed

for the final model (Supplementary methods). ERGMs were fit

with the ergm package (44) in R [v3.6.3; (45)].

Panther population and transmission
simulations

We lack FeLV isolates to repeat Phyloscanner/ERGM

analysis and thereby directly compare drivers of FeLV

transmission to those identified for FIV. Rather, to determine

the relevance of FIV transmission drivers for understanding and

predicting FeLV transmission, we simulated FeLV transmission

among panthers through a network structured by drivers

of FIV transmission. We note that this approach is most

representative of prospective disease modeling where models

aim to predict transmission of a novel or emerging pathogen,

and where transmission parameters are highly uncertain and

models cannot be fit directly to data.

We first simulated panther populations that were

representative of the population during the 2002-04

FeLV outbreak. Here, network edges represented likely

transmission pathways based on ERGM-identified drivers of

FIV transmission (FIV-based model). Hereafter, a full simulation

includes both simulation of the panther population with

its likely transmission pathways (i.e., a new network) and

simulation of FeLV transmission within that population. This

strategy of simulating new populations for each transmission

simulation avoided putting excess weight on a small number of

simulated and therefore uncertain networks. Below, we describe

the process for a single simulation, but these procedures were

repeated for each full simulation.

We first based the simulated population size on the range

of empirical estimates from 2002–2004 [80–120 individuals;

Supplementary Table S1; (37)]. Additional characteristics of the

simulated population included those identified as significant

variables in the ERGM analysis: age category and pairwise

geographic distances between panther home range centroids

(see Results). We randomly assigned age categories to the

simulated population based on the proportion of adults vs.

subadults. Age proportions were based on age distributions

in the western United States (46), which qualitatively align

with the historically elevated mean age of the Florida panther

population [historically, mean age was as high as >6.5 years, but

was about 4.5 years during 2002-04; (47)]. Pairwise geographic

distances for the simulated population were generated by

randomly assigning simulated home range centroids based

on the distribution of observed centroids on the landscape

(Supplementary methods).
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We then used ERGM coefficients to generate network edges

among the simulated panther population using the ergm package

in R (44). The FIV transmission network spanned 15 years

of observations and represents a subset of the actual contact

network, as it includes only those interactions that resulted in

successful transmission (48), and not non-transmission edges.

We therefore had a high degree of uncertainty regarding the

appropriate network density for our simulations. Tomanage and

explore this uncertainty, we constrained density (ratio of existing

edges to all possible edges) in our network simulations across a

range of parameter space (net_dens, Supplementary Table S1).

The next step in each full simulation was to model

FeLV transmission through the network generated from FIV

predictors of transmission. FeLV transmission was based on a

stochastic chain binomial process on the simulated network,

following a modified SIR compartmental model (Figure 2).

Simulations were initiated with one randomly selected infectious

individual and proceeded in weekly time steps. Transmission

simulations lasted until no infectious individuals remained or

until 2.5 years, whichever came first.

Transmission was dependent on the following (Figure 2; see

Supplementary Table S1 for parameter definitions): (1) existence

of an edge between two individuals, (2) the dyad in question

involving a susceptible and infectious individual, and (3) a

random binomial draw based on the probability of transmission

given contact (β). In addition, Puma concolor generally have

low expected weekly contact rates (49); we therefore included

a weekly contact probability, represented as a random binomial

draw for contact in a given week (ω).

Upon successful transmission, infectious individuals were

randomly assigned to one of three outcomes of FeLV infection

(29). Progressive infections (probability P) are infectious (β),

develop clinical disease, and die due to infection (µ). Regressive

infections (also probability P) recover from infection (K∗µ,

where K is a constant ≤1) and, having entered a state of

viral latency, are not considered at risk of FeLV reinfection

(29, 50). Using model assumptions derived from known patterns

of FeLV infection in domestic cats, regressive individuals are

not infectious (29), but given ongoing uncertainty, we included

some transmission from regressives (C∗β , where C is a constant

≤1). Abortive infections (probability 1-2P) are never infectious,

clearing infection and joining the recovered class. While the

duration of immunity in abortive cases has not been studied in

panthers, because abortive cases clear infection through a strong

immune response and develop anti-FeLV antibodies, reinfection

with FeLV is considered extremely unlikely (50).

A vaccination process was included in simulations as

panthers were vaccinated against FeLV during the historical

FeLV outbreak starting in 2003. Vaccination occurred at a rate,

τ , and applied to the whole population, as wildlife managers

are unlikely to know if a panther is susceptible at the time

of capture or darting. However, only susceptible individuals

transitioned to the vaccinated class (i.e., vaccination failed in

non-susceptibles). Because panthers were vaccinated in the

empirical outbreak with a domestic cat vaccine with unknown

efficacy in panthers, we allowed vaccinated individuals to

become infected in transmission simulations by including a

binomial probability for vaccine failure (1-vaccine efficacy, ve,

Supplementary Table S1).

The panther population size remained roughly static

through the course of the FeLV outbreak (37). We therefore

elected not to include background mortality, but did include

infection-induced mortality. To maintain a consistent

population size, we therefore included a birth/recruitment

process. Because FIV-based simulated networks drew edges

based on population characteristics, we treated births as a

“respawning” process, in which territories vacated due to

mortality were reoccupied by a new susceptible at rate, ν. This

approach allowed us to maintain the ERGM-based network

structure and is biologically reasonable, as vacated panther

territories are unlikely to remain unoccupied for long. All

simulations were programmed in R [v3.6.3; (45)].

Comparison of simulation predictions to
observed FeLV outbreak

To evaluate the performance of our FIV-based model in

the context of more common approaches used in predicting

transmission of novel or emerging pathogens, we also predicted

FeLV transmission dynamics using three alternative models:

random networks, home range overlap-based networks, and a

well-mixed model. The random networks model used Erdős-

Rényi random networks, matching network densities from

the FIV-based model (Supplementary Table S1), but otherwise

allowing edges to occur between any pairs of individuals.

Overlap-based networks were generated using the degree

distributions of panther home range overlap networks from

2002 to 2004 and simulated annealing with the R package statnet

[(51); Supplementary methods]. For both random and overlap-

based networks, FeLV transmission was simulated as in the

FIV-based simulations. The well-mixed model was a stochastic,

continuous time compartmental model (Gillespie algorithm),

with rate functions aligning with the chain binomial FeLV

transmission probabilities (see Supplementary methods).

Consistent with modeling constraints when predicting

transmission of novel or emerging agents, we performed

transmission simulations for allmodel types (FIV-based, overlap-

based, random, and well-mixed) across a range of reasonable

parameter space (Supplementary Table S1), using a Latin

hypercube design (LHS) to generate 150 parameter sets that

efficiently sampled parameter space (52, 53). For each parameter

set and model type, we performed 50 simulations (30,000 total).

In each simulation, we recorded the number of mortalities

and the duration of outbreaks, which were each summarized
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FIGURE 2

Diagram of flows of individuals between compartments in the transmission model. Virus icons indicate infectious states, with the regressive

infection icon darkened to represent reduced or uncertain infectiousness of this class. Note: a vaccination process was also included in the

transmission model, but is not shown for simplicity. With vaccination, susceptibles could be vaccinated, and vaccinated individuals subsequently

infected as with susceptibles, but with an additional probability of (1-ve). See Supplementary Table S1 for definitions of parameters.

(medians) across each parameter set. To determine the accuracy

of FIV-based predictions and this model’s performance relative

to alternativemodels, for eachmodel type, we determined if each

parameter set’s predicted median (1) mortalities, (2) duration

of outbreaks, and (3) abortive cases were within a reasonable

range based on the observed FeLV outbreak [5–20 mortalities,

78–117 week duration, at least 5 abortive infections; (29)]. If

so, a parameter set was deemed “feasible” for that model type.

Ranges were used to account for uncertainty in observations and

population size in this cryptic species (Supplementary methods).

To compare the frequency of feasible FeLV predictions between

model types, we fit a binomial generalized linear mixed model

(GLMM), assuming a logistic regression with “feasible” (vs

“unfeasible”) as the outcome, model type as a predictor variable,

and a random intercept for parameter set.

We tested for spatial clustering of cases in the observed FeLV

outbreak by leveraging our database of qPCR-based FeLV status.

We performed a local spatial clustering analysis of FeLV cases

and controls using SaTScan [50% maximum, circular window;

(54)]. A SaTScan analysis seeks to identify clusters of cases

in which the observed cases within a particular cluster exceed

random expectation; this analysis reports the observed/expected

ratio and radius of any significant clusters. In addition, we

performed a global cluster analysis with Cuzick and Edward’s

test (global cluster detection with case-control data) in the

R package smacpod [1, 3, 5, 7, 9, and 11 nearest neighbors;

999 iterations; (55–57)]. To determine if simulated FeLV cases

demonstrated spatial clustering consistent with the observed

outbreak, we repeated SaTScan local cluster analysis and Cuzick

and Edward’s tests (at 3, 5, and 7 nearest neighbors) with

FIV-based simulation results. Because we would not expect

representative spatial clustering in unfeasible parameter space

(e.g., if epidemics were too large or small for spatial clustering

to emerge), here alone we focused on the feasible subset of FIV-

based simulation results. To verify that detected clustering in

FIV-based simulations was not simply based on our respawning

protocol, we also performed both spatial analyses with feasible

overlap-based simulation results as a “negative control.” Because

the overlap-based model was not spatially explicit, we assigned

the same geographic locations to nodes in the overlap-based

networks from the corresponding FIV-based networks.

To determine if feasible outcomes were especially sensitive

to certain transmission parameters, we performed post hoc

random forest variable importance analyses for each of the

four model types with “feasible” vs. “unfeasible” as the binary

response variable [using the R package randomForest (58, 59);

see Supplementary results].

Results

FIV transmission network analysis

In themain FIV network, Phyloscanner inferred 42 potential

transmission relationships (edges) between 19 individuals

(nodes; network density = 0.25; Supplementary Table S2), after

removing 9 edges that were between individuals known not to

be alive at the same time (Figure 3). The summary transmission
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FIGURE 3

Phyloscanner-derived main FIV transmission network. Node

shape indicates panther age class (square = subadult; circle =

adult). Node color indicates panther sex (blue = male; red =

female). Edge weight represents Phyloscanner tree support for

each edge (thicker edge = increased support); for visualization

purposes, edges are displayed as the inverse of the absolute

value of the log of these support values. While pictured as a

directed and weighted network, statistical analyses used binary,

undirected networks.

TABLE 1 Main FIV transmission network exponential random graph

model results.

Variable Estimate SE p-value

Edges (intercept) −2.56 1.33 0.055

gwesp 0.98 0.26 <0.001

altkstar −0.70 0.96 0.47

Age (Adult) 0.93 0.44 0.03

Log pairwise distance −0.45 0.21 0.03

“gwesp” is geometrically weighted edgewise shared partner distribution (a representation

of triangle structures) and “altkstar” is alternating k-stars (a representation of star

structures). Age classes were subadult and adult, with subadults the reference level;

pairwise distances were between home range centroids and log-transformed. Only those

variables from the final model are shown. Estimates shown are untransformed; SE

represents standard error; p-values <0.05 were considered statistically significant.

network allowing scanning window overlap included 20 nodes

with 43 edges (network density = 0.23), and the summary

network without window overlap included 20 nodes with

35 edges (network density = 0.18; after 8 and 6 edges

removed, respectively, due to dates known alive). Panther FIV

genomes missing from the transmission networks were those

for whom transmission relationships could not be inferred by

Phyloscanner (see Discussion).

ERGM results for the main FIV network identified

triangle (gwesp) and star structures (altkstar) as key structural

TABLE 2 Fixed e�ects results frommodel-type performance GLMM*.

Variable Estimate SE p-value

Intercept 0.055 0.40 <0.001

FIV-based network model 1.55 0.42 0.30

Random network model 1.32 0.43 0.52

Overlap-based network model 1.21 0.44 0.66

*Estimates provided are exponentiated; the well-mixed model was the reference group

and none of the model-type results achieved statistical significance.

variables, and age category and log transformed pairwise

geographic distance as key transmission variables (Table 1;

Supplementary Table S3). Though altkstar was not statistically

significant, inclusion of this variable contributed to improved

AIC and goodness of fit outcomes. Adults were more likely to

be involved in transmission events (but see discussion of sample

size limitations) and inferred transmission events were more

likely between individuals which were geographically closer to

each other. The fitted model showed reasonable goodness of

fit (Supplementary Figures S2, S3). ERGM results for the two

summary FIV transmission networks were comparable to the

main FIV transmission network (Supplementary Table S3). The

key difference was that the summary network with no window

overlap did not find log-transformed pairwise geographic

distances to be a significant variable, though this fitted model

showed evidence of degeneracy. To further confirm consistency

of our Phyloscanner and ERGM-based inference, we performed

a post hoc analysis with simulated random networks, finding

our results were generally robust to variations in Phyloscanner

output (Supplementary results; Supplementary Figure S4).

FeLV simulations

About 9% of parameter sets across all model types were

classified as feasible (Supplementary Figures S6, S7). The FIV-

based model had the highest odds of feasibility, though this

difference did not achieve statistical significance (Table 2).

SaTScan analysis of observed FeLV status found weak evidence

of local spatial clustering (two clusters detected, but not

statistically significant with p = 0.165 and 0.997, respectively;

Supplementary Figure S5). Cuzick and Edward’s tests found

evidence of global clustering at 3, 5, and 7 nearest neighbor

levels (test statistic Tk where k is number of nearest neighbors

considered: T3 = 20, p = 0.049; T5 = 32, p = 0.028; T7 =

43, p = 0.023). Feasible parameter sets from both the FIV-

based and overlap-based models produced some evidence of

local and global spatial clustering of simulated FeLV cases

(Figure 4, Supplementary Figure S8). However, the FIV-based

model better captured the size and strength of predicted

local clusters (SaTScan radius and observed/expected cases,
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FIGURE 4

SaTScan cluster analysis for feasible FIV-based and overlap-based network simulations show stronger agreement for the FIV-based model,

compared to the overlap-based model, between empirical observations (red horizontal lines) and model predictions for (A) FeLV cluster size and

(B) Observed/Expected FeLV cases associated with the top detected cluster. The overlap-based model, with locations assigned based on

matching FIV-based simulations, served as a “negative control” for comparison to the FIV-based model’s spatial predictions. Shown are feasible

simulation results in which at least one cluster was detected with p-values ≤0.1; further, if SaTScan identified more than one cluster, only the

results from the most well supported (i.e., top cluster) are shown.

respectively; Figure 4) and was moderately better at capturing

global spatial patterns (Supplementary Figure S8).

The post-hoc random forest analyses typically showed poor

balanced accuracy and area under the curve (AUC) results.

However, the parameter shaping transmission from regressively

infected individuals (C), consistently showed support for weak

to moderate transmission from regressives (i.e., C = 0.1 or 0.5;

Supplementary Figure S11).

Discussion

In this study we develop a new approach whereby we

leverage genomic and network approaches to identify drivers

of transmission of a common apathogenic agent. Further, we

demonstrate that these drivers are relevant to and capable

of prospectively predicting dynamics of an uncommon and

virulent pathogen. Our approach was distinctly different from

simpler models we tested, as the apathogenic (FIV)-based

approach focused on underlying drivers or mechanisms of

transmission and could be used to prospectively identify

management-relevant predictors of transmission and develop

disease control plans prior to an outbreak of a virulent

pathogen (FeLV). We found that FIV transmission in panthers

is primarily driven by adults and proximity between home

range centroids, and that our FIV-based drivers of transmission

predicted FeLV transmission dynamics at least as well as

simpler alternative models in a prospective modeling framework

(comparable to predicting transmission dynamics of novel

or emerging pathogens). While we do not propose that this

apathogenic agent approach could accurately predict exactly

when, where, and to whom transmission might occur, our

results support the role of apathogenic agents as novel

tools for prospectively determining sources of individual-level

heterogeneity in transmission and consequently improving

proactive disease management.

FIV-based transmission drivers are
relevant for FeLV transmission dynamics

We found that our network model based on drivers

of FIV transmission produced FeLV outbreak predictions

consistent with the observed FeLV outbreak. The FIV-based

approach performed at least as well as simpler models, per
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our GLMM analysis, with evidence that FIV better predicted

the observed spatial dynamics for FeLV transmission. A key

difference between the FIV-based approach and other spatially

explicit methods is that FIV allowed us to determine the

importance of spatial dynamics prospectively (via transmission

tree and ERGM analyses) and then translate to predictions of

FeLV transmission, rather than relying on retrospective FeLV

spatial analyses. Furthermore, while more complex potential

drivers of transmission (e.g., host relatedness or assortative

mixing by age or sex) were not found to be important

for FIV transmission in this host-pathogen system, these

may yet be key for driving transmission in other systems.

Simpler model types like random networks or metapopulation

models may struggle to make transmission predictions that

incorporate these drivers of transmission-relevant contact.

The predictive capabilities we observed here using drivers of

an apathogenic virus could thus open new opportunities to

determine behavioral and ecological drivers of individual-level

heterogeneity in the context of pathogen transmission, and

even shape epidemic management strategies for pathogens such

as FeLV.

Our network statistical analysis (ERGMs) determined that

pairwise geographic distances and age category structure FIV

transmission in the Florida panther. These findings were

generally robust to variations in the transmission network and

are well supported by panther and FIV biology, providing

confidence in the functioning of our workflow for identifying

drivers of transmission. For example, panthers are wide-ranging

animals but maintain home ranges, and this appears to translate

to increased transmission between individuals that are close

geographically. This finding is supported by the tendency

for FIV phylogenies to show distinct broad (60) and fine

scale (61) geographic clustering in Puma concolor. Further,

specifically among Florida panthers, spatial autocorrelation of

FIV exposure status was previously found to approach statistical

significance (62). The wide-ranging nature of puma appears to

limit geographic clustering of many infectious agents (62), with

FIV a notable exception to this pattern. In addition, because

FIV is a persistent infection, we would expect cumulative risk

of transmission to increase over an individual’s lifetime and

adults would consequently be involved in more transmission

events. The low number of subadult individuals in our dataset,

however, means that this finding must be interpreted with

some caution.

With these ERGM results in mind, key components of

the success of our FIV-based approach are likely that (1) FIV

is a largely species-specific virus with transmission pathways

closely matching intraspecific transmission of FeLV, and (2)

both FIV and FeLV, perhaps unusually for infectious agents

of puma, display spatial clustering of infection. Here, FIV

fundamentally acted as a proxy for close, direct contact in

panthers, and could consequently determine drivers of such

contacts. If, for example, FIV also exhibited strong vertical or

environmental transmission, we would no longer expect the

predictive success for FeLVwe observed here. This consideration

highlights the importance of careful apathogenic agent selection

when attempting to identify drivers of transmission relevant

to novel or emerging pathogen transmission. For example,

the mixed results when using commensal agents to identify

close social relationships in other systems (15–18, 21, 22)

highlights that some host-apathogenic agent combinations

will work better than others for determining drivers of

transmission. Within our study, Phyloscanner struggled to

elucidate transmission relationships between many of our FIV

genomes, likely due to unusually low genetic diversity among

our FIV isolates, or our use of proviral DNA (which has

lower diversity than circulating RNA) (36). While the drivers of

transmission we identified are biologically reasonable, we may

have lacked the power to identify more complex relationships

(e.g., homophily) due to the low number of individuals in our

transmission network.

We propose that apathogenic agent selection should

carefully consider agent genetic diversity within a target

population—not just expected diversity based on typical

mutation rates (24–27), as in our case—and favor those

agents with high diversity to facilitate transmission

inference. We also propose that apathogenic agents should

represent the timescales of transmission for the pathogen

of interest. For example, FeLV spreads slowly through

panthers (31, 32), such that the transmission relationships

identified by FIV, a chronic infectious agent that spreads

among panthers over the course of years (36), may be most

representative across the longer timescales we evaluated

here. In contrast, short, acute pathogen epidemics would

likely best be represented by apathogenic agent transmission

over shorter timescales. Similarly, the timescale of data

collection should correspond to the apathogenic agent of

interest to reduce the probability of missing individuals in

the inferred transmission network. Our results reinforce

that, perhaps most importantly, an apathogenic agent should

have a well characterized mode of transmission that closely

matches transmission of the pathogen of interest (26), as

this was likely key to our success with FIV and FeLV. Future

research could determine how divergent an apathogenic agent

may be from a pathogen of interest while still predicting

transmission dynamics.

Potential applications

Our FIV-based approach to identifying drivers of

transmission required extensive field sampling, though

this is not infeasible in wildlife species of conservation

concern or many livestock systems (27, 63). With increasing

availability of virome data and even field-based sequencing

technology, our proposed approach for identifying drivers
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of transmission relevant to predicting novel or emerging

pathogen dynamics may become more accessible with time.

From a practical perspective, if the only concern for prospective

analysis of a pathogen of concern is predicting epidemic size

and duration, our results indicate that a simpler approach

would perform just as well as our approach. However, by

identifying underlying drivers of transmission, our method also

identified important, management-relevant spatial dynamics

of transmission for FIV—dynamics which are uncommon

among other infectious agents of wide ranging panthers (62).

This presents a particular advantage to studies focused on

identifying drivers of transmission, even among apathogenic

agents [e.g., (21)]. For example, the addition of interventions

such as vaccination to simulation models such as our FIV-model

used here can help determine conditions (i.e., parameter space)

in which spatially-targeted vaccination may be most effective

(64, 65).

Further, our approach for identifying drivers of transmission

could be applied in an adaptive management framework (66–

68), in which apathogenic agent-based transmission predictions

provide (1) a priori expectations for novel or emerging agent

transmission dynamics that can aid in proactively designing

targeted intervention strategies, and (2) a platform for updating

strategies as new information becomes available in the event

of an outbreak. Indeed, we have used a similar approach to

determine optimal FeLV management strategies in panthers,

including exploring a broad range of parameter space to

determine how uncertainties in transmission parameters affect

expected outcomes (69). While our transmission tree and

ERGM results with FIV point to the role of spatial proximity

for transmission, our method could similarly identify sex- or

rank-biased transmission, homophily, or other transmission

drivers relevant to pathogen management [e.g., (70, 71)].

We propose that our approach for identifying transmission

drivers is best suited for proactive pathogen management

in species of conservation concern, populations of high

economic value (e.g. production animals), populations with

infrequent pathogen outbreaks that make targeted surveillance

more difficult, or populations at high risk of spillover

(72), all of which may most benefit from rapid, efficient

epidemic responses.

Caveats and future directions

While few parameter sets in our simulations were classified

as feasible, this appears to be predominantly the result of

the wide range of parameter space explored through our

LHS sampling design. This limitation was fundamentally due

to uncertainties in FeLV transmission parameters, and is

representative of typical uncertainties experienced in predicting

transmission of emerging or understudied pathogens (2, 73).

Our method could also be applied in cases where the

concern is introduction of a known pathogen into a new

population (e.g., foreign animal diseases of livestock). In

such cases, the parameter space to be explored may be

much reduced [e.g., (74)]. Regardless of the confidence in

transmission parameters, sensitivity analyses with variable

importance analysis can highlight key parameters important for

model outcomes [e.g., as in White et al. (59)]. If factored into

an adaptive management plan, adjusting model transmission

parameters with new information would again be a means by

which to use our method for proactive intervention planning,

followed by updates and adaptation in the event of an

outbreak. For example, our post hoc random forest analysis

provided some evidence of weak transmission from regressive

individuals, in contrast to FeLV dynamics in domestic cats

(75). Proactive management planning for FeLV in panthers

should, therefore, factor in the risk of transmission from

regressively infected individuals, and in the event of an outbreak,

update this assumption and management response as new

information becomes available about the risk of transmission

from regressives.

The suite of tools for inferring transmission networks from

infectious agent genomes is rapidly expanding (24). In this

study, we used the program Phyloscanner as it maximized the

information from our deep sequencing viral data. However,

our FIV sequences were generated within a tiled amplicon

framework (36, 75), which biases intrahost diversity and limits

viral haplotypes (76). Phyloscanner was originally designed to

analyze RNA from virions and not proviral DNA, as we have

done here. We have attempted to mitigate the effects of these

limitations by analyzing several different Phyloscanner outputs

to confirm consistency in our results, and by using only binary

networks to avoid putting undue emphasis on transmission

network edge probabilities, as these are likely uncertain.

Further, our primary conclusions from the transmission

networks—that age and pairwise distance are important

for transmission—are biologically plausible and supported

by other literature, as discussed above. Nevertheless, future

work should evaluate additional or alternative transmission

network inference platforms. In addition, our tiled amplicon

framework was not well suited to detection of FIV super-

or coinfections, which have been shown to occur in felids

(36, 77, 78). Future work with amplification and sequencing

methods that are more suited to detection of multiple

apathogenic variants could improve confidence for predictions

of pathogenic agents and give more insight into the complexities

of transmission dynamics.

In addition, ERGMs assume the presence of the “full

network” and it is as yet unclear how missing data may

affect transmission inferences (39). ERGMs are also prone

to degeneracy with increased complexity and do not easily

capture uncertainty in transmission events, as most weighted

network ERGM (or generalized ERGM) approaches have

been tailored for count data [e.g., (79)]. ERGMs may
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therefore not be the ideal solution for identifying drivers

of transmission networks in all systems. Alternatives may

include advancing dyad-based modeling strategies (80), which

may more easily manage weighted networks and instances of

missing data.

Conclusions

Here, we integrated genomic and network approaches to

identify drivers of FIV transmission in the Florida panther. This

apathogenic agent acted as a marker of close, direct contact

transmission, and drivers of FIV transmissionwere subsequently

relevant for predicting the observed transmission dynamics

of the related pathogen, FeLV. Further testing of apathogenic

agents as markers of transmission and their ability to predict

transmission of related pathogens is needed, but they hold

promise as a novel tool for proactive epidemic management

across host-pathogen systems.
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