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A B S T R A C T

The difficulties involved in trying to model the motion of a solid particle through surfaces, particularly at the
liquid-liquid interface, are mainly due to the continuous deformation of the surface, not only as the particle
progresses through the surface, but also before its penetration into the lower liquid. This study investigated
experimentally and theoretically, the hydrodynamic drag force on a sphere approaching a liquid-liquid interface.
The experiment ball material of steel of different ball diameters ranging from 1.5E-3 to 8.69E-3m in four
immiscible liquids of distilled water, kerosene, glycerol and engine oil of densities; 1000 kg/m3, 820 kg/m3, 1260
kg/m3 and 848.3 kg/m3 respectively, were considered. The drop either penetrated the interface without oppo-
sition, or spent some time at the interface before penetrating, or it remained at interface maintain a certain
interface curvature. The mathematical model of the resulting velocities as a function of the size ratio R/R* was
obtained. The Stinson and Jeffry technique was modified in the theoretical analysis (one ball internal to the other
- the larger ball providing curved surface at contact) and using MATLAB algorithm obtained the correction factor
to the velocity and hence the hydrodynamic drag force was obtained. The model mathematical equation for the
velocity was found comparable to those obtained experimentally. The hydrodynamic drag forces calculated
theoretically and experimentally were further analyzed using ANOVA for same size ratio R/R* of 0.83. It was
found that for steel balls, the experimental and theoretical results are significantly the same confirming the
validity of the mathematical model and this work. This kind of study is valuable in biomechanics in the area of
blood flow in arteries and capillaries. It is also important in determining the motion of small particles or mac-
romolecules near permeable surfaces, and determining particle deposits on reverse osmosis, mineral filtration,
and dialysis or drip irrigation surfaces.
1. Introduction

A number of manufacturing processes, such as sediment transport and
deposition in pipelines, alluvial channels, chemical engineering and
powder processing, provide a description of the motions of the immersed
bodies in fluids. A particle that falls or rolls a plane in a fluid under the
influence of gravity will accelerate until the resistance forces, including
buoyancy and drag, balance the gravitational force (Datta and Srivastava,
2000; Datta and Pandya, 2001; Sauvagya, 2013). The constant velocity
attained is called terminal/settling velocity at that stage. In many in-
dustrial applications, knowledge of the terminal velocity of liquid solids
is required: mineral processing, hydraulic transport of coal and ore slurry
systems, solid-liquid mixing, fluidizing equipment, thickeners, oil and
gas drilling, and even geothermal drilling (Andrew et al., 2007; Sauva-
gya, 2013; Loudet et al., 2020). When the fluid is forced through the tube,
the particles that make up the fluid generally move faster near the axis of
the tube and more slowly near its walls; therefore, some stress (pressure
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difference between the two ends of the tube) is needed to overcome the
friction between the layers of the particles to keep the fluid moving (Ryu
and Owen, 2005; Ashmawy, 2011; Dani et al., 2015; Xingxun, 2015).

The considerable physical interest in interface science is the under-
standing of the mechanism by which a solid particle can penetrate a free
surface or an interface between immiscible fluids (Arbaret et al., 2011;
Mousazadeh et al., 2018). The difficulties experienced in trying to model
the motion of a particle through such surfaces are many and mainly
attributable to the continuous deformation of the surface, not only as the
particle progresses through the surface, but also prior to its penetration
(Elio, 2017; Dietrich et al., 2011). This means that an accurate theoretical
description of the mechanism would have to take into account the
background of the motion of the particles as they approach the surface
but such a complex theoretical solution would have to be determined
numerically with the continuously deforming surface forming an un-
known boundary problem (Mortazavi and Tryggvason, 2000; Marcello,
2008; Jenny and Dusek, 2009; Zhu, 2018). Elio (2017) stated that when a
2020
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Figure 1. Sketch shows two spheres of radii R and R* one internal to the other
(the bipolar coordinates ζ ¼ α and ζ ¼ β defines the two spheres).
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sphere is placed in an infinite, incompressible Newtonian fluid, such as
oil and water (Dani et al., 2015), it initially accelerates due to gravity
and, after a short transient time, the sphere reaches a steady flow rate
(constant terminal velocity) and there will be no change in linear mo-
mentum for the velocity to be stable. This problem will need to be
addressed both theoretically and experimentally.

According to Jalaal and Ganji (2010) the resistance drag force de-
pends on the drag coefficient and the terminal velocity of the particles.
Several attempts have been made to relate the drag coefficient to the
Reynolds number (Andrew et al., 2007; Modo et al., 2017; Zhang, 2018)
and most of these applications involve a description of the position, ve-
locity and acceleration of the particles over time, and where it is often
necessary to determine the trajectories of the acceleration of the particles
in the fluid for design or improved operation (Jalaal and Ganji, 2010;
Elio, 2017). To create a model for a sphere falling through one or two
fluids in different containers, the relevant forces must be summed up and
the resulting equations modified to make accurate predictions of the
physical situation (Mendez, 2011; Srivastava, 2013). As the sphere passes
through the fluid, several forces are acting on it. There is the obvious
force of gravity (FG) that forces the sphere down through the fluid, there
is also the force of drag (FD) that prevents the fall of the sphere and the
force of buoyancy (FB) (Tropea et al., 2007). Sauvagya (2013) stated that
of the several forces which affect the hydrodynamics of the Newtonian
fluid between them, drag force and wall effect is prominent and that
whenever there is a difference in velocity between the particle and its
surrounding fluid, the fluid will exert a resistive force on the particle,
either the fluid may be at rest and the particle may move through it or the
particle may be a particle. Jenny et al. (2004) investigated the effects of a
sphere falling/rising under the gravitational force of Newtonian fluids.

Much work has been done, as reported in the available literature, for
spheres approaching plane surfaces as well as deformable surfaces. Exact
solutions of terminal velocity of spheres falling through the deformable
interface have been registered, and some of these forces have been
properly provided with the correcting factor. It is against this backdrop
that this study seeks to consider the same problem with a different
approach to the perspective of considering two spheres moving in a
viscous fluid, one internal to the other, with the idea of having an
external sphere when it is large as providing a curved interface.

2. Mathematical model

2.1. Drag correction factor model

To model the motion of a solid sphere at a deformable interface, the
method of Stimson and Jeffrey (1926) is used with some modification of
the boundary conditions. These authors considered two spheres external
to each other and in motion, but in this approach, the two spheres would
be seen from one internal to the other. The mathematical model was
developed using part of the Brenner (1961) method, which examined the
slow motion of a sphere through a viscous fluid towards a plane surface
using the results of Stimson and Jeffrey (1926). They ignored the
deformation of the surface and assumed a constant clearance between the
sphere and interface at the same velocity. Thus, the force is given by

Fz ¼ πμ
Z

ρ3
∂
∂n

�
E2ðφÞ
ρ2

�
ds (1)

The integral taken around the meridian section of the solid in a di-
rection making a positive right angle with direction n, n ¼ outward
normal from solid, ρ is the distance from axis is given by

E2 ¼ ∂2

∂r2 þ
sinθ
r2

:
∂
∂θ

�
1

sinθ
:
∂
∂θ

�
(2)

The trial solution to Eq. (2) is

φ¼ sin2θFðrÞ (3)
2

With this formulation, the force on the sphere can be calculated for
given boundary conditions.

Take ζ and η as curvilinear coordinates in a meridian plane defined by
the conformal transformation

Z� iρ¼ iacot
1
2
ðη þ iζÞ (4)

Equivalently, by Stimson and Jeffrey (1926):

ζþ iη ¼ ln
ρþ iðZ þ aÞ
ρþ iðZ � aÞ (5)

So,

ρ¼ a
sinη

coshζ� cosη; z ¼ a
sinhζ

coshζ� cosη (6)

Rotating the curves ζ ¼ constant about z-axis, one gets a family of
spheres having z ¼ 0 (ζ ¼ 0) for a common radical plane (since ζ ¼ 0, is a
sphere of infinite radius which is equivalent to the entire plane z ¼ 0). In
the case of two spheres, one internal to the other will be defined by

ζ¼α and ζ ¼ β (7)

(α > 0, β > 0 but α ≫ β where ζ ¼ α is the smaller sphere) whileα, β
and the constant c may be chosen so that these spheres have any radii and
any centre distance given by the difference between their radii.

The case where a sphere approaches a deformable interface can be
visualized as the notion of a small sphere within a large sphere where the
small sphere rests close to the inside of the lower part of a large sphere as
shown in Figure (1). Let the radius of the small sphere be R and the radius
of the large sphere which provides a large curvature on the interface be
R*. Modifying the signs of equality and inequality of the bipolar
coordinate,

ζ¼α; ζ ¼ β; ðα> 0; β> 0withα≫ β Þ (8)

Where the sphere ζ ¼ α is internal to the sphere, ζ ¼ β. The radii of the
spheres and distances of their centres to the origin are given by (see
Figure 1). If the spheres are of radii,Rand R* have their centres at dis-
tances d and d* from the same side of the origin, then
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R ¼ a cos echa; R* ¼ a cos echβ
d ¼ a coth a; d* ¼ a coth β

(9)

�

Realize that for ζ ¼ β ¼ 0, a second sphere is a plane. The distance
between the centre of the small sphere and the lower part of the larger
sphere is;

z* ¼R* þ d � d* (10)

Using Eq. (9) in Eq. (10);

1
sinhα

�z*
R
� coshα

�
¼ 1
sinhβ

ð1� coshβÞ (11)

And

R*

R
¼ sinhα
sinhβ

(12)

When αðα> 0Þ is chosen arbitrarilyβðβ> 0Þ, will be determined so
that β ≪ α, and R*

R ≫ 1, then Z*
R can be determined from Eq. (11).

The same solution as that obtained by Stimson and Jeffrey (1926) was
applied. When R * is very large and R small, the image would be very
similar to that of a sphere placed on a deformed interface. Thus, the
viscous drag force will be given by

FD ¼ 6πμRVζ (13)

Where

ζ¼ 1þ ζ* (14)

ζ* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sinhα

p

3a2V

X∞
n¼1

ð2nþ 1ÞðAn �Bn þ Cn � DnÞ (15)

The values of the constants An, Bn, Cn and Dn represents the boundary
conditions on the spheres obtained by Stimson and Jeffrey (1926), k ¼
viscosity. When these values are obtained in Eq. (15) and Eq. (14), Eq.
(13) will be completely defined.
Figure 2. Shows the experimen

3

2.2. Method of solution

2.2.1. Curve-fitting
The determination of zeta ζ involves the use of a high-speed computer

program (MATLAB). The values of αwere assumed between 0.05 and 1.0;
then for a series of ζ

R values, Eq. (12) was solved for β and the values of ζ
R

for which β < α, and β > 0, were recorded. Then R*

R was calculated for
each pair of α and β from Eq. (12) with these pairs of values,ζ was
calculated from Eq. (15). The terminating point used in the program was
3ζ ¼ þor� 0:001 and n in Eq. (15) was made to vary from 70 to 150
depending on relative values of α and β. From these results an explicit
form Eq. (16) was chosen to ensure ζ does not become infinite, zero or
negative as size ratios change.

ζ¼ A�
1� R

z*

�2�
1� R

R*

�3 (16)

Where A;2 and 3 are constants.

3. Materials and methods

3.1. Materials and equipment

Suspending liquids for this experiment include; distilled water,
automobile engine oil (Mobile Engine Oil, SAE 5W 30), and glycerol
while the solid sphere is made of steel balls of five (5) different ball
sample sizes. The Steel balls were made by crushing the car bearings in
which the balls were mounted. The need for accurate measurement of the
experimental samples led to a careful selection of the right equipment
such as a digital Vernier calliper, digital scale, high-speed digital cam-
eras, two calibrated 100ml cylindrical glass tubes, a pair of forceps and
retort stand.

3.2. Methods

The experimental method was followed by the technique used by
Abaid and Adalsteinsson (2004) who carried out an experiment involving
tal setup in the laboratory.



Figure 3. Shows liquid-liquid Steel Ball Interfacial Interaction (a) Kerosene-Glycerol-Steel Ball (b) Engine Oil-Water-Steel Ball.

Figure 4. Plot of Distance against Average Time of steel balls in Engine Oil-Glycerol Medium.
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the use of a glass tank of a given size, spread with salt in different density
profiles. An array of spherical glass beads were released from the top of
the tank and the motion was recorded. The camera was set at a distance
from the tank and the height from the ground to the middle of the lens.
The above method was used for this experiment, except that a calibrated
cylindrical glass tube would replace a glass tank, while a different ball
material would be used instead of a glass bead. During the experiment,
two high-speed cameras were used.
Figure 5. Plot of Distance against Average Time
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The two-liquid experiment was carried out as follows; a two-100-ml
cylindrical glass tube was filled with fluids for the test in combination
with automobile engine oil and water; automobile engine oil and glyc-
erol. The two liquids in each of the tubes had a 1:1 ratio of 50 ml–50 ml
(see Figure 2). First, the denser fluid was poured into the glass tubes and
then the glass tube was fixed to the retort stand. Liquids were allowed to
settle for at least 15 min before each experiment. The two cameras used
were positioned in such a way that one could capture the ball at the
of steel balls in Engine Oil-water Medium.



Figure 6. Plot of Distance against Average Time of steel balls in Kerosene-Glycerol Medium.

Figure 7. Plot of Distance against Average Time of steel balls in Kerosene-Water Medium.
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interface as it struggles with the hydrodynamic force that resists its
passage into the second liquid and the other camera to capture the video
of the entire operation. Canon cameras were used to capture the entire
process and the actions of the ball at the liquid-liquid interface.

The white background was used for a better view and the laboratory
was protected from interruptions during the experiment. The diameters
of the balls and glass tubes used in the experiment were measured using a
digital Vernier calliper; the mass was measured using a digital weighing
scale and the length of the tube was measured using a meter law. The
balls were slowly placed on the surface of the first liquid, making slight
surface contact with the first liquid before the ball was released. The
whole process was then recorded using the two cameras provided. The
use of balls that were much smaller than the container helped to neglect
the wall effects of the sides of the cylindrical tube on the motion of the
balls during the experiment (see Figure 3). For the two-fluid experiments,
every movement of the ball was captured starting from the first liquid to
the interface and finally to the bottom of the tube. Each image was
properly analyzed to obtain the required accurate velocity of the fall of
the sphere by measuring the distance dropped with the time taken for the
fall. The same method was used with all ball sizes and with different
fluids to complete the experiment.
5

4. Results and discussion

4.1. Experimental results

The experimental results for steel balls in engine oil in three different
medium are presented in Figures 4, 5, 6, and 7.

From Figure (4), a decrease in the length (Distance) of the measuring
cylinder has a corresponding increase in time (average time) taken by
each ball to reach its terminal velocity. A steel ball of size 1.57E-3m was
observed as shown in Figure (4), to have gradually moved from its drop
point of 0.17 m at a time of 0.00sec to an interfacial time of 3.07 s at a
rate of -0.028 m/s and a correlation coefficient (R2) of 99.9% before
reaching its terminal velocity at the time of 6.18sec. Thus;

d¼ 0:169� 0:025t (17)

Where: d ¼ distance moved by ball in meters, t ¼ Average time of ball in
Second.

In the same vein, the ball size of 2.53E-3m was equally introduced
into the same fluid media to observe its behaviour and it was found as
shown in Figure 2, that it took the ball an average time of 1.38sec to
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reach the interface at a rate of -0.061 m/s with a corresponding corre-
lation (R2) of 99.9% and it took the ball an average time of 2.92sec to
reach its terminal velocity.

Hence;

d¼ 0:168� 0:057t (18)

Also, a ball size of 3.16E-3m diameter recorded an average interfacial
time of 0.78 s at a rate of -0.108 m/s and correlation factor (R2) of 99.9%
with an average terminal velocity time of 1.61sec.

Thus;

d¼ 0:167� 0:100t (19)

The ball size of 3.94E-3m attained its interfacial velocity at a time of
0.57 s at a rate of -0.146m/s and correlation (R2) of 99.8% terminating at
a velocity-time of 1.23sec.

Hence;

d¼ 0:166� 0:1351t (20)

Finally, using a larger steel ball of diameter 8.69E-3m, it was observed
as shown in Figure (2), that the ball attained its interfacial velocity at a
quicker time of 0.23sec compared to the previously used balls at a rate of
-0.372 m/s and coefficient of correlation (R2) of 98.2% and attained its
terminal velocity at the time of 0.51sec.

Hence;

d¼ 0:169� 0:355t (21)

After taking the readings of the last steel ball, the experimental media
was then replaced with engine oil-water to study the behaviour of the
steel balls. A steel ball of 1.57E-3m was used first as in the previous case
Figure 8. (a–d): Shows the plot of velocity agains
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and it was observed as shown in Figure (5), that the ball gradually came
to an interfacial rest at an average time of 2.92 s at a decreasing rate of
-0.029 m/s and a coefficient of correlation (R2) of 99.5% before reaching
its terminal velocity at an average time of 3.58sec.

Thus;

d¼ 0:170þ 0:033t � 0:001t2 (22)

In the same vein, the steel ball of 2.35E-3m was dropped into the
medium and it was observed to reach the fluid interface at an average
time of 1.33 s at a rate of -0.064 m/s and R2 of 100% before reaching
terminal velocity at an average time of 1.75sec.

Thus;

d¼ 0:169� 0:063t (23)

Also, the ball size of 3.16E-3m was used and its interfacial impact
time was observed to be 0.8 s at a rate of -0.103 m/s and coefficient of
correlation (R2) of 99.8% with 1.14sec terminal velocity-time.

Hence;

d¼ 0:168� 0:095t � 0:009t2 (24)

The steel ball size was then increased to 3.94E-3m and dropped into
the media. The behaviour of the ball was then recorded as shown in
figure (5); it was observed that its interfacial time was reached at an
average time of 0.6sec and terminal velocity reached at an average time
of 0.89 s at a rate of -0.141 m/s and an R2 of 99.9%.

Thus;
t external ball diameter in the various media.



Figure 9. (a–b): shows variations of Zeta ζ & Drag force (Fn) against external-internal radius ratio of steel balls (a) Zeta & Z/R against R*/R (b) Fn against R*/R.
Where; A, B, C, D and E on the plots, indicates the various ball sizes being analyzed.
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d¼ 0:169� 0:121t � 0:032t2 (25)
And the larger steel ball of diameter 8.69E-3m was introduced into the
media and its interfacial impact was quickly reached at an average time
of 0.23 s at a rate of -0.212 m/s and coefficient of correlation (R2) of
88.5% although at a distance of 0.12–0.08m as seen in figure (5), the
steel ball experienced a disturbance before stabilizing towards the
interface and finally reaching its terminal velocity at an average time of
0.43sec.

Thus;

d¼ 0:177þ 0:492t � 0:747t2 (26)

Again, the experimental fluid was then replaced this time with the
kerosene-glycerol medium to study the behavioural movement of the
steel balls in the fluid. As can be seen from figure (6), all the steel balls
experienced almost similar movement from drop point of 0.17m–0.14m
before diving of time. Ball size of 1.5E-3m attained an interfacial average
time of 0.23 s at a rate of -0.394 m/s and a correlation coefficient (R2) of
94.6% before reaching its terminal velocity at 2.87sec.

Thus;

d¼ 0:172� 0:189t � 0:923t2 (27)

Also, ball size 2.35E-3m attained its interfacial average time of 0.2sec
and terminal velocity of 1.27 s at a rate of -0.446 m/s and coefficient of
correlation (R2) of 98.9%.

Hence;

d¼ 0:171� 0:272t � 0:873t2 (28)

In the same vein, the ball size of 3.16E-3m attained its interfacial time
at an average time of 0.17 s at a rate of -0.484 m/s and correlation co-
efficient (R2) of 98.4% with its terminal velocity being reached at the
time of 0.87sec.

Thus;

d¼ 0:169þ 0:041t � 3:160t2 (29)

Again the ball size of 3.94E-m was observed to have reached the
interface at an average time of 0.14 s at a rate of -0.550 m/s with a
terminal velocity time of 0.6sec and correlation (R2) of 96.8% (Figure 6).

Thus;
7

d¼ 0:168þ 0:314t � 6:284t2 (30)
Finally, the ball of diameter 8.69m reached its interfacial time at 0.13
s at a rate of -0.548 m/s and coefficient of correlation (R2) of 88.3% and
reaching its terminal velocity at 0.3sec.

Hence;

d¼ 0:169þ 0:147t � 5:120t2 (31)

Using the last experimental fluid media of kerosene-water for the
steel ball measurement, it was observed as shown in figure (7), except for
the ball size 1.5E-3m, all other balls behaved similarly in movement till
attaining interfacial rest. The ball of diameter 1.5E-3m attained its
interfacial and terminal velocity at an average time of 0.23sec and 0.5sec
respectively at a rate of -0.374 m/s with correlation (R2) of 99.6%.

Thus;

d¼ 0:170� 0:079t � 1:295t2 (32)

Both steel ball of diameter 2.35E-3m and 3.16E-3m attained same
interfacial and terminal velocity at an average time of 0.17sec and
0.33sec respectively at a rate of -0.470m/s and correlation (R2) of 96.9%.

Thus;

d¼ 0:170� 0:158t � 1:744t2 (33)

In the same vein, as can be observed in figure (5), ball sizes of 3.94E-
3m and 8.69E-3m also attained same interfacial and terminal velocity at
an average time of 0.17sec and 0.27sec respectively at a rate of -0.512 m/
s and correlation coefficient (R2) of 96%.

Hence;

d¼ 0:171� 0:155t � 2:170t2 (34)

Similarly, to understand the impact of the various internal ball di-
ameters on the velocity of the balls relative to their external diameters in
the fluids, a plot of velocity against ball diameters at the interface of the
fluids was studied (see Figure 8).

As observed in figure 8(a-d), an increase in the internal ball diameter
results in a corresponding increase in velocity and external diameter. At a
correlative coefficient (R2) of 99.8%, the velocity of the internal ball
increased simultaneously with the external diameter in the engine oil-
glycerol mixture (Figure 8a) with;
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VEo�Gly ¼ 0:113
�
1þ 7:611R=R* � 19:912R=R*

2

	
(35)
Where; V is the velocity of balls in fluid and D*(R=R* ) the external ball

diameter.
Also at a correlation of 96.6%, in the engine oil-water mixture figure

(8b), the velocity of the ball increased with;

VEo�water ¼ 0:024
�
1þ 5:542R=R* þ 17:167R=R*

2

	
(36)

While, in the fluid mixture of kerosene –glycerol figure (8c), at an R2

of 94.4%, the velocity of the ball relative to its external diameter was;

Vkero�Gly ¼ 0:146
�
1þ 12:178R=R* � 13:178R=R*

2

	
(37)

And finally, the velocity of the balls in kerosene-water mixture figure
(8d), at a correlation of 91.6% is given by;

VKero�water ¼ 0:079
�
1þ 18:975R=R* � 16:165R=R*

2

	
(38)

4.2. Theoretical results

In analyzing the forces acting on each ball as it approaches the
interface of each fluid, a high-speed computer program (MatLab) tool
was employed to evaluate Eqs. (13), (14), and (15) subject to boundary
conditions defined in figure (1) to determine zeta ζ and zeta ζ* which
defines the correction factor between the external-internal ball radii
relative to the various fluids. The use of MatLab software program seems
to give a more precise iteration solution to themodel (Eqs. (13), (14), and
(15)) and the results presented in figure (9).

Figure (9a), shows that the correction factor ζ decreases with an in-
crease in the external-internal ball radius ratio R*/R and vice versa while
for a series of ζ

R which is an external ball β property for the curve-fitting
solution (Eq. (12)), for which β < α and β > 0 with α being the internal
ball property assumed between 0.45, 0.05 and 0.75. ζ

R, decreases with a
decrease in R*/R ratio and increases with increase in the ball radius/
interface curvature ratio. In the same vein, as can be observed from figure
(9b) the drag force (Fn) on each of the steel balls was also found to
decrease with an increase in ball radius ratio R*/R. Thus, resulting in the
following equations for zeta ζ and the drag force Fn for steel ball of
diameter 1.5E-3m (line A) as observed in figure (9a), zeta, decreases
continuously from point 1.95 till attaining rest and having; computer
curve-fit gives:

ζ¼ 2:444
�
1þ 0:210R*

=R� 0:020R*
=R

2
	

(39)

Also, ball diameter 2.35E-3m (line B), decreased from point 2.1 to its
settling point resulting in

ζ¼ 2:528
�
1þ 0:200R*

=R� 0:019R*
=R

2
	

(40)

Ball diameter 3.16E-3m (line C) had

ζ¼ 2:569
�
1þ 0:191R*

=R� 0:018R*
=R

2
	

(41)

At point 2.3 as seen in figure (9a), Ball diameter 3.94E-3m (line D)
decreased continuously with

ζ¼ 2:622
�
1þ 0:185R*

=R� 0:017R*
=R

2
	

(42)

And finally, at point 2.5 the larger steel ball of 8.69E-3m (line E) had a
correction factor of
8

ζ¼ 3:114
�
1þ 0:232R*

=R� 0:023R*
=R

2
	

(43)
Similarly, the force (fn) acting on all steel ball was also found to
decrease with increasing ball diameter ration figure (9b) and vice versa
thus, force response of ball diameter 1.5E-3m was found to be

fn ¼ 13:00
�
1þ 0:222R*

=R� 0:023R*
=R

2
	

(44)

For ball diameter 2.35E-3m, the force was

fn ¼ 12:78
�
1þ 0:200R*

=R� 0:020R*
=R

2
	

(45)

Also, a steel ball of diameter 3.16E-3m had a force response of

fn ¼ 13:39
�
1þ 0:204R*

=R� 0:021R*
=R

2
	

(46)

Whereas, steel ball 3.94E-3m experienced a force effect of

fn ¼ 14:19
�
1þ 0:216R*

=R� 0:023R*
=R

2
	

(47)

Finally ball diameter of 8.69E-3m had a force response of

fn ¼ 14:60
�
1þ 0:219R*

=R� 0:023R*
=R

2
	

(48)

4.3. Curve-fitted model equation

Correlations obtained from figure (9) as given in Eqs. (39), (40), (41),
(42), (43), (44), (45), (46), (47), and (48) are all in terms of R*=R. R is
ball radius while R*is the radius of curvature at the interface. Thus, the
ratio R*=R is a large quantity. Its inverse will be more valuable and this
informed the choice of Eq. (16) to which all the data of figure (9) were
fitted as discussed in Section (2.2).

The constants of Eq. (16) were found to be: A ¼ 0.12246, 2 ¼ -0.164
and3 ¼ 8.733.

Eq. (16) now becomes:

ζ¼ 0:12246�
1� R

z*

��0:164�
1� R

R*

�8:733 (49)

The form of Eq. (16) was chosen such that if the interface radius
denoted by R* becomes infinite or z* becomes very large, ζ will still be
finite. For a deformable interface, just as in this case, a liquid-liquid
interface, where the surface of the first liquid z* is relatively large and
as R is small, R/z* ~ 0. Thus, Eq. (49) becomes

ζ¼ 0:12246
�
1� R

R*

��8:733

(50)

By binomial expansion, Eq. (50) becomes

ζ¼ 0:12246
�
1þ 8:733

R
R*

� 4:366
�
R
R*

�2

þ � � �
	

(51)

Substituting Eq. (51) into Eq. (13), one gets

Vζ¼ 0:12246
�
1þ 8:733

R
R*

� 4:366
�
R
R*

�2

þ � � �
	

(52)

The theoretical expression for velocity (with its correction factor) Eq.
(52) is of the same formwith the experimental velocity expressions of Eq.
(35) for steel ball in engine oil-glycerol media and Eq. (37) for steel balls
in kerosene-glycerol media.



Table 1. Theoretical and experimental forces for each particle in the various liquids.

Samples R/R* Hydrodynamic Force (FD ¼ 6πμRVæ)Nm

Steel Balls Theoretical Experimental

Eng.Oil-Glycerol 0.83 1.95E-5 2.16E-5

Eng.Oil-Water 1.13E-5 1.25E-5

Kero-Glycerol 0.82E-5 0.89E-5

Kero-Water 1.15E-5 1.32E-5

Figure 10. Plot of Experimental Force against Theoretical Forces of the various Balls.

Table 2. ANOVA summary for steel ball.

Regression Statistics

Multiple R 0.998681671

R Square 0.997365081

Adjusted R Square 0.996047621

Standard Error 3.37873E-07

Observations 4

ANOVA

df SS MS F Significance F

Regression 1 8.64217E-11 8.64E-11 757.0365851 0.001318329

Residual 2 2.28316E-13 1.14E-13

Total 3 8.665E-11

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 8.77017E-09 5.3756E-07 0.016315 0.988464481 -2.30416E-06 2.3217E-06 -2.30416E06 2.3217E-06

X Variable 1 1.11217662 0.04042177 27.5143 0.001318329 0.938255781 1.286097459 0.938255781 1.286097459
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4.4. Validation of results

In comparison to literature, Stimson and Jeffrey (1926) used
continuous differential equations in most of their findings and other re-
searchers used the FORTRAN program in their iteration processes. In this
study, a theoretical and experimental approach was used to consider two
ball samples, one ball being the main ball inside the arbitrary ball
generated by the ball-liquid curvature at the interface as the second ball.
This study also used a higher and more accurate program (MATLAB) but
has the ability to show the distributions of force and correction factor
models on the balls that have not been identified in the literature (see
9

Table 1 and the curve-fitted model equation). The findings of this anal-
ysis were consistent with the findings of Stimson and Jeffrey (1926).

To confirm if the theoretical model assumedwas valid, the theoretical
and experimentally determined hydrodynamic forces were calculated for
the size ratio R/R* ¼ 0.83 in all cases. The data are given in table (1) for
each of the steel balls in various liquids. The data were equally plotted in
figure (10) to view the spread of the data (see Table 2).

The analysis was conducted to strengthen the observed validity of the
statistical results using a multi-variant ANOVA and as can be observed
from table (2) summary output for steel balls, R2 was found to be 0.997
with a significance F of 0.001 at 95% confidence level which suggests
both theoretical and experimental forces be significantly the same. Thus,
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agreeing with the statistical results obtained for steel balls. The agree-
ment between the experimental results and those obtained using the
theoretical model confirms the validity of the theoretical model.

5. Conclusion

Given the different findings studied (Experimental and Theoretical),
the theoretical analysis included, first, the modification of Stimson and
Jeffrey technique to that of a sphere inside a larger sphere; the larger
sphere functions as a curved surface in contact between the two spheres.
The theoretical model was solved using a MATLAB program and the
correction factor (ζ) to the drag force and hydrodynamic forces obtained.
A model equation describing the velocity as a function of the diameter
ratio (R/R*) was obtained from the study. The analyzed results showed
that an increase in the reciprocal ratio of the ball diameter (R*/R) in the
different liquids resulted in a corresponding decrease in the correction
factor (ζ) which is a significant parameter required to evaluate the hy-
drodynamic force effect on the balls as they penetrate one liquid medium
to the other. This was considered to be comparable to the model equa-
tions derived from the experimental tests. The experiment involved the
observation and recording of fall of a ball slowly falling on the surface of
a liquid pair, the ball slowly falling and encounters the interface sepa-
rating the two liquids. The ball either remains suspended at the curved
interface or falls into the second liquid after some delay. In certain sit-
uations, the delay is so small that it cannot be reported. Fall velocities
were also calculated from the measurement of the fall distance as a
function of time. The mathematical model of the falling velocity as a
function of the diameter ratio (R/R*) was reported equally. The theo-
retical model findings were compared with the experimental results used
to check the validity of the theoretical model. The experimental and
theoretical hydrodynamic forces were estimated for a diameter ratio (R/
R*) of 0.83 and the results were compared using the ANOVA model. It
was found that the experimental and theoretical findings for steel balls
were significantly the same in both analysis techniques. The results of
this study were consistent with those of Stimson and Jeffrey (1926). This
research is useful in biomechanics in the field of arterial blood flow. The
motion of red blood cells through veins or capillaries, as well as the fate
of gas bubbles in the bloodstream, which are of great biological and
therapeutic importance and potential areas of application of this
research. Even, to determine the motion of small particles or macro-
molecules near permeable surfaces and to determine the concentrations
of particles on reverse osmosis, mineral filtration, dialysis or drip irri-
gation surfaces and other biological applications in which fluid (liquid
and gas) moves through membranes or cell walls.
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