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A B S T R A C T

The newly identified Coronavirus pneumonia, subsequently termed COVID-19, is highly

transmittable and pathogenic with no clinically approved antiviral drug or vaccine avail-

able for treatment. The most common symptoms of COVID-19 are dry cough, sore throat,

and fever. Symptoms can progress to a severe form of pneumonia with critical complica-

tions, including septic shock, pulmonary edema, acute respiratory distress syndrome and

multi-organ failure. While medical imaging is not currently recommended in Canada for

primary diagnosis of COVID-19, computer-aided diagnosis systems could assist in the early

detection of COVID-19 abnormalities and help to monitor the progression of the disease,

potentially reduce mortality rates. In this study, we compare popular deep learning-

based feature extraction frameworks for automatic COVID-19 classification. To obtain the

most accurate feature, which is an essential component of learning, MobileNet, DenseNet,

Xception, ResNet, InceptionV3, InceptionResNetV2, VGGNet, NASNet were chosen amongst

a pool of deep convolutional neural networks. The extracted features were then fed into

several machine learning classifiers to classify subjects as either a case of COVID-19 or a

control. This approach avoided task-specific data pre-processing methods to support a bet-

ter generalization ability for unseen data. The performance of the proposed method was

validated on a publicly available COVID-19 dataset of chest X-ray and CT images. The Den-

seNet121 feature extractor with Bagging tree classifier achieved the best performance with

99% classification accuracy. The second-best learner was a hybrid of the a ResNet50 feature

extractor trained by LightGBM with an accuracy of 98%.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
by Elsevier
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Fig. 1 – The illustration of COVID-19, created at the Centers

for Disease Control and Prevention (CDC) [10]. The protein

particles E, S, and M are located on the outer surface of the.

virus particle.
1. Introduction

A series of pneumonia cases of unknown etiology occurred in

December 2019, in Wuhan, Hubei province, China. On Decem-

ber 31, 2019, 27 unexplained cases of pneumonia were identi-

fied and found to be associated with so called ‘‘wet markets”

which sell fresh meat and seafood from a variety of animals

including bats and pangolins. The pneumonia was found to

be caused by avirus identifiedas ”severe acute respiratory syn-

drome coronavirus 2” (SARS-CoV-2), with the associated dis-

ease subsequently termed coronavirus disease 2019 (COVID-

19) by the World Health Organization (WHO) [1,2]. Genomic

analysis showed that COVID-19 is phylogenetically related to

SARS-like bat viruses. Hence, bats could be the possible source

of the viral replication [1]. Pangolins have also been identified

as a potential intermediate host of COVID-19 [3]. This newly

identified virus is highly transmittable and pathogenically dif-

ferent from SARS-CoV, MERS-CoV, avian influenza, influenza,

and other common respiratory viruses. Concerning the out-

break of COVID-19, on January 30, 2020, the WHO declared

the outbreak of the novel Coronavirus disease as a Public

Health Emergency of International Concern (PHEIC) [4]. The

rapid worldwide spread of disease resulted in a global pan-

demic declaration on March 11, 2020. Clinical symptoms of

patients infectedwithCOVID-19aresimilar tootherviral upper

respiratory diseases such as Influenza, respiratory syncytial

virus (RSV), and bacterial pneumonia. The most common pre-

senting symptoms experienced by patients include dry cough,

sore throat, fever, dyspnea, diarrhea, myalgia, shortness of

breath and bilateral lung infiltrates, observable on clinical

imaging such as chest X-ray. Other symptoms are headache,

vomiting, pleurisy, sneezing, rhinorrhea, and nasal conges-

tion. Patients with more severe COVID-19 have developed crit-

ical complications, including septic shock, pulmonary edema,

cardiac injury, acute kidney injury, Acute Respiratory Distress

Syndrome (ARDS) and even Multi-Organ Failure (MOF) [4,5].

At present, there is no clinically approved antiviral drug or vac-

cine available to treat COVID-19. The reproduction number

(R0), defined as the expected number of susceptible cases

directly generated by one infectious case of COVID-19 infec-

tion, is estimated to 3.77 [6,7]. Despite global efforts of travel

restrictions and quarantine, while the epidemic continues to

decline in China, the incidence of novel COVID-19 continues

to rise globally, with over 1.6 million confirmed cases and over

100,000 deaths worldwide, at the time of this writing [8]. As of

April 2020, substantial new incidence of COVID-19 cases have

beenreported in211 countrieswith significant confirmedcases

in South Korea, Italy, Iran, Japan, Germany, and France [9]. The

early spreadof newCOVID-19 caseswasassociatedwith recent

travel to China; however, community spread is now common

globally. Thegreatest numberof newcases occur through close

contacthuman-to–human transmission (approximately 6 feet)

by respiratory droplets [5]. Contamination also can occur

through infected surfaces with subsequent contact with the

eyes, nose, or mouth.

The genetic characteristics of the Coronavirus should be

well understood to fight against this virus. Coronavirus is a
single-stranded RNA virus consisting of approximately 27–

32 kb with particle size ranged from 65–125 nm in diameter

[1]. An illustration of COVID-19 is shown in Fig. 1. A transmis-

sion electron microscopic image of a case of COVID-19 is also

demonstrated in Fig. 2.

In light of this, it is evident that early detection of COVID-

19 is necessary to interrupt the spread of COVID-19 and pre-

vent transmission by early isolation of patients, trace and

quarantine of close contacts. In patients with COVID-19, accu-

rate monitoring of the disease progression is a critical compo-

nent of disease management. While not recommended for

primary diagnosis of COVID-19 in Canada, medical imaging

modalities such as chest X-ray and Computed Tomography

(CT) play an important role in confirming diagnosis of positive

COVID-19 pneumonia as well as monitoring the progression

of the disease. These types of images show an extent of irreg-

ular ground-glass opacities that progress rapidly after COVID-

19 symptom onset. These abnormalities peaked during days

6–11 of the illness. The second most predominant pattern of

lung opacity abnormalities peak during days 12–17 of the ill-

ness [12]. Computer-Aided Diagnosis (CAD) systems that

incorporate X-ray and CT image processing techniques and

deep learning algorithms could assist physicians as diagnos-

tic aides for COVID-19 and help provide a better understand-

ing of the progression the disease [13].

1.1. Related research

Hemdan et al. [14] developed a deep learning framework,

COVIDX-Net, to diagnose COVID-19 in X-ray Images. A

comparative study of different deep learning architectures

including VGG19, DenseNet201, ResNetV2, InceptionV3,

InceptionResNetV2, Xception and MobileNetV2 is provided

by authors. The public dataset of X-ray images was provided

by Dr. Joseph Cohen [15] and Dr. Adrian Rosebrock [16]. The

provided dataset included 50 X-ray images, divided into two



Fig. 2 – Transmission electronmicroscopic image of a case of

COVID-19. The spherical viral particles, colorized blue,

contain cross-sections through the viral genome, seen as

black dots [11].
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classes as 25 normal cases and 25 positive COVID-19 images.

Hemdan’s results demonstrated VGG19 and DenseNet201

models achieved the best performance scores among coun-

terparts with 90.00% accuracy.

Barstugan et al. [17] proposed a machine learning

approach for COVID-19 classification from CT images. Patches

with different sizes 16 � 16, 32 � 32, 48 � 48, 64 � 64 were

extracted from 150 CT images. Different hand-crafted fea-

tures such as Grey Level Co-occurrence Matrix (GLCM), Local

Directional Pattern (LDP), Grey Level Run Length Matrix

(GLRLM), Grey-Level Size Zone Matrix (GLSZM), and Discrete

Wavelet Transform (DWT) algorithms were employed. The

extracted features were fed into a Support Vector Machine

(SVM) [18] classifier on 2-fold, 5-fold and 10-fold cross-

validations. The best accuracy of 98.77% was obtained by

GLSZM feature extractor with 10-fold cross-validation.

Wang and Wong [19] designed a tailored deep learning-

based framework, COVID-Net, developed for COVID-19 detec-

tion from chest X-ray images. The COVID-Net architecture

was constructed of combination of 1�1 convolutions, depth-

wise convolution and the residual modules to enable design

deeper architecture and avoid the gradient vanishing prob-

lem. The provided dataset consisted of a combination of

COVID chest X-ray dataset provided by Dr. Joseph Cohen

[15], and Kaggle chest X-ray images dataset [20] for a multi-

class classification of normal, bacterial infection, viral infec-

tion (non-COVID) and COVID-19 infection. Obtained accuracy

of this study was 83.5%.

In a study conducted by Maghdid et al. [21], a deep

learning-based method and transfer learning strategy were

used for automatic diagnosis of COVID-19 pneumonia. The

proposed architecture is a combination of a simple convolu-

tional neural network (CNN) architecture (one convolutional

layer with 16 filters followed by batch normalization, rectified

linear unit (ReLU), two fully-connected layers) and a modified

AlexNet [22] architecture with the feasibility of transfer learn-

ing. The proposedmodified architecture achieved an accuracy

of 94.00%.
Ghoshal and Tucker [23] investigated the diagnostic uncer-

tainty and interpretability of deep learning-based methods

for COVID-19 detection in X-ray images. Dropweights based

Bayesian Convolutional Neural Networks (BCNN) were used

to estimate uncertainty in deep learning solutions and pro-

vide a level of confidence of a computer-based diagnosis for

a trusted clinician setting. To measure the relationship

between accuracy and uncertainty, 70 posterioranterior (PA)

lung X-ray images of COVID-19 positive patients from the

public dataset provided by Dr. Joseph Cohen [15] were selected

and balanced by Kaggle’s Chest X-ray Images dataset [20]. To

prepare the dataset, all images were resized to 512 � 512 pix-

els. A transfer learning strategy and real-time data augmenta-

tion strategies were employed to overcome the limited size of

the dataset. The proposed Bayesian inference approach

obtained the detection accuracy of 92.86% on X-ray images

using VGG16 deep learning model.

Hall et al. [24] used a VGG16 architecture and transfer

learning strategy with 10-fold cross-validation trained on

the dataset from Dr. Joseph Cohen [15]. All images were

rescaled to 224 � 224 pixels and a data augmentation strat-

egy was employed to increase the size of dataset. The pro-

posed approach achieved an overall accuracy 96.1% and

overall Area Under Curve (AUC) of 99.70% on the provided

dataset.

Farooq and Hafeez [25] proposed a fine-tuned and pre-

trained ResNet-50 architecture, COVID-ResNet, for COVID-19

pneumonia screening. To improve the generalization of the

training model, different data augmentation methods includ-

ing vertical flip, random rotation (with angle of 15 degree),

along with the model regularization were used. The proposed

method achieved the accuracy of 96.23% on amulti-class clas-

sification of normal, bacterial infection, viral infection (non-

COVID-19) and COVID-19 infection dataset.
1.2. Motivation and contributions

The main motivation of this study is to present a generic

feature extraction method using convolutional neural net-

works that does not require handcrafted or very complex

features from input data while being easily applied to dif-

ferent modalities such as X-ray and CT images. Another pri-

mary goal is to reduce the generalization error while

achieving a more accurate diagnosis. The contributions

are summarized as follows:

� Deep convolutional feature representation [26–28] is used

to extract highly representative features using state-of-

the-art deep CNN descriptors. The employed approach is

able to discriminate between COVID-19 and healthy sub-

jects from chest X-ray and CT images and hence produce

higher accuracy in comparison to other works presented

in the literature. To the best of our knowledge, this

research is the first comprehensive study of the applica-

tion of machine learning (ML) algorithms (15 deep CNN

visual feature extractor and 6 ML classifier) for automatic

diagnoses of COVID-19 from X-ray and CT images.
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� To overcome the issue of over-fitting in deep learning due

to the limited number of training images, a transfer-

learning strategy is adopted as the training of very deep

CNNmodels from scratch requires a large number of train-

ing data.

� No data augmentation or extensive pre-processing meth-

ods are applied to the dataset in order to increase the gen-

eralization ability and also reduce bias toward the model

performance.

� The proposed approach reduces the detection time dra-

matically while achieving satisfactory accuracy, which is

a superior advantage for developing real or near real-

time inferences on clinical applications.

� With extensive experiments, we show that the combina-

tion of a deep CNN with Bagging trees classifier achieves

very good classification performance applied on COVID-

19 data despite the limited number of image samples.

� Finally, we developed an end to end web-based detection

system to simulate a virtual clinical pipeline and facilitate

the screening of suspicious cases.

The rest of this paper is organized as follows. The pro-

posed methodology for automatically classifying COVID-19

and healthy cases is explained in Section 2. The dataset

description, experimental settings and performance metrics

are given in Section 3. A brief discussion and results analysis

are provided in Section 4, and finally, the conclusion is pre-

sented in Section 5.

2. Proposed methodology

Few studies have been published on the application of deep

CNN feature descriptors to X-ray and CT images. Each of the

CNN architectures is constructed by different modules and

convolution layers that aid in extracting fundamental and

prominent features from a given input image. Briefly, in the

first step, we collect available public chest X-ray and CT

images. In the next step, we pre-processed the provided data-

set using standard image normalization techniques to

improve the quality of visual information of the input data.

Once input images are prepared, we fed them into the feature

extraction phase with the state-of-the-art CNN descriptors to

extract deep features from each input image. For the training

phase, the generated features are then fed into machine

learning classifiers such as Decision Tree (DT) [29], Random

Forest (RF) [30], XGBoost [31], AdaBoost [32], Bagging classifier

[33] and LightGBM [34]. Finally, a 10-fold cross-validation tech-

niquewas adopted to evaluate the average generalization per-

formance of the classifiers in each experiment on test images.

2.1. Feature extraction using transfer learning

The concept of transfer learning has been introduced for solv-

ing deep learning problems arising from insufficiently labeled
data, or when the CNNmodel is too deep and complex. Aiming

to tackle these challenges, studies in a variety computer vision

tasks demonstrated the advantages of transfer learning strate-

gies from an auxiliary domain in improving the detection rate

and performance of a classifier [35–37]. In a transfer learning

strategy, we transfer the weights already learned on a cross-

domain dataset into the current deep learning task instead of

training amodel fromscratch.With the transfer learning strat-

egy, the deep CNN can obtain general features from the source

dataset that cannot be learned due to the limited size of the

dataset in the current task [38]. Transfer learning strategies

havevarious advantages, such as avoiding the overfitting issue

when the number of training samples is limited, reducing the

computational resources, and also speeding up the conver-

gence of the network [39,40].

2.2. CNN descriptor

Effective feature extraction is one of the most important steps

toward learning rich and informative representations from

raw input data to provide accurate and robust results. The

small or imbalanced size of the training samples poses a sig-

nificant challenge for the training of a deep CNN where data

dimensionality is much larger than the number of samples

leading to over-fitting. Although various strategies, e.g. data

augmentation [41], transfer learning [42] and fine-tuning

[43], may reduce the problem of insufficient or imbalance

training data, the detection rate of the CNN model may

degrade due to the over-fitting issue. Since the overall perfor-

mance obtained by a fine-tuning method in the initial exper-

iments for this study was not significant, we employed a

different approach inspired by [26–28] known as deep convo-

lutional feature representation. In this method, we used pre-

trained well-established CNN models as a visual feature

extractor to encode the input images into a feature vector of

sparse descriptors of low dimensionality. Then the computed

encoded feature vectors produced by CNN architectures are

fed into different classifiers, i.e. machine learning algorithms,

to yield the final prediction. This lower dimension vector sig-

nificantly reduces the risk of over-fitting and also the training

time. Different robust CNN architectures such as MobileNet,

DenseNet, Xception, InceptionV3, InceptionResNetV2,

ResNet, VGGNet, NASNet are selected for feature extraction.

These architectures are selected based on their (i) satisfying

performance in real-world medical setting (ii) adaptation

towards real-time (or near real-time) image diagnosis support

system and, (iii) feasibility of transfer learning different com-

puter vision tasks detection, segmentation, classification or

visual attributes. tasks [44–47]. Fig. 3. illustrates the visual fea-

tures extracted by VGGNet architecture from an X-ray image

of a COVID-19 positive patient.

2.2.1. MobileNet
MobileNet architecture [48] was designed by Google research

team for object recognition on mobile devices. This architec-

ture introduced the depth-wise separable convolution and

1 � 1 point-wise convolution layers. MobileNet architecture

achieved an accuracy as the same level as VGG16 with 32

times less parameters than standard convolutions and won



Fig. 3 – General framework of the proposed method with VGGNet as feature extractor.
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ImageNet dataset while is 27 times less computationally

intensive. Depth-wise convolution applies single spatial filter

to each input channel. Point-wise convolution is a standard

convolution with the kernel size of (1 � 1) that computes a

linear combination of different input channels. This opera-

tion can significantly reduce the dimensionality of the feature

maps.

2.2.2. Densely connected convolutional networks
Densely connected convolutional networks (DenseNet) archi-

tecture proposed by Huang et al. [49] is an extension for

ResNet architecture. Summation operation is used to connect

layers to each other in this architecture. The summation oper-

ation helps further improvement of the generalization ability

and addressing the problem of vanishing gradient better in

compare to ResNet architecture. In this approach, the fea-

tures extracted from each layer are reused as input for the

next layers. The idea of reusing feature maps could help fur-

ther improvement of the final performance.

2.2.3. Xception
The Xception architecture, introduced by François Chollet [50]

in 2017, is an extension of the Inception architecture and

stands for extreme inception. Inceptionmodules in this archi-

tecture are replaced with depthwise separable convolutions

and residual connections. The depthwise separable convolu-

tion could decrease the computational cost and memory

requirements. Xception architecture contains 14 modules

with 36 convolutional layers. Linear residual connections

are used to connect all modules together, except for the first

and last module.

2.2.4. InceptionV3
InceptionV3 architecture proposed by Szegedy et al. [51] in

2014. InceptionV3 architecture introduced the concept of

inception module and won the ImageNet competition. This

architecture consists of 159 layers in total and is the third

generation of Inception model. In Inception module instead

of using one type of kernel size (i.e. 3 � 3, or 5 � 5), different

convolution size, i.e. 1 � 1, 3 � 3, and 5 � 5 filter size is used.
The main idea of employing different convolution size allows

to extract multi-level features from the input image in every

convolution operation. In this architecture also pointwise

1 � 1 convolution is used to reduce the number of parameters.

The pointwise convolution helps reduce the computational

cost.

2.2.5. InceptionResNetV2
Both Inception modules and Residual blocks are combined in

InceptionResNetV2 [52]. The combination of these modules

helps achieve a better performance with relatively low com-

putational cost.

2.2.6. Deep residual learning network
Deep Residual Learning Network (ResNet) proposed by He

et al. [53]. This architecture won ILSVRC classification task

with good results on ImageNet and MS-COCO object detection

competitions. This architecture introduced the concept of

residual blocks. The main goal of residual blocks is to add a

connection (instead of concatenation) from the input of the

first block to the output of the next block in order to train a

more deeper network with better recognition ability. This

architecture can solve the issues of vanishing gradients and

parameter explosion by shortcut connection using the resid-

ual blocks.

2.2.7. VGG-Net
Visual Geometry Group (VGG-Net) [54] was proposed by Karen

Simonyan and Andrew Zisserman. This architecture obtained

top performances on ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) in 2014. This architecture provides better

features extraction from input images by using 3 � 3 filter

size. VGG16 and VGG19 are two versions of VGG-Net architec-

ture with different depths and layers.

2.2.8. Neural architecture search net
Neural Architecture Search Net (NAS-Net) [55] architecture

was proposed by Google Brain in 2017 and achieved the

state-of-the-art results on the CIFAR10 dataset. This architec-

ture search for the best convolutional layer using recurrent
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neural networks on the CIFAR dataset. Then the selected lay-

ers are transferred to the ImageNet dataset. Next the selected

convolutional layer are stacked together to produce the final

architecture. A new regularization method called Sched-

uledDropPath is introduced in this architecture to further

improve the generalization ability. However, the computa-

tional cost of NAS-Net architecture is expensive.

For features extraction stage, we employ standard pre-

trained networks from Keras distribution. The dimension of

the output vector generated by each CNN architecture is pre-

sented in the Table 1.

3. Experiments

3.1. Dataset description

In order to evaluate the performance of our feature extracting

and classifying approach, we used the public dataset of X-ray

images provided by Dr. Joseph Cohen available from a GitHub

repository [15]. We used the available 117 chest X-ray images

and 20 CT images (137 images in total) of COVID-19 positive

cases. We also included 117 images of healthy cases of X-

ray images from Kaggle Chest X-ray Images (Pneumonia)

dataset available at [20] and 20 images of healthy cases of

CT images from Kaggle RSNA Pneumonia Detection dataset

available at [56] to balance the dataset with both positive

and normal cases. Fig. 4 shows examples of confirmed

COVID-19 images extracted from the provided dataset. The

X-ray images of confirmed COVID-19 infection demonstrate

different shapes of ‘‘pure ground glass” also known as hazy

lung opacity with irregular linear opacity depending the dis-

ease progress [12].

3.2. Data pre-processing

The images within the dataset were collected from multiple

imaging clinics with different equipment and image acquisi-

tion parameters; therefore, considerable variations exist in

images’ intensity. The proposed method in this study avoids

extensive pre-processing steps to improve the generalization
Table 1 – Feature vector of each deep CNN architecture.

CNN feature extractor Output feature vector

Xception 2048
VGG19 512
VGG16 512
ResNet50 2048
ResNet152 2048
ResNet101V2 2048
ResNet50V2 2048
ResNet152V2 2048
NASNetMobile 1056
NASNetLarge 4032
MobileNet 1024
InceptionV3 2048
InceptionResNetV2 1536
DenseNet201 1920
DenseNet121 1024
ability of the CNN architecture. This helps to make the model

more robust to noise, artifacts and variations in input images

during feature extraction phase. Hence, we only employed

two standard pre-processing steps in training deep learning

models to optimize the training process.

� Resizing: The images in this dataset vary in resolution and

dimension, ranging from 365 � 465 to 1125 � 859 pixels;

therefore, we re-scaled all images of the original size to

the size of 600 � 450 pixels to obtain a consistent dimen-

sion for all input images. The input images were also sep-

arately resized to 331 � 331 pixels and 224 � 224 pixels as

required for NASNetLarge and NASNetMobile architec-

tures, respectively.

� Image normalization: For image normalization, first, we

re-scaled the intensity values of the pixels using ImageNet

mean subtraction as a pre-processing step. The ImageNet

mean is a pre-computed constant derived from the Ima-

geNet database [22]. Another essential pre-process step is

intensity normalization. To accomplish this, we normal-

ized the intensity values of all images from [0, 255] to the

standard normal distribution by min–max normalization

to the intensity range of [0, 1], which is computed as:

xnorm ¼ x� xmin

xmax � xmin
ð1Þ
where x is the pixel intensity. xmin and xmax are minimum and

maximum intensity values of the input image in Eq. 1. This

operation helps to speed up the convergence of the model

by removing the bias from the features and achieve a uniform

distribution across the dataset.
3.3. Experimental setting

The configurations of hyperparameters of each machine

learning model (LightGBM, bagging, Adaboost, random forest,

XGBoost, and decision tree) is highlighted in Table 2.
3.4. Evaluation criteria

To measure the prediction performance of the methods in

this study, we utilized common evaluation metrics such as

recall, precision, accuracy and f1-score. According to Eqs.

(2)–(5) True positive (TP) is the number of instances that cor-

rectly predicted; false negative (FN) is the number of

instances that incorrectly predicted. True negative (TN) is

the number of negative instances that predicted correctly,

while false positive (FP) is the number of negative instances

incorrectly predicted. Given TP, TN, FP and FN, all evaluation

metrics were calculated as follows:

Recall or sensitivity is the measure of COVID-19 cases that

are correctly classified. Recall is critical, especially in the

medical field and is given by:

Recall ¼ TP
TPþ FN

ð2Þ



Fig. 4 – Chest X-ray images of four confirmed COVID-19 pneumonia: (a) 52-year old female, presenting diffuse infiltrates in the

bilateral lower lungs; (b) 59-year old female, demonstrating right infahilar airspace opacities; (c) 35-year old male, presenting

stable streaky opacities in the lung bases, indicating likely atypical pneumonia; the opacities have steadily increased in

density over time; (d) 42-year old male, presenting opacities in the left lower and right upper lobes on day 7 after the onset of

symptoms.

Table 2 – Hyper-parameters considered in this study.

Methods Parameters

LightGBM n_estimators: (Number of trees in the forest): 1000
Class_wight: Balanced, Reg_alpha: 0.1, Reg_lambda: 0.1, Learning rate: 0.001,
Num_leaves: 400, Boosting:
‘‘dart”

Bagging DecisionTree Classifier, n_estimators: (Number of trees in the forest): 5
Adaboost DecisionTree Classifier, n_estimators: (Number of trees in the forest): 300
Random Forest n_estimators: (Number of trees in the forest): 5
XGBoost Default setting
Decision Tree Default setting
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Precision or positive predictive value is defined as the per-

centage of correctly classified labels in truly positive patients

and is given as:

Precision ¼ TP
TPþ FP

ð3Þ

Accuracy shows the number of correctly classified cases

divided by the total number of test images, and is defined as:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð4Þ

F1-score, also known as F-measure, is defined as the

weighted average of precision and recall that combines both

the precision and recall together. F-measure is expressed as:

F1� score ¼ 2� Recall� Precision
Recallþ Precision

ð5Þ
4. Experimental methods and results

Diagnostic imaging modalities, such as chest radiography and

CT are playing an important role in confirming the primary

diagnosis from the Polymerase Chain Reaction (PCR) test for

COVID-19. Medical imaging is also playing a critical in moni-

toring the progression of the disease and patient care.

Extracting features from radiology modalities is an essential

step in training machine learning models since the model

performance directly depends on the quality of extracted

features.
Fig. 5 shows some examples of output feature vector gen-

erated by the first convolution layer of VGG16 architecture.

This figure displays the extracted features for a COVID-19

case (left column) and a healthy case (right column) cases.

Motivated by the success of deep learning models in com-

puter vision [57], the focus of this research is to provide an

extensive comprehensive study on the classification of

COVID-19 pneumonia in chest X-ray and CT imaging using

features extracted by the state-of-the-art deep CNN architec-

tures and trained on machine learning algorithms. The 10-

fold cross-validation technique was adopted to evaluate the

average generalization performance of the classifiers in each

experiment. For all CNNs, the network weights were initial-

ized from the weights trained on ImageNet. The Windows

based computer system used for this work had an Intel(R)

Core(TM) i7-8700 K 3.7 GHz processors with 32 GB RAM. The

training and testing process of the proposed architecture for

this experiment was implemented in Python using Keras

package with Tensorflow backend as the deep learning frame-

work backend and run on Nvidia GeForce GTX 1080 Ti GPU

with 11 GB RAM.

Table 3 and Fig. 6 summarize the accuracy performance of

six machine learning algorithms, namely, DT, RF, XGBoost,

AdaBoost, Bagging classifier and LightGBM on the feature

extracted by deep CNNs. Each entry in Table 3, is in the format

(l� r) where l is the average classification accuracy and r is

standard deviation. Analyzing Table 3 the topmost result



Fig. 5 – Deep features learned by VGG16 model: (a) COVID-19 case; (b) healthy case.

Table 3 – Comparison of classification performance (l� r) of different machine learning models measured by accuracy.
The bold value indicates the best result; underlined value represents the second-best result of the respective category.

Decision Tree Random Forest XGBoost AdaBoost Bagging LightGBM

MobileNet 83.00 ± 0.26 93.00 ± 0.23 95.00 ± 0.16 80.00 ± 0.17 96.00 ± 0.11 82.00 ± 0.28
DenseNet121 92.00 ± 0.15 90.00 ± 0.21 94.00 ± 0.16 92.00 ± 0.19 99.00 ± 0.07 96.00 ± 0.11
DenseNet201 84.00 ± 0.26 90.00 ± 0.24 90.00 ± 0.18 87.00 ± 0.25 96.00 ± 0.11 87.00 ± 0.17
Xception 95.00 ± 0.17 90.00 ± 0.19 96.00 ± 0.11 93.00 ± 0.20 96.00 ± 0.11 96.00 ± 0.11
InceptionV3 82.00 ± 0.22 84.00 ± 0.29 88.00 ± 0.15 80.00 ± 0.12 95.00 ± 0.12 84.00 ± 0.16
InceptionResNetV2 84.00 ± 0.31 93.00 ± 0.16 93.00 ± 0.19 87.00 ± 0.33 94.00 ± 0.12 88.00 ± 0.21
ResNet50 89.00 ± 0.17 90.00 ± 0.15 93.00 ± 0.16 94.00 ± 0.12 93.00 ± 0.16 98.00 ± 0.09
ResNet152 93.00 ± 0.12 92.00 ± 0.16 93.00 ± 0.16 94.00 ± 0.17 91.00 ± 0.22 93.00 ± 0.20
VGG16 90.00 ± 0.19 91.00 ± 0.19 88.00 ± 0.19 90.00 ± 0.19 90.00 ± 0.19 85.00 ± 0.19
VGG19 90.00 ± 0.19 87.00 ± 0.21 88.00 ± 0.19 90.00 ± 0.19 90.00 ± 0.19 85.00 ± 0.25
NASNetLarge 82.00 ± 0.23 88.00 ± 0.19 89.00 ± 0.17 81.00 ± 0.23 93.00 ± 0.19 82.00 ± 0.26
NASNetMobile 87.00 ± 0.17 88.00 ± 0.22 94.00 ± 0.19 87.00 ± 0.17 93.00 ± 0.19 89.00 ± 0.17
ResNet50V2 87.00 ± 0.12 96.00 ± 0.11 92.00 ± 0.19 90.00 ± 0.18 95.00 ± 0.12 88.00 ± 0.10
ResNet101V2 79.00 ± 0.32 89.00 ± 0.24 89.00 ± 0.28 76.00 ± 0.32 95.00 ± 0.12 78.00 ± 0.26
ResNet152V2 90.00 ± 0.27 86.00 ± 0.26 93.00 ± 0.16 89.00 ± 0.20 96.00 ± 0.11 88.00 ± 0.28

Fig. 6 – Performance of different ML classifiers on the COVID-

19 pneumonia classification.
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was obtained by Bagging classifier with a maximum of

99.00% ± 0.09 accuracy on features extracted by DenseNet121

architecture (with feature extraction time of 9.306 s and
training time of 30.748 s in Table 7), which is the highest result

reported in the literature for COVID-19 classification of this

dataset. It is also inferred from Table 3 that the second-best

result obtained by ResNet50 feature extractor and LightGBM

classifier (with feature extraction time of 10.206 s and training

time of 0.960 s in Table 7) with an overall accuracy of 98.00

± 0.09. Comparing the first and second winners among all

combinations, the classification accuracy of DenseNet121

with Bagging is slightly better (1%) than ResNet50 with

LightGBM, while the training time of the second winner is

tempting, almost 30 times better than the first winner in

terms of accuracy. Although Bagging is a slow learner, it has

the lowest standard deviation and hence is more stable than

other learners.

The results also demonstrate that the detection rate is

worst on the features extracted by ResNet101V2 trained by

the AdaBoost classifier with 76.00 ± 0.32 accuracy. Figs. 6

and 7 demonstrate box-plot distributions of deep CNNs fea-

ture extractors and classification accuracy from the 10-fold

cross-validation. Circles in Fig. 7 represent outliers. In Tables

4–6, the obtained precision, recall, and F1-score of the fea-

tures extracted by deep CNN architectures trained by differ-

ent learners are presented respectively. As given in these

tables, the highest precision, recall, and F1-score rates are



Fig. 7 – Performance of the deep CNNs feature extractors and

Bagging classifier on the COVID-19 pneumonia

classification.
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achieved by MobileNet and InceptionV3 feature vector trained

on Bagging tree classifier with value of 99.00% precision,

recall, and F-score. The XGBoost and Bagging classifiers also

yielded the second-best results with values of (98.00, 98.00,

98,00)% precision, recall, and F-score rates with features

extracted by DenseNet121, DenseNet201 and Xception archi-

tectures. Similar conclusions can be drawn for other models.

The experimental results indicate that the performance of the

deep CNNs using DenseNet121, DenseNet201, MobileNet,

Xception and InceptionV3 models trained by Bagging tree

and XGBoost classifiers yield satisfactory results and outper-

forms other state-of-the-art CNNs and learners in COVID-19

classification. Based on the obtained results, we believe that

by discarding the irrelevant features using sparse descriptors

of low dimensionality features extracted by deep CNNmodels

instead of training a deep CNNs model can be considered as a

successful improvement of the performance of a machine
Table 4 – Comparison of classification precision metric of differ
best result; underlined value represents the second-best result

Decision Tree Random Forest X

MobileNet 89.00% 88.00% 9
DenseNet121 96.00% 97.00% 9
DenseNet201 94.00% 94.00% 9
Xception 92.00% 95.00% 9
InceptionV3 85.00% 85.00% 9
InceptionResNetV2 88.00% 96.00% 9
ResNet50 95.00% 89.00% 9
ResNet152 90.00% 91.00% 9
VGG16 94.00% 93.00% 9
VGG19 94.00% 93.00% 9
NASNetLarge 89.00% 91.00% 9
NASNetMobile 89.00% 87.00% 9
ResNet50V2 92.00% 89.00% 9
ResNet101V2 87.00% 89.00% 9
ResNet152V2 91.00% 94.00% 9
learning algorithms. Our obtained results agree with the

top-performing ML classifiers of Bagging and LightGBM. The

best pre-trained visual feature extractor so far was Dense-

Net121, MobileNet and InceptionV3 rather than counterpart

architectures for COVID-19 image classification.

Although the approach presented here shows satisfying

performance, it also has limitations classifying more chal-

lenging instances with vague, low contrast boundaries, and

the presence of artifacts. Some examples of these cases are

illustrated in Fig. 9. Finally, comparison of the feature extrac-

tion time using deep CNN models and training with ML algo-

rithms are shown in Table 7 and Fig. 8. The extraction time of

the DenseNet201 architectures on the total of 274 images was

computed with 38.227 s (about 0.13 s per image) was the long-

est visual feature extractor and NASNetMobile was the fastest

visual feature extractor by 7.786 s (about 0.028 s per image).

DenseNet121 architecture as the best model took 9.306 s

(about 0.03 s per image) for feature extraction phase and

30.748 s (about 0.11 s per image) for the training phase on Bag-

ging tree classifier. ResNet50 architecture as the second-best

visual feature extractor took 10.206 s (about 0.03 s per image)

for feature extraction phase and the training time of 0.960 s

(about 0.003 s per image) on LightGBM classifier. In conclu-

sion, the extraction and training time of the proposed

approach is considerate significantly low in comparison with

training a deep CNN model from scratch which implies faster

computation time and lower resource consumption.

The high-level feature vectors of the last fully connected of

the best combination of features and learner (DenseNet121

and Bagging classifier) are extracted and trained from the test

dataset. We use the feature extractor model (DenseNet121) to

extract convolution features. Then, we convert features

extracted from each original image into a row vector. Refer-

ring to the Table 1, the dimension of the row vector is 1024.

We sort all deep feature representations and their correspond

labels, accordingly. After that, we adopt the T-SNE model to

visualize the classification results from the bagging classifier.

The visualization result is shown in Fig. 10 with two different

colors represent different classes of each test data (dark blue
ent machine learning models. The bold value indicates the
of the respective category.

GBoost AdaBoost Bagging Classifier LightGBM

3.00% 85.00% 99.00% 90.00%
8.00% 95.00% 96.00% 95.00%
5.00% 94.00% 98.00% 94.00%
0.00% 89.00% 98.00% 93.00%
6.00% 85.00% 99.00% 82.00%
5.00% 90.00% 95.00% 93.00%
4.00% 96.00% 95.00% 94.00%
5.00% 91.00% 93.00% 89.00%
4.00% 89.00% 92.00% 89.00%
4.00% 89.00% 92.00% 89.00%
4.00% 90.00% 95.00% 91.00%
5.00% 88.00% 93.00% 88.00%
4.00% 88.00% 96.00% 91.00%
4.00% 86.00% 96.00% 78.00%
6.00% 91.00% 97.00% 91.00%



Table 5 – Comparison of classification recall metric of different machine learning models. The bold value indicates the best
result; underlined value represents the second-best result of the respective category.

Decision Tree Random Forest XGBoost AdaBoost Bagging Classifier LightGBM

MobileNet 89.00% 88.00% 93.00% 84.00% 99.00% 90.00%
DenseNet121 96.00% 96.00% 98.00% 95.00% 96.00% 95.00%
DenseNet201 94.00% 94.00% 95.00% 94.00% 98.00% 94.00%
Xception 90.00% 95.00% 90.00% 89.00% 98.00% 93.00%
InceptionV3 85.00% 85.00% 96.00% 85.00% 99.00% 82.00%
InceptionResNetV2 88.00% 95.00% 95.00% 90.00% 95.00% 93.00%
ResNet50 95.00% 89.00% 94.00% 96.00% 95.00% 94.00%
ResNet152 89.00% 91.00% 95.00% 90.00% 93.00% 89.00%
VGG16 94.00% 93.00% 94.00% 89.00% 91.00% 89.00%
VGG19 94.00% 93.00% 94.00% 89.00% 91.00% 89.00%
NASNetLarge 88.00% 91.00% 94.00% 90.00% 95.00% 90.00%
NASNetMobile 89.00% 87.00% 95.00% 88.00% 93.00% 85.00%
ResNet50V2 91.00% 89.00% 94.00% 88.00% 96.00% 91.00%
ResNet101V2 87.00% 88.00% 94.00% 85.00% 96.00% 77.00%
ResNet152V2 90.00% 94.00% 96.00% 90.00% 96.00% 91.00%

Table 6 – Comparison of classification f1-score metric of different machine learning models. The bold value indicates the best
result; underlined value represents the second-best result of the respective category.

Decision Tree Random Forest XGBoost AdaBoost Bagging Classifier LightGBM

MobileNet 89.00% 88.00% 93.00% 84.00% 99.00% 91.00%
DenseNet121 96.00% 96.00% 98.00% 95.00% 96.00% 95.00%
DenseNet201 94.00% 94.00% 95.00% 94.00% 98.00% 94.00%
Xception 90.00% 95.00% 90.00% 89.00% 98.00% 93.00%
InceptionV3 85.00% 85.00% 96.00% 85.00% 99.00% 82.00%
InceptionResNetV2 88.00% 95.00% 95.00% 90.00% 95.00% 93.00%
ResNet50 95.00% 89.00% 94.00% 96.00% 95.00% 94.00%
ResNet152 89.00% 91.00% 95.00% 90.00% 93.00% 89.00%
VGG16 94.00% 93.00% 94.00% 89.00% 91.00% 89.00%
VGG19 94.00% 93.00% 94.00% 89.00% 91.00% 89.00%
NASNetLarge 88.00% 91.00% 94.00% 90.00% 95.00% 90.00%
NASNetMobile 89.00% 87.00% 95.00% 88.00% 93.00% 85.00%
ResNet50V2 91.00% 89.00% 94.00% 88.00% 96.00% 91.00%
ResNet101V2 87.00% 88.00% 94.00% 85.00% 96.00% 77.00%
ResNet152V2 90.00% 94.00% 96.00% 90.00% 96.00% 91.00%

Table 7 – The time for feature extraction of deep CNNmodels and training on ML algorithms using Intel(R) Core (TM) i7-8700 K
3.7 GHz processors with 32 GB RAM, Nvidia GeForce GTX 1080 Ti GPU with 11 GB RAM.

Extraction Time (s) DT (s) RF (s) XGBoost (s) AdaBoost (s) Bagging Classifier (s) LightGBM (s)

MobileNet 8.803 0.022 0.008 0.438 0.023 33.535 1.097
DenseNet121 9.306 0.017 0.009 0.362 0.021 30.748 0.897
DenseNet201 38.227 0.035 0.009 0.684 0.034 33.446 1.573
Xception 10.819 0.042 0.009 0.787 0.044 35.144 1.612
InceptionV3 11.825 0.045 0.009 0.86 0.048 37.54 1.98
InceptionResNetV2 14.151 0.035 0.009 0.575 0.035 33.562 1.169
ResNet50 10.206 0.034 0.009 0.694 0.04 33.232 0.96
ResNet152 15.769 0.031 0.01 0.653 0.031 32.347 1.114
VGG16 14.746 0.009 0.008 0.2 0.012 29.51 0.498
VGG19 14.359 0.01 0.008 0.2 0.013 29.336 0.494
NASNetLarge 13.131 0.066 0.01 1.409 0.067 38.337 2.542
NASNetMobile 7.786 0.024 0.009 0.429 0.024 32.782 0.93
ResNet50V2 10.204 0.044 0.009 0.691 0.045 34.369 1.798
ResNet101V2 12.435 0.047 0.009 0.776 0.048 0.9634 1.577
ResNet152V2 16.67 0.031 0.009 0.73 0.032 34.56 1.514
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Fig. 8 – Feature extraction time and accuracy of different

deep CNN feature extractors on COVID-19 classification.

Fig. 10 – The t-SNE visualization results that illustrate the

performance of the best model (DenseNet121 and Bagging

classifier) on test data.

Fig. 11 – Web-based application for automatic detection of

COVID-19 pneumonia.
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points represent healthy cases and yellow points represent

Covid-19 cases). The distribution of the test data from the

visualization result in this figure demonstrates the strong

ability of the proposed method in classifying each image into

the correspond label.

After training amodel, the pre-trainedweights andmodels

can be used as predictive engine for CAD systems to allow an

automatic classification of new data. Aweb-based application

was implemented using standard web development tools and

techniques such as Python, JavaScript, HTML, and Flask web

framework. Fig. 11 shows the output of our web-based appli-

cation for COVID-19 pneumonia detection. This web applica-

tion could help doctors benefit from our proposed method by

providing an online tool that only requires uploading an X-ray

or CT image. The application then provides the physician with

a simple COVID-19 Positive, or COVID-19 Negative observa-

tion. It should be noted that this application has yet to be clin-

ically validated, is not yet approved for diagnostic use and

would simply serve as a diagnostic aid for the medical imag-

ing specialist.

The proposed method is generic as it does not need hand-

crafted features and can be easily adapted, requiring minimal

pre-processing. The provided dataset is collected across mul-

tiple sources with different shape, textures and morphologi-

cal characteristics. The transfer learning strategy has

successfully transferred knowledge from the source to the

target domain despite the limited dataset size of the provided

dataset. During the proposed approach, we observed that no

over-fitting occurs to impact the classification accuracy
Fig. 9 – Examples of miss-classifi
adversely. However, our study has some limitations. The

training data samples are limited. Extending the dataset size

by additional data sources can provide a better understanding

on the proposed approach. Also, employing pre-trained net-

works as feature extractors requires to rescale the input

images to a certain dimension which may discard valuable

information. Although the proposed methodology achieved

satisfying performance with an accuracy of 99.00%, the diag-

nostic performance of the deep learning visual feature extrac-

tor and machine learning classifier should be evaluated on

real clinical study trials. It is important to note that no statis-

tical inferences were drawn from the obtained results to mea-

sure the significance of models’ improvements.The final

obtained accuracy might be an over optimistic estimate and

is not confirmed when the model is tested on independent

training and testing sets.
ed cases of COVID-19 dataset.
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5. Conclusion

The ongoing pandemic of COVID-19 has been declared a global

health emergency due to the relatively high infection rate of

the disease. As of the time of this writing, there is no clinically

approved therapeutic drug or vaccine available to treat COVID-

19. Early detection of COVID-19 is important to interrupt the

human-to–human transmission of COVID-19 and patient care.

Currently, the isolation and quarantine of the suspicious

patients is the most effective way to prevent the spread of

COVID-19. Diagnostic modalities such as chest X-ray and CT

are playing an important role in monitoring the progression

and severity of the disease in COVID-19 positive patients. This

paper presents a feature extractor-based deep learning and

machine learning classifier approach for computer-aided diag-

nosis of COVID-19 pneumonia. Several ML algorithms were

trained on the features extracted by well-established CNNs

architectures to find the best combination of features and

learners.Considering thehighvisual complexityof imagedata,

properdeep feature extraction is considered as a critical step in

developing deep CNN models. The experimental results on

available chest X-ray and CT dataset demonstrate that the fea-

tures extracted by DenseNet121 architecture and trained by a

Bagging tree classifier generates very accurate prediction of

99.00% in terms of classification accuracy.

In the future, it would be interesting to investigate design-

ing models with weights that are transferred and fine-tuned

using a similar domain instead of weights from different

domain such as ImageNet dataset.
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