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Abstract

The clinical serial interval of an infectious disease is the time between date of symptom onset in an index case and the date
of symptom onset in one of its secondary cases. It is a quantity which is commonly collected during a pandemic and is of
fundamental importance to public health policy and mathematical modelling. In this paper we present a novel method for
calculating the serial interval distribution for a Markovian model of household transmission dynamics. This allows the use of
Bayesian MCMC methods, with explicit evaluation of the likelihood, to fit to serial interval data and infer parameters of the
underlying model. We use simulated and real data to verify the accuracy of our methodology and illustrate the importance
of accounting for household size. The output of our approach can be used to produce posterior distributions of population
level epidemic characteristics.
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Introduction

A quantity which is commonly recorded during a pandemic is

the clinical serial interval, defined as the time between date of

symptom onset in an index case and the date of symptom onset in

one of its secondary cases [1–3]. It was one of the main quantities

recorded, at the level of households, during the 2009 H1N1

pandemic and subsequently used for understanding the dynamics

of the pandemic [1,3–6]. Numerous studies have illuminated the

critical dependence of disease dynamics and choice of control

policy on this quantity through its relation to the generation time

[7–10].

A common and simple way to analyse serial interval data is to fit

it with a parametric distribution [4,11–13]. This approach allows

an accurate calculation of the mean and possibly other moments.

However, an obvious drawback of such an approach is that the

estimate itself gives no understanding of the underlying mechanics,

and hence it is difficult to make predictions with quantifiable

confidence or to assess the impact of proposed control policies.

This is because the serial interval is not a biological quantity in its

own right but the convolution of the processes of transmission and

incubation. This is further confounded by the fact that the time of

infection is almost certainly unobservable, and because households

are small, depletion of susceptibles has a large impact on the

(stochastic) transmission process [14]. For these reasons, the only

way to infer both epidemiological and dynamical quantities from

serial interval data is by assuming and fitting a transmission model

[15,16]. This approach not only provides an estimate of the serial

interval distribution, but estimates a full mechanistic model which

may be used to make predictions and assess the impact of

intervention policies [6].

A type of transmission model which has been growing in

popularity, especially when considering household structure, are

Markovian models [6,17–20]. In these it is assumed that there are

two levels of mixing: strong mixing within a household and weaker

mixing between households [17]. As the overall population is

assumed to be large and randomly mixing, then during the early

stages of an epidemic repeated introduction of infection into a

single household is negligible. The assumption of only one

introduction allows for deeper analysis of the model, and also

allows for computationally-efficient methods to be developed for

evaluating early-time quantities [17,21]; here it allows us to ignore

the external infection rate, and use serial interval data to estimate

the other parameters. Obviously during the mid-to-late stages of

an outbreak, this assumption breaks down and hence more

complex models are required, but for this study we confine

ourselves to this common assumption. This early stage of an

epidemic is important as we want to infer parameters which can

then be used (with further assumptions) in population level models

to assess possible interventions and inform public health policy.

In this paper we show how to fit a quite general Markovian

household epidemic model using serial interval data. This is

achieved by first explaining how the serial interval distribution can

be calculated for this model, and hence used to derive exact

likelihoods. We then use this for parameter inference via Bayesian

Markov chain Monte Carlo (MCMC) methods. We investigate the

accuracy of this methodology via simulation studies and illustrate

its use with data previously studied from a household transmission

study of seasonal influenza in Hong Kong [13]. Our investigations
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identify that household size has an appreciable impact on the serial

interval distribution and that incorporating household size data

into inference methods allows more accurate estimates of model

parameters.

The advantages of our methodology are threefold: Firstly, it is

fully stochastic and mechanistic – the former is vital given the

average size of a household and the latter leads to greater

understanding of the epidemic. Secondly, we can numerically

solve the model, and hence calculate the serial interval distribution

exactly to an arbitrary precision – there is no need for

approximations by branching processes or for assumptions of

independence in order to derive results. Thirdly, it is very

computationally efficient. This means we can achieve the

methodological ideal of full evaluation of the uncertainty in

parameter estimates and derive accurate credible intervals for all

results. Efficiency also allows for the potential inclusion of much

more epidemiological detail in future models were more data

available in such studies.

Methods

We assume a continuous time Markovian model for the

dynamics of a disease within a household of size N. We use a

general SE(j)I(k)R model, where the exposed and infectious

periods are split up into j and k phases so that each has an Erlang

distribution with mean exposed and infectious periods 1=s and

1=c, and variances 1=(js2) and 1=(kc2), respectively [22,23].

Infection is assumed to be frequency dependent (but density-

dependent transmission is no obstacle to the methodology we

outline, and will be discussed later) with transmission parameter b
[15,24]. The transition rates for this model are given in Table 1.

The model is specified by the matrix Q, which encodes the

transition rates between different possible states of the household

[6,18]. For the SE(j)I(k)R model we consider, the total number of

possible states is

Y~
(1zjzkzN)!

(1zjzk)! N!
, ð1Þ

hence this is also the dimension of Q. The element Qm,n is the rate

of transition from state m to n for m=n, where m~1, . . . ,Y and

n~1, . . . ,Y. Qm,m~{
X

n=m
Qm,n, is the negative of the total rate

at which the system leaves state m. The dynamics of the model are

then given by the equation,

dp(t)

dt
~p(t)Q, ð2Þ

where p(t) is the probability vector with m th entry the probability

of the household being in state m at time t [18]. As we are dealing

with household models, the dimension of Q, given by Equation (1),

is relatively small, so Equation (2) can be solved efficiently using

matrix exponential methods [25]. Hence we can calculate p(t) to

an arbitrary precision, side-stepping the need for any type of

potentially costly simulation.

To calculate the serial interval distribution we need to evaluate

the probability of observing a secondary case in a given time

Table 1. Within household dynamics.

Event Transition Rate

Infection (S, E1) R(S 21,E 1+1)
b

S
Pk

1 Im

(N{1)

Exposed progression, (En,En+1) R(En21,En+1+1) jsEn

(n = 1,…,j21)

Start shedding (Ej,I1) R( Ej21,I1+1) jsEj

Infection progression, (Im,Im+1) R(Im21,Im+1+1) k cIm

(m = 1,…,k21)

Recovery Ik RIk21 k cIk

The transitions and associated rates which define the stochastic SE(j)I(k)R model
for the within-household dynamics.
doi:10.1371/journal.pone.0073420.t001
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Figure 1. Generated serial interval distributions. (A) shows the size-biased distribution derived from USA 2011 census data. (B) shows 300
randomly generated serial interval observations, stratified by household size. (C) shows the same observations, but summed over all household sizes.
These distributions are used in the next section to test the parameter inference methods. Parameters: b~2, s~1=4, c~1=2 and j~k~2.
doi:10.1371/journal.pone.0073420.g001

Table 2. Computational costs.

Household size, n Time (s) Effective Size

2 0.006 21

4 0.023 48

7 0.045 147

Average time taken to compute the likelihood for a household of size n. Other
parameters j~k~2, Dmax~10 and as given in Figure 1. A 2.5 GHz Intel core i5
machine running MATLAB was used for these timings. The Effective Size is the
dimension of the Q matrix once the redundant states have been removed.
doi:10.1371/journal.pone.0073420.t002
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interval, given that we start with an index case at time t~0. To do

this we first form the transition rate matrix Q corresponding to the

SE(j)I(k)R model for a given household size and set of

parameters.

We assume that the appearance of symptoms coincides with

entering the (first) infectious class [26]; in the later sections we

discuss how Markovian models can be extended to weaken this

assumption. The Q matrix is then modified so that states which

correspond to a serial interval event – a second individual entering

the first infectious class – are made absorbing. If we order the

states of the system by V~(E1,E2, . . . ,Ej ,I1,I2, . . . ,Ik,R), then the

set of absorbing states are

A~

f(E1,E2, . . . ,Ej ,2,0,0, . . . ,0)g
f(E1,E2, . . . ,Ej ,1,vk,1)g

(0,0, . . . ,0,0, . . . ,1)

8><
>:

9>=
>;~

B

(0,0, . . . ,0,0, . . . ,1)

� �
, ð3Þ

where vk,1 is the set of all vectors of length k, with a 1 in a single

position and zeros elsewhere. The set of states B are those

corresponding to serial interval events, while the last one is

recovery with no further infection. This model explicitly takes into

account that the second person to start showing symptoms might

not have been the first to be infected, and hence evaluates the

probabilities associated with the clinical serial interval.

For a household of size N , the initial state of the chain is set as

p(0)~(S~N{1,I1~1). In doing this we are implicitly assuming

that the first person to show symptoms is also the first person to

introduce infection into the household. If we were considering

asymptomatic individuals and/or multiple external infections then

this might not be true. By numerically solving the dynamics we can

then calculate the cumulative distribution function (cdf) of the

serial interval, F (t), by computing how much probability has

flowed into the absorbing states by a given time. We then

condition on the index case having created at least one secondary

infection before recovering. The solution of the forward equation

giving the probability of being in a given state at time t is

p(t)~p(0) exp (Qt): ð4Þ

Removing parts of the state space which are unreachable due to

the new absorbing states can reduce the dimension of the matrix

and speed up the evaluation of the matrix exponential. The cdf of

the serial interval is then given by,

F (t)~
1

c

X
s[B

ps(t), ð5Þ

where c is the probability that the index case infects at least one

individual before recovering; note c~1{ limt??

X
i[fA\Bg pi(t).

The probability 1{c can be calculated simply by considering the

sequences of events that would result in the individual going

through k stages without infecting anybody. This then gives,

c~1{
kc

bzkc

� �k

ð6Þ

The serial interval probability mass function is formed by

binning into days, as detailed in the next section.

Likelihood and MCMC algorithm
Given that we can compute the serial interval distribution for a

given set of parameters to an arbitrary precision, calculating the

likelihood for a given set of serial interval observations is relatively

straightforward. Data on the serial interval is generally available at

a daily resolution so we always work with a probability mass

function binned into days. We used the following binning to

calculate the probability of observing a secondary case on the i th

day [4],

ri~
F (iz0:5){F (i{0:5)

F (Dmaxz0:5){F(0:5)
, i~1,2, . . . ,Dmax ð7Þ

where F (t) is the cdf and Dmax is the maximum range of

observations. Given a set of index-secondary case observations, the

likelihood of observing them is multinomial with probabilities ri. If

we have a number of household sizes then the likelihood is just the

product of the likelihoods for each household size. MATLAB code

to implement this procedure is provided via the Epistruct project

[27].

The computational costs of calculating the likelihood are

important. The dominant factor is the cost of evaluating the

matrix exponential. The number of household sizes has the largest

affect on the cost, and also larger households being relatively more

expensive than smaller households due to their larger state spaces.

Table 2 gives some average times to calculate the likelihood for

individual household sizes using a 2.5 GHz Intel core i5 machine

running MATLAB. The total average time to calculate the

likelihood over n~1, . . . ,7 is 0.17 s using the same machine. The

number of bins and the overall length of the distribution (Dmax)

only have small effects on these timings as the EXPOKIT

algorithm uses a variable step size [25]. The number of

observations has no effect on the computational cost as these

enter via a simple multinomial expression.

The method of inference was Bayesian MCMC [28]. To obtain

samples from the posterior distribution we used a Metropolis-
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Figure 2. Theoretical serial interval distributions. Part A shows
the serial interval cumulative distribution function for households of
size N~2,3 and 8 (dot-dashed, dashed and solid lines respectively).
Parts B, C and D show the serial interval pmf (binned into days) derived
from the corresponding cdfs. Parameter values: b~2, s~1=4, c~1=2
and j~k~2.
doi:10.1371/journal.pone.0073420.g002
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Hastings algorithm with independent (truncated) Gaussian pro-

posal densities. In all cases we assumed uniform priors on an

interval from zero to an upper bound which depends upon the

parameter. Burn-in time was 103 samples and the next 105

samples were taken, thinned by a factor of 10 to give 104 samples

from the posterior; convergence was assessed via trace plots. The

priors and trace plots for the individual runs are given in Appendix

A of File S1.

Generating test data
To check the robustness of our method we generate a number

of serial interval distributions with known household sizes and

fixed parameters. We assume the early stages of an epidemic, so

the distribution of infected household sizes will be approximately

the size-biased distribution, fpig, where pk is the probability of a

randomly selected individual belonging to a household of size k

[6,17]. This is given by

pk~
khkP

j jhj

, ð8Þ

where hk is the household size distribution for a given population.

This provides a baseline case, obviously for household clinical

trials a different distribution would be appropriate, but in any case

it would be explicitly known. Throughout this paper we use census

data from U.S.A. 2011 for hk,k~1, . . . ,7, which is shown in

figure 1A.

The data is generated by first choosing a random number of

household sizes (from 2 to 7) from the size-biased distribution. For

each household, a serial interval observation is sampled according

to the true distribution binned into days (Dmax~10). Figure 1B

shows the simulated serial interval data stratified by household

size. Figure 1C shows the simulated serial interval data summed

over all household sizes.

Results

Effects of household size
Figure 2 shows how the serial interval distribution changes with

household size, for sizes N~2,3 and 8 with frequency dependent

mixing (b is held constant for different N ). Larger households have

higher probability of shorter serial intervals because there are

more possibilities for who is the first individual to display

symptoms. The change is greatest between N~2 and 3, and

decreases thereafter. This is because there is a trade-off between

more people competing to show symptoms and the fact that these

must have been infected later than the first person. As the

household size increases the distribution therefore tends to a

limiting case. As the variance of the exposed period decreases (j
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Figure 3. Parameter inference and predicted serial interval distributions. Plots A, B and C show 2|103 points from the posterior
distributions for the parameters s and c assuming only a single household size, N~2,3 and 4 respectively. These are obtained from fitting to the
distribution shown in Figure 1C. Points are coloured according to their likelihood with higher values assigned redder shades. All of these introduce a
bias in the inferred parameters. Fixed parameters as in Figure 1. Part D shows the mean serial interval distribution for N~2 (dashed line) and N~3
(solid line). The distribution for N~4 is very close to that for N~3 so is not shown. True parameter values: b~2, s~1=4 and c~1=2.
doi:10.1371/journal.pone.0073420.g003
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increases) the serial interval also becomes more constant and the

difference between the different sized households lessens. The

variance of the infectious period (value of k) has only a small

overall effect on the serial interval distribution, so henceforth we

fix k~2 [6,29,30].

Inference with aggregated data
Here we report our findings when attempting to infer the

posterior distribution for exposed period parameter s and

infectious period parameter c by using the serial interval

distribution assuming just a single household size–fixing all other

parameters. In later sections we estimate all parameters, but here

we are interested in quantifying the biases which can be

introduced when using a single household size – effectively

ignoring household size – to estimate the serial interval from data

which has come from a population consisting of multiple

household sizes. This situation often arises when trying to analyse

aggregated data from the literature.

Figure 3 shows samples from the posterior distributions

assuming three different (fixed) household sizes: N~2,3 and 4.

The serial interval data used is that summed over all households,

shown in Figure 1C, corresponding to a total of 300 serial interval

observations. The case N~2 is biased by a large amount away

from the true values, severely underestimating the infectious

period parameter c and overestimating the exposed period

parameter s. The N~3 case provides the best estimate of the

parameters although there is still bias. Biases arising from using a

model with Nw4 grow larger, with s underestimated and c
overestimated. The serial interval is most sensitive to the mean

exposed period, 1=s, and thus this is more accurately estimated.

Although the parameter estimates from the three models are

different, the estimated serial interval distributions corresponding

to mean parameter estimates are all very similar (see Figure 3D),

thus so are the mean serial intervals. The fit using N~4 is the best

in terms of the mean likelihood.

Full inference from serial interval observations
We now look at estimation of all three variables: transmission

parameter b, exposed period parameter s and infectious period

parameter c, from the generated serial interval observations, given

that we also know the household sizes for each observation, i.e.

fitting to the data shown in Figure 1B. The variance of the exposed

and infectious periods (parameters j and k) were held fixed. These

can be inferred as well, but as noted earlier k cannot be inferred

easily because the serial interval distribution is not very sensitive to

it. In contrast the serial interval distribution is typically very

sensitive to the variance in the exposed period (j) so in practice the

actual value is almost always recovered. Figure 4 shows the

posterior distributions along with the mean serial interval

distribution with credible intervals. The MCMC algorithm for

the full inference is appreciably slower than when using just a

single household-size model, due to the higher dimension of the

search space and need to calculate six individual serial interval

distributions for each proposal.

To check the validity of our results we carried out sensitivity

analysis. Specifically, we are interested in how the estimated

posterior distribution depends on the number of observations

available and how it can be skewed due to the random nature of
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shades. (C) shows the mean serial interval distribution (solid line) and 95% credible intervals (dashed lines) obtained from 104 samples of the
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the observations. To assess this we fit the full model to 8 sets of

randomly generated serial interval distributions with 15, 50, 100,

200 and 300 data points respectively. The resulting posterior

distributions are shown in Appendix B of File S1. The results of

this show that exposed period parameter s is found accurately

most of the time, even for very small sample sizes. The other two

parameters, transmission parameter b and infectious period

parameter c cannot be accurately determined until there are

many more samples (typically at least 200). It is likely that we

would need to include more of the later infection events within a

household to resolve these parameters with more accuracy for

smaller sample sizes.

It is also of interest to see how the estimates of parameters can

be improved if one of the parameters is already established. We

tested this by fixing the transmission parameter, b, and found the

posterior distribution for the other two parameters (figures shown

in Appendix C of File S1). This gives an improvement on the

posterior for s, but little improvement for c. The serial interval

distribution derived from this posterior has very similar credible

intervals to that shown in Figure 4, so does not give an improved

estimate for the mean serial interval.

Influenza in Hong Kong transmission study
We now use our model to estimate model parameters from a

household study in Hong Kong [13]. In this study a Weibull model

was fitted to clinical serial interval data corresponding to inter-

pandemic influenza in Hong Kong during 2007. This was then

used to estimate the mean serial interval with parametric

bootstrapping to calculate confidence intervals [13]. Admittedly

this has a very small sample size (only 14 observations from

households of sizes N~3 to 5), but serves to illustrate the power of

our method with real data. It is also the only study we have found

which explicitly gives household size with serial interval observa-

tions. In the original study it was shown that external rates of

infection had no impact on the serial interval estimate, so our

model is appropriate to analyse this data.

To investigate the sensitivity to the variance of the exposed

period we separately fitted two versions of the model with j~2 and

4. The higher value of j gives a more constant exposed period. As

in the previous section we estimate the three parameters b, s and c
and set k~2. Full details of the MCMC routine are given in

Appendix A of File S1. Only the posterior for the exposed period

parameter, s, could be determined to within reasonable limits.

Both values of j gave similar results: for j~2, E(s)~0:32 (95% CI

~0:16–0:67), and for j~4, E(s)~0:32 (95% CI ~0:18–0:68).

The distributions for both the transmission parameter b and

infectious period parameter c were not well determined, but this is

expected given the results of the sensitivity analysis in the previous

section.

The estimated serial interval distributions and credible intervals

are shown in Figure 5 for the two different values of j, along with

kernel density plots for the mean serial intervals. In the original

analysis a Weibull distribution was fitted [13] and is shown for

comparison; the estimated mean serial interval was 3:6 days (95%

confidence interval ~2:9–4:3). From the serial interval distribu-

tions we estimate the mean serial interval to be 3:6 days (95% CI

~2:6–4:6) assuming j~2 and 3:8 days (95% CI ~2:9–5:1)

assuming j~4. The mean likelihood of the j~4 fit is approx-

imately three times that of the j~2 fit. Figure 6 shows the

expected number of serial interval observations of each duration

and standard deviations for the two fits compared to the original

data. For the j~4 case all the data lies within one standard

deviation.

Discussion

The serial interval is relatively easy to observe and has been

shown to be critically important for predicting disease dynamics

and choosing control policies. For these reasons it is commonly

recorded during the early stages of a pandemic. The difficulty

arises when attempting to use the observations for modelling, or

inference, because the serial interval is the convolution of two

processes: infection and incubation, and the infection time is

effectively unobservable.
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In this paper we have provided methodology for parametrising

a quite general Markovian model of household disease dynamics

to serial interval data. Not only does this approach provide an

estimate of the distribution of serial interval, but it also provides an

estimate of a mechanistic model of the disease dynamics. This

approach facilitates the prediction of disease dynamics and the

assessment of alternative control options, of much importance in

the early stages of disease invasion.

We have shown how the distribution of serial interval can be

evaluated to arbitrary precision for our stochastic households

model. Unlike stochastic simulation, which is computationally

intensive and produces an estimate, our method is efficient and

allows precise likelihood evaluation. Analytical results can be

derived, using approximations in the cases Nw2 (see Appendix D

of File S1), but in practice these offer no advantage over the

numerical scheme due to the unwieldy nature of the expressions

derived.

Our model allows us to quantify the effect of household size on

the clinical serial interval (the time between first and second

showing of symptoms, assuming that there is no asymptomatic

infection and only a single introduction), hence identifying its

importance for estimation. By fitting to serial interval distributions

stratified by household size we can can obtain accurate posterior

distributions for all three of the basic parameters: transmission

parameter b, exposed period parameter s, and infectious period

parameter c. The parameter j, controlling the variance of the

exposed period, can also be inferred, although we have not

implemented this within the MCMC scheme. The serial interval

distribution is relatively insensitive to the parameter k, controlling

the variance in the infectious period, so we have not attempted to

infer this and have held it constant. If full time series of

s̀ymptomatic’ events are available then our method is potentially

wasteful because we do not use the later events. Our methods can

be extended to inference of full time series and it is likely that this is

required to get better estimates on the parameters b and c. Such a

project is currently under way.

We have shown the effectiveness of this scheme for estimating

parameters from simulated data as well as data from a Hong Kong

influenza study [13]. Despite the small sample size we could still

infer meaningful estimates for the exposed period and serial

interval distribution, consistent with the earlier study. This

demonstrates that the methodology reliably produces estimates

as would be obtained via traditional parametric fitting, but has the

added benefit of producing estimates of parameters for our

stochastic, mechanistic model of disease dynamics. Of course, one

must be careful in using household quantities to make population

level predictions [9]; to do this we typically need to make more

assumptions about population level mixing and transmission. In

related work on antiviral effectiveness [6] we have used this

method with a simpler model to effectively estimate the exposed

period parameter s and infectious period parameter c from a

larger influenza serial interval dataset [4]. Although this dataset

was larger, the data was not stratified by household size, so we had

to use a mean household size in our estimation. This then allowed

us to evaluate posterior distributions for population level quantities

such as the household basic reproductive number, R�, and early

growth rate [17,21,31].

The serial interval is also important because of its relation to the

generation time which can be used to relate the Malthusian early

growth rate, r, and the basic reproductive ratio, R0 [8,9,14,23].

Usually it is assumed that these two distributions have the same

mean, but in general their distributions will be different [32]. The

actual generation time distribution can be derived for our model in

a similar way to the serial interval distribution. Briefly, one would

change the initial condition of the Markov chain to E1~1 and

make a different set of states absorbing. Once the joint posterior

distribution for the parameters is inferred from the serial interval

data, we can use it to compute the generation time distribution.

Whilst our model is quite general, there exists a number of

features which may be required for particular diseases, populations

and data sets which would require modification of our approach.

For example, we have not explicitly accounted for external

infection and co-primary cases, varying infectiousness with stage of

infection, or symptoms that do not coincide with the commence-

ment of infectiousness. It possible to extend the model to account

for these features, and the method we have outlined will also need

to be modified slightly to accommodate these extensions. We note

that in all cases extra parameters will require estimation. We are

currently developing and testing such frameworks. However, the

model we have explicitly analysed herein is of much interest in

infectious disease modelling, and the method we have detailed will

facilitate its use in the early stages of disease invasion, of much

interest to public health policy.

Here we have shown that household size has a significant

impact on the serial interval, and that including this data improves

estimates. Throughout we have assumed frequency-dependent

transmission, as appears to be most appropriate for influenza in

households [15], but one would expect the differences to be

exacerbated by density-dependent transmission – not only do

larger households have more individuals competing to display

symptoms first, but the transmission rate would also be larger for

the same household configuration which further reduces the serial

interval. Household size is typically recorded alongside the serial

interval, so our method simply proposes a way to make

appropriate use of this routinely collected data; an approach

which has the benefit of producing posterior distributions of

parameters corresponding to a fully-mechanistic model of the

disease dynamics.

Supporting Information

File S1 This file contains Statistical (MCMC) details; Sensitivity

analysis of the full model; Full inference while holding b fixed; and,

Some analytic results.

(PDF)
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