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Abstract

Pro-inflammatory signals induce metabolic reprogramming in innate and

adaptive immune cells of both myeloid and lymphoid lineage, characterized by

a shift to aerobic glycolysis akin to the Warburg effect first described in cancer.

Blocking the switch to aerobic glycolysis impairs the survival, differentiation,

and effector functions of pro-inflammatory cell types while favoring anti-

inflammatory and regulatory phenotypes. Glycolytic reprogramming may

therefore represent a selective vulnerability of inflammatory immune cells,

providing an opportunity to modulate immune responses in autoimmune dis-

ease without broad toxicity in other tissues of the body. The mechanisms by

which aerobic glycolysis and the balance between glycolysis and oxidative

phosphorylation regulate immune responses have only begun to be under-

stood, with many additional insights expected in the years to come.

Immunometabolic therapies targeting aerobic glycolysis include both pharma-

cologic inhibitors of key enzymes and glucose-restricted diets, such as the keto-

genic diet. Animal studies support a role for these pharmacologic and dietary

therapies for the treatment of autoimmune diseases, and in a few cases proof

of concept has been demonstrated in human disease. Nonetheless, much more

work is needed to establish the clinical safety and efficacy of these treatments.
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1 | INTRODUCTION

In the 1920s, Otto Warburg made the seminal observation that tumor cells dramatically upregulate glycolysis compared
with surrounding normal tissue, with increased fermentation of pyruvate to lactate rather than oxidation in mitochon-
dria even in the presence of oxygen (Warburg, 1925). This peculiar form of energy metabolism, termed “aerobic
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glycolysis” and subsequently the “Warburg effect,” has long been proposed to represent a selective vulnerability of can-
cer cells amenable to therapeutic intervention.

Although Warburg himself (Warburg, Gawehn, & Geissler, 1958) and several other groups in the 1960s and 1970s
(Cooper, Barkhan, & Hale, 1963; Culvenor & Weidemann, 1976; Hedeskov, 1968; Roos & Loos, 1970) observed a similar
metabolic switch to aerobic glycolysis in activated leukocytes, the Warburg effect was widely considered unique to can-
cer biology until the early 2000s. At that time, seminal work by several groups demonstrated that immune challenge
and activation of naïve lymphocytes produces metabolic reprogramming from oxidative to Warburg physiology (Cham,
Driessens, O'Keefe, & Gajewski, 2008; Cham & Gajewski, 2005; Frauwirth et al., 2002). In the intervening years, these
observations were extended to other immune cell types of both myeloid and lymphoid lineages, and within both the
innate and adaptive immune systems (Kelly & O'Neill, 2015; Klein Geltink, Kyle, & Pearce, 2018; O'Neill, Kishton, &
Rathmell, 2016; Pearce & Pearce, 2013; Figure 1). The past 15 years have seen an explosion of interest in the role of
metabolism in immune regulation, as cellular metabolic pathways previously thought to serve housekeeping functions
have been shown to dynamically respond to external signals and causally regulate immune activation, differentiation,
and effector function. The result has been the burgeoning field of “immunometabolism” and excitement regarding the
possibility of targeting metabolism to modulate the immune response in human disease (Patel, Leone, Horton, & Pow-
ell, 2019).

Metabolic regulation of the immune response is much more complex than the simple balance between glycolysis
and oxidative phosphorylation (OXPHOS), with a wide and growing array of metabolic pathways interacting to impact
immune function (O'Neill et al., 2016; Patel et al., 2019). And just as Warburg physiology is not unique to cancer cells,
it extends beyond immunology as well—recent studies have identified important roles for aerobic glycolysis in other
proliferative cell types, such as pluripotent stem cells (Folmes et al., 2011; Kondoh et al., 2007) and angiogenic endothe-
lial cells (De Bock et al., 2013). Nonetheless, as a common characteristic among inflammatory cell types and a critical
regulator of immune function, aerobic glycolysis remains an attractive therapeutic target for treating disorders of
immune dysregulation (e.g., autoimmune diseases) without broad toxicity in normal, differentiated tissues that rely on
oxidative metabolism. And unlike cancer, in which the therapeutic effect must be complete, the treatment of autoim-
mune diseases requires only modulation of the immune response. Our own recent work found that dimethyl fumarate,
a derivative of the Krebs cycle metabolite fumarate used to treat autoimmune diseases such as psoriasis and multiple

FIGURE 1 Glycolytic reprogramming is conserved among inflammatory immune subsets. Glycolytic upregulation, including the

increased lactate production in the presence of oxygen that defines aerobic glycolysis, occurs following inflammatory activation of cells from

both myeloid and lymphoid lineage. In contrast, regulatory and/or anti-inflammatory immune subsets generally rely on oxidative energy

metabolism. Inhibiting glycolysis through genetic or pharmacologic measures prevents inflammatory immune activation, including the

differentiation and effector functions of inflammatory cells, while promoting differentiation of regulatory subsets. 2-DG, 2-deoxy-D-glucose
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sclerosis (MS) in humans, produces anti-inflammatory effects via inhibition of aerobic glycolysis (Kornberg et al., 2018).
This work provided proof of concept that targeting aerobic glycolysis is a viable strategy for controlling autoimmunity.

In this review, I will first survey the evidence supporting the critical role of aerobic glycolysis in immune fate and
function, highlighting multiple cell types of both lymphoid and myeloid lineage. I will then discuss our current knowl-
edge and the many unanswered questions surrounding the mechanistic requirement for glycolytic reprogramming, that
is, why it is necessary for immune activation. Finally, I will review current pharmacologic and dietary efforts to target
glycolysis as a therapeutic strategy, focusing on autoimmune disease.

2 | EVIDENCE FOR THE IMPORTANCE OF AEROBIC GLYCOLYSIS IN
IMMUNE REGULATION

2.1 | T lymphocytes

The earliest insights into the importance of glycolytic reprogramming in the immune response were derived from stud-
ies in T lymphocytes, of both CD8 and CD4 lineage. In 2002, Frauwirth and colleagues in the laboratory of Craig
Thompson discovered that upregulation of glycolysis in T cells is a coordinated response to immune activation, with
CD28 co-stimulation producing increased glucose transporter expression, glucose uptake, and glycolysis via pho-
sphatidylinositol 3-kinase (PI3K). They also made the observation that glucose was preferentially metabolized to lactate
in this setting rather than oxidized in mitochondria—the hallmark of Warburg physiology. Soon after, Cham and col-
leagues (Cham et al., 2008; Cham & Gajewski, 2005) showed that this coordinated glycolytic reprogramming is required
for CD8 effector functions such as cytokine transcription and cytolytic activity, which were inhibited by glucose depri-
vation and the glycolysis inhibitor 2-deoxy-D-glucose (2-DG). Several groups have subsequently extended these seminal
observations, showing that enhanced glycolysis is similarly necessary for survival/proliferation, differentiation, and
effector functions of CD4 lymphocytes and identifying molecular pathways underlying glycolytic reprogramming in
lymphocytes, such as transcriptional regulation by Myc (Wang et al., 2011) and hypoxia-inducible factor 1α (HIF-1α;
Shi et al., 2011), increased expression of the glucose transporter GLUT1 (Macintyre et al., 2014), and activation of pyru-
vate dehydrogenase kinase isoform 1 (PDHK1; Gerriets et al., 2015).

T lymphocytes span a wide range of phenotypes and functions, and importantly glycolytic reprogramming and the
balance between glycolysis and OXPHOS differentially regulate T cell subsets and inflammatory versus regulatory func-
tions. For instance, pro-inflammatory effector CD4 lymphocytes such as T helper (TH) 1 and TH17 cells are character-
ized by Warburg-like glycolytic metabolism, requiring aerobic glycolysis for their differentiation and effector functions.
Regulatory T (Treg) cells on the other hand, which suppress inflammatory responses and promote tolerance, engage gly-
colytic metabolism during initial activation and proliferation but subsequently exhibit oxidative metabolism dependent
on lipids and pyruvate and become independent of glucose (Angelin et al., 2017; Gerriets et al., 2016;Michalek et al.,
2011; Shi et al., 2011). Preventing glycolytic upregulation via glucose deprivation, GLUT1 or HIF-1α deficiency, or 2-DG
shifts the balance between these subsets, preventing TH1/TH17 differentiation and reciprocally favoring Treg develop-
ment both in vitro and in vivo (Michalek et al., 2011; Shi et al., 2011). Activation of Treg cells with toll-like receptor
(TLR) agonists or forced expression of Glut1 increases glycolysis and proliferation but inhibits their anti-inflammatory
suppressive functions, which depend on oxidative metabolism driven by the transcription factor Foxp3 (Gerriets
et al., 2016).

Bioenergetic profiles similarly distinguish effector from central memory T (TCM) lymphocytes, which has been
principally studied in CD8 cells. Whereas effector CD8 lymphocytes display Warburg physiology, long-lived TCM

CD8 cells primarily utilize fatty acid oxidation (O'Sullivan et al., 2014; Pearce et al., 2009; Pollizzi et al., 2015;
Sukumar et al., 2013; van der Windt et al., 2012). Inhibition of glycolysis promotes and OXPHOS inhibition
impairs TCM development. Upon re-stimulation, memory CD8 cells once again engage aerobic glycolysis to per-
form effector functions (Gubser et al., 2013). The ability to shift T lymphocyte fate and function from pro-
inflammatory to regulatory or memory phenotypes by inhibition of glycolysis underlies the potential of targeting
aerobic glycolysis in autoimmune disease.

As in the case of cancer, it is important to note that the balance between glycolysis and OXPHOS is not all or
none. Although glycolysis is disproportionately upregulated following pro-inflammatory stimulation of naïve T
lymphocytes, with substantial lactate production consistent with aerobic glycolysis, OXPHOS increases as well
(but to a lesser extent) and serves critical functions. For instance, reactive oxygen species derived from the
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electron transport chain (ETC) are essential for T lymphocyte activation (Sena et al., 2013), and inhibition of
OXPHOS with oligomycin prevents initial T lymphocyte activation and proliferation (Chang et al., 2013). Aerobic
glycolysis appears to be dispensable for the earliest stage of T lymphocyte activation (Chang et al., 2013; Tan et al.,
2017), whereas T cell-specific knockdown of ETC components limits early activation and expansion (Tan et al.,
2017; Tarasenko et al., 2017). Mitochondrial serine metabolism is critical for T cell activation (Ron-Harel et al.,
2016), and mitochondrial biogenesis induced by PGC1α is essential for effector T cell antitumor immunity
(Scharping et al., 2016). As such, mitochondrial metabolism and OXPHOS serve important energetic, anabolic,
and signaling roles in effector T lymphocytes independent of glycolysis.

2.2 | Dendritic cells

As the primary antigen presenting cells of the peripheral immune system, dendritic cells (DCs) link the innate and
adaptive arms of immunity and regulate lymphocyte activation and differentiation. Upon exposure to antigens and
other external signals, DCs can adopt pro-inflammatory or tolerogenic phenotypes and subsequently migrate from
peripheral tissues to draining lymph nodes. Stimulation of pattern recognition receptors, such as TLRs, by signals such
as lipopolysaccharide (LPS) promote inflammatory DC activation, inducing production of pro-inflammatory
chemokines and cytokines. Resting DCs exhibit oxidative metabolism. Ligation of TLRs induces a drastic increase in
glycolysis associated with lactate production, consistent with Warburg physiology (Krawczyk et al., 2010). This glyco-
lytic reprogramming is required for both DC activation and survival (Everts et al., 2012, 2014; Krawczyk et al., 2010),
which are sensitive to glucose deprivation and 2-DG. Glycolytic upregulation is similarly critical for DC migration to
lymph nodes (Guak et al., 2018; Liu et al., 2019). Similar to T lymphocytes, glycolytic upregulation in DCs depends on
PI3K and AKT signaling (Everts et al., 2014; Krawczyk et al., 2010), as well as HIF-1α (Guak et al., 2018; Liu et al.,
2019). Unlike T lymphocytes, inflammatory activation of DCs leads to a drastic reduction in OXPHOS as a result of
inhibition by nitric oxide (NO), and glycolytic upregulation is therefore required not only to support effector functions
but also to maintain ATP levels to support survival (Everts et al., 2012).

The metabolic phenotype of tolerogenic DCs has been less studied, but work in human cells found that tolerogenic
DCs increase both glycolysis and OXPHOS, with OXPHOS driven by fatty acid oxidation playing a critical role in
maintaining a tolerogenic phenotype (Malinarich et al., 2015).

2.3 | Macrophages

Metabolic reprogramming toward aerobic glycolysis plays a critical role in macrophage activation and polarization—a
concept that was “re-discovered” within the past 15 years after initial descriptions dating back to 1970 (Hard, 1970).
Similar to other immune cells, macrophages take on distinct phenotypes in response to external signals. Inflammatory
signals, such as interferon gamma (IFNγ), LPS, and other TLR agonists, produce classically activated (or “M1”) macro-
phages, which are bactericidal but also perpetuate inflammation and promote tissue injury by producing cytokines and
toxic oxygen and nitrogen free radicals. Alternatively activated (or “M2”) macrophages, on the other hand, are induced
by signals such as interleukin (IL)-4 and IL-13 and promote resolution of inflammation and tissue repair. M1 macro-
phages upregulate glycolysis and display Warburg physiology, while M2 macrophages maintain glycolysis at levels com-
parable to unstimulated cells and depend on OXPHOS (Rodríguez-Prados et al., 2010; Vats et al., 2006). In keeping with
the paradigm described above for T lymphocytes and DCs, aerobic glycolysis is required for inflammatory functions of
M1 macrophages, which can be blocked by 2-DG (Tannahill et al., 2013) and augmented by overexpression of GLUT1
(Freemerman et al., 2014). Similar to DCs, M1 macrophages downregulate OXPHOS, largely due to inhibition by
NO. Several mechanisms underlying glycolytic reprogramming following TLR activation have been described, as
reviewed elsewhere (Kelly & O'Neill, 2015), including activation of the mechanistic target of rapamycin (mTOR) and
HIF-1α pathways, increased expression of ubiquitous-type phosphofructokinase 2 (u-PFK2), and downregulation of
AMP-activated protein kinase (AMPK).

In contrast to inflammatory M1 macrophages, M2 macrophages require OXPHOS for their polarization and tissue
repair functions, with dependence on PPARγ-coactivator-1β (PGC-1β)-induced fatty acid oxidation and mitochondrial
biogenesis (Vats et al., 2006) and regulation by efferocytic metabolites (Zhang, Weinberg, et al., 2019). This bioenergetic
dichotomy offers additional targets for manipulating macrophage fate and function.
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2.4 | B lymphocytes

The role of glycolysis, and metabolism more generally, has been less studied in B lymphocyte biology, although this is a
rapidly advancing field of research. Similar to naïve T lymphocytes, naïve B lymphocytes are metabolically quiescent
but appear to rely on OXPHOS for their energy needs, at least in vitro (Kunisawa et al., 2015). Upon activation, B lym-
phocytes were found to undergo a more balanced increase in lactate production and oxygen consumption compared to
T lymphocytes, although glycolytic upregulation is required for proliferation and antibody production (Akkaya et al.,
2018; Caro-Maldonado et al., 2014; Jayachandran et al., 2018; Jellusova et al., 2017). Anergic B lymphocytes remain
metabolically quiescent (Caro-Maldonado et al., 2014). The metabolic characteristics and requirements of long-lived
plasma cells and immunosuppressive regulatory B lymphocytes remain incompletely understood.

2.5 | Natural killer cells

Natural killer (NK) cells are lymphoid cells that influence immune responses through both direct and indirect mecha-
nisms, displaying cytolytic functions and producing inflammatory cytokines such as IFNγ. They are generally consid-
ered part of the innate immune system given their rapid responsiveness and lack of antigen specificity, with primary
roles in antiviral and anticancer responses, although they regulate the adaptive immune response through interactions
with T lymphocytes (Campbell & Hasegawa, 2013; Crouse, Xu, Lang, & Oxenius, 2015). Recently, NK cells have them-
selves been shown to possess adaptive characteristics, with the discovery of long-lived subsets displaying immunologic
memory (Cooper et al., 2009; Gamliel et al., 2018; O'Leary, Goodarzi, Drayton, & von Andrian, 2006; Sun, Beilke, &
Lanier, 2009).

Recent work has identified unique interactions between metabolism (including glycolytic reprogramming) and NK
cell function. Interestingly, resting NK cells, which maintain low levels of both glycolysis and OXPHOS, do not exhibit
major changes in metabolism during the first several hours of stimulation despite rapidly taking on effector functions
(Keppel, Saucier, Mah, Vogel, & Cooper, 2015). Longer periods of stimulation, on the other hand, produce substantial
increases in both aerobic glycolysis and OXPHOS that are required for NK cell proliferation and effector functions
(Donnelly et al., 2014; Keating et al., 2016; Mah et al., 2017; Marçais et al., 2014; Viel et al., 2016). NK cells can be
divided into CD56bright and CD56dim populations, which differ with regard to responsiveness to cytokines versus recep-
tor ligation and the kinetics with which they become cytotoxic. These populations also appear to differ metabolically,
with CD56bright cells undergoing greater metabolic reprogramming (Jensen, Potempa, Gotthardt, & Lanier, 2017; Keat-
ing et al., 2016). Memory NK cells appear to share some metabolic characteristics with memory T lymphocytes. Adap-
tive, memory-like NK cells from human cytomegalovirus (CMV) seropositive donors exhibited increased OXPHOS and
mitochondrial membrane potential compared to canonical NK cells (Cichocki et al., 2018). In mice, clearance of dys-
functional mitochondria via mitophagy was required for successful NK cell contraction-to-memory phase transition
after CMV infection (O'Sullivan, Johnson, Kang, & Sun, 2015).

Some aspects of glycolytic reprogramming are conserved in NK cells compared to other immune subsets, such as
dependence on mTOR complex 1 (mTORC1) and Myc (Donnelly et al., 2014; Loftus et al., 2018; Marçais et al., 2014).
NK cell metabolism is unique in other respects. For instance, glycolytic upregulation occurs independent of HIF-1α
(Loftus et al., 2018). Even more interestingly, unlike T lymphocytes that fuel OXPHOS via glutamine entering the Krebs
cycle, OXPHOS in activated NK cells is supported by pyruvate metabolized within mitochondria via the citrate–malate
shuttle, bypassing the Krebs cycle altogether (Assmann et al., 2017). Transcriptional regulation of the citrate-malate
shuttle occurs through a novel role of sterol regulatory element-binding protein (SREBP), which is classically consid-
ered a regulator of fatty acid and cholesterol synthesis.

3 | EVOLVING MECHANISTIC INSIGHTS INTO GLYCOLYTIC
REGULATION OF IMMUNE FUNCTION

Although the causal role of glycolytic reprogramming in determining immune cell fate and function is well established,
the precise mechanisms underlying the necessity of aerobic glycolysis remain incompletely understood. Similar ques-
tions as to why aerobic glycolysis confers advantage still exist in cancer biology as well, as reviewed by Liberti and
Locasale (2016). In both cancer biology and immunology, several theories are widely accepted. For instance, it has been
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proposed that aerobic glycolysis supports proliferative or anabolic states by providing carbon substrates for the many
pathways that branch from glycolysis and provide biomass building blocks, such as the pentose phosphate pathway
(important for nucleotide and lipid synthesis) and the de novo serine synthesis pathway. Alternatively, a widely cited
concept is that aerobic glycolysis provides a greater rate of ATP generation to support growth and anabolism, with the
kinetic advantage of glycolysis over OXPHOS outweighing its decreased efficiency in terms of moles of ATP produced
per unit of glucose. While both of these proposals have biological plausibility and a degree of experimental support,
they have shortcomings as well. For instance, under Warburg conditions most of the carbon that enters cells as glucose
is excreted as lactate rather than used for biosynthesis; in stimulated thymocytes, macromolecular synthesis accounted
for only 7% of glucose uptake (Hume, Radik, Ferber, & Weidemann, 1978). Although this inefficiency may have para-
doxical advantages, such as offering more precise control of biosynthetic pathways (Lunt & Vander Heiden, 2011), these
advantages remain hypothetical. Similarly, it has never been definitively shown that ATP levels are limiting either
among tumor cells or activated immune cells (Locasale & Cantley, 2011; Lunt & Vander Heiden, 2011), suggesting that
a higher rate of ATP production might not explain the necessity of aerobic glycolysis.

The shortcomings of these conventional concepts suggest that other mechanisms may explain the role of aerobic
glycolysis in immunology. As described below, several additional mechanisms have been shown to mediate the effects
of aerobic glycolysis on immune cell function, including some that are highly novel and surprising (Figure 2). These
mechanisms act at both transcriptional and posttranscriptional levels and often rely on direct signaling functions of gly-
colytic intermediates themselves. Much more remains to be understood about how glycolytic upregulation supports
inflammatory immune function, and no doubt many more mechanisms will be described in the years to come.

3.1 | Posttranscriptional control of cytokine production

Recent work has linked messenger RNA (mRNA) binding by the glycolytic enzyme glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) to the role of aerobic glycolysis in inflammatory immune responses. Nagy and Rigby
(1995) first demonstrated that GAPDH binds to AU-rich elements in the 30 untranslated region of mRNA. They
found that GAPDH binds to mRNAs corresponding to a number of inflammatory cytokines in splenocytes, includ-
ing IFNγ and GM-CSF. GAPDH-mRNA binding occurred at the NAD+-binding site of GAPDH and competed with
binding to NAD+/NADH, suggesting competition with the glycolytic functions of GAPDH. In a seminal study,
Chang et al. (2013) subsequently showed that GAPDH binding to IFNγ mRNA represses IFNγ translation in T
lymphocytes. Upregulation of glycolysis engages the enzymatic activity of GAPDH, leading to the release and

FIGURE 2 Aerobic glycolysis in immune activation:

Mechanisms and pharmacologic targets. The mechanisms by

which aerobic glycolysis regulates inflammatory immune

functions are still being elucidated. Several currently described

transcriptional and posttranscriptional mechanisms of immune

regulation are depicted above. Glycolysis-related metabolites

that directly modify proteins are shown in blue. A number of

pharmacologic inhibitors of glycolytic enzymes and associated

proteins have demonstrated efficacy without toxicity in animal

models of autoimmunity or human autoimmune disease. Some

examples are shown here, boxed in red. 2-DG, 2-deoxy-D-

glucose; 3-BP, 3-bromopyruvate; 4-OI, 4-octyl itaconate; DMF,

dimethyl fumarate. HA, heptelidic acid; LGSH,

lactoylglutathione; MGO, methylglyoxal
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translation of IFNγ mRNA—providing a mechanism that explains (at least in part) the necessity of aerobic glycol-
ysis in T lymphocyte activation. GAPDH was similarly shown to repress translation of tumor necrosis factor-α
(TNFα) mRNA in human monocytes and macrophages, with relief of this repression upon glycolytic repro-
gramming after LPS exposure (Millet, Vachharajani, McPhail, Yoza, & McCall, 2016). More recently, malonylation
of GAPDH by malonyl-CoA, a citrate-derived metabolite, was shown to induce dissociation of GAPDH and TNFα
mRNA in macrophages, suggesting GAPDH-mRNA binding might be a regulatory node in immune activation
impacted by multiple metabolic pathways (Galván-Peña et al., 2019).

Interestingly, our own group found that inhibition of GAPDH enzyme activity with either dimethyl fumarate or the
more specific compound heptelidic acid (also called koningic acid) prevents inflammatory responses in lymphocytes
and macrophages despite slightly decreasing GAPDH-mRNA binding—via modification of a cysteine residue required
for both catalytic activity and mRNA binding (Kornberg et al., 2018). This finding suggests that GAPDH enzyme activ-
ity, and increased glycolytic flux more generally, support immune functions in ways beyond regulation of GAPDH–
mRNA binding alone.

3.2 | Transcriptional control of inflammatory gene networks and glycolytic
intermediates as signaling molecules

Aerobic glycolysis has been shown to regulate transcriptional programs in activated immune cells through both
epigenetic and other mechanisms. In activated TH1 cells, increased activity of LDH-A, which catalyzes the conver-
sion of pyruvate to lactate that defines aerobic glycolysis, induces histone acetylation and increased transcription
of IFNγ by maintaining levels of acetyl-CoA (Peng et al., 2016). Glycolytic intermediates themselves can also play
direct roles in signaling. For instance, phosphoenolpyruvate enhances calcium-mediated activation of the pro-
inflammatory transcription factor nuclear factor of activated T cells (NFAT) by directly blocking calcium re-
uptake (Ho et al., 2015). Methylglyoxal (MGO), a highly reactive by-product of glycolysis generated from
glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), is a direct source of non-enzymatic
posttranslational protein modification. MGO has been shown to activate the nuclear factor (erythroid-derived 2)-
related factor 2 (NRF2) antioxidant signaling pathway via electrophilic modification of kelch-like ECH-associated
protein 1 (KEAP1), which is known to play important roles in immune functioning (Bollong et al., 2018; Mills
et al., 2018). MGO also directly modifies histones (Galligan et al., 2018), although the functional consequences of
this modification remain to be determined. Recently, Zhang, Tang, et al. (2019) made the startling discovery that
lactate itself directly regulates gene expression in macrophages through posttranslational modification of histones,
a process termed “lactylation.” Histone lactylation occurred as a late event following exposure to M1-polarizing
stimuli and served to induce a homeostatic, M2-like transcriptional program, suggesting that in some cases glyco-
lytic metabolites may act as negative regulators of inflammation, restoring balance after prolonged inflammatory
activation. Other glycolytic intermediates known to serve signaling roles, albeit with incompletely understood
consequences, are 1,3-bisphosphoglycerate and MGO-derived lactoylglutathione, both of which post-
translationally modify lysine residues (Gaffney et al., 2019; Moellering & Cravatt, 2013).

4 | INHIBITION OF AEROBIC GLYCOLYSIS AS A THERAPEUTIC
STRATEGY IN AUTOIMMUNE DISEASE

Underlying the excitement surrounding immunometabolism is the goal of exploiting the metabolic characteristics and
vulnerabilities of immune subsets to treat disease, using pharmacologic or dietary approaches to fine-tune immune
responses without broad toxicity. Given the role of glycolytic reprogramming in immune responses, strategies aimed at
interfering with aerobic glycolysis have been of major interest. With some exceptions, these strategies remain at a pre-
clinical stage of testing. But the success in animal models of pharmacologic and dietary approaches targeting glucose
metabolism, as well as the few proof of concept examples in which drugs targeting bioenergetics have been used in
human disease, underscores the clinical potential of this strategy. In this section, I will review the preclinical and clini-
cal evidence for inhibiting glycolysis to treat inflammatory and autoimmune conditions (Figure 2 and Table 1). There is
similar interest in manipulating metabolism to augment immune responses, for instance in the setting of cancer immu-
notherapy, but these efforts are beyond the scope of this discussion.
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4.1 | Pharmacologic approaches

A variety of glycolytic inhibitors have been used successfully as systemic therapies in animal models of autoimmunity.
2-DG, which is phosphorylated by hexokinase but then acts as a competitive inhibitor of phosphoglucoisomerase, pro-
duces benefit in mouse models of systemic lupus erythematosus (SLE; Yin et al., 2015) and rheumatoid arthritis (RA;
Abboud et al., 2018), with the addition of metformin augmenting its effect in SLE models. Combination therapy with
2-DG, metformin, and 6-diazo-5-oxo-L-norleucine (DON, an inhibitor of glutamine metabolism) prevents allograft rejec-
tion in transplantation models (Lee et al., 2015). 3-bromopyruvate, an inhibitor of hexokinase and GAPDH, attenuates
models of RA (Okano et al., 2017) and MS (Seki et al., 2017). Small molecule inhibitors of GLUT1 are effective in
models of psoriasis (Zhang et al., 2018) and SLE (Li et al., 2019). Dichloroacetate (DCA), an inhibitor of PDHK1 that
limits aerobic glycolysis and promotes OXPHOS by favoring pyruvate entry into the Krebs cycle rather than fermenta-
tion to lactate, has shown benefit in models of inflammatory bowel disease, RA, MS, and asthma (Bian et al., 2009;
Gerriets et al., 2015; Ostroukhova et al., 2012). All the above models depend on aberrant activation of CD4 cells, and
the benefit of the above pharmacologic agents was mediated at least in part by modulation of CD4 responses, including
promotion of Treg versus effector T cell differentiation and function. More recently, TEPP-46, a small molecule targeting
pyruvate kinase (PK) isoform PKM2, was shown to attenuate the experimental autoimmune encephalomyelitis (EAE)
mouse model of MS by limiting the development of TH1 and TH17 cells (Angiari et al., 2019). PKM2 has moonlighting
properties that include translocation to the nucleus after T cell receptor ligation and activation of pathways necessary
for engagement of aerobic glycolysis, which were blocked by TEPP-46.

Our own recent work identified inhibition of GAPDH and aerobic glycolysis as a key therapeutic mechanism of
dimethyl fumarate (DMF), which is a clinically approved immunomodulatory drug used in the treatment of MS
(Kornberg et al., 2018). Simply an electrophilic and cell-permeable derivative of the Krebs cycle metabolite fumarate,
the immunomodulatory properties of DMF were discovered serendipitously (Linker & Haghikia, 2016). Although it has
been shown to alter the numbers and phenotypes of myeloid and lymphoid populations both in vitro and in vivo
(Diebold et al., 2018; Ghadiri et al., 2017; Ghoreschi et al., 2011; Gross et al., 2016; Li et al., 2017; Longbrake et al.,
2016; Michell-Robinson et al., 2016; Smith, Calabresi, & Bhargava, 2018; Smith, Martin, Calabresi, & Bhargava, 2017;
Spencer, Crabtree-Hartman, Lehmann-Horn, Cree, & Zamvil, 2015; Wu et al., 2017), its precise mechanism of action
has remained uncertain. It has been well described to activate the NRF2 signaling pathway via electrophilic modifica-
tion of KEAP1 (Linker et al., 2011), and its metabolite monomethyl fumarate produces immunologic effects via the
hydroxycarboxylic acid receptor 2 (HCAR2; Chen et al., 2014)—important mechanisms that nonetheless fail to fully

TABLE 1 Studies of glucose-restricted diets in animal models of autoimmunity and human autoimmune disease

Glucose-restricted
diet Animal models Human trials Human trial outcomes

Ketogenic diet • EAE (Choi et al., 2016; Kim et al., 2012) • MS (Phase I—
Brenton et al.,
2019; Choi
et al., 2016)

• Improved patient-reported
health measures

• Mild decrease in lymphocyte
count

Continuous calorie
restriction

• EAE (Esquifino, Cano, Jiménez, Cutrera, &
Cardinali, 2004; Esquifino, Cano, Jimenez-
Ortega, Fernández-Mateos, & Cardinali, 2007;
Piccio, Stark, & Cross, 2008)

• MS (Phase I—
Fitzgerald
et al., 2018)

• Improvement in patient-
reported emotional health
outcomes

Intermittent fasting
or fasting-
mimicking diet

• EAE (Choi et al., 2016; Cignarella et al., 2018;
Kafami et al., 2010)

• MS (Phase I—Choi
et al., 2016;
Fitzgerald
et al., 2018)

• RA (Phase I—
Sköldstam, 1986;
Kjeldsen-Kragh
et al., 1991)

• MS—Improvements in patient-
reported outcomes (Choi et al.,
2016; Fitzgerald et al., 2018)

• MS—Mild decrease in WBC
and lymphocyte count (Choi
et al., 2016)

• RA—improvement in patient-
reported outcomes

Abbreviations: EAE, experimental autoimmune encephalomyelitis; MS, multiple sclerosis; RA, rheumatoid arthritis.
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account for the in vitro and in vivo immunologic actions of the drug (Michell-Robinson et al., 2016; Schulze-Topphoff
et al., 2016).

We found that DMF targets and inactivates GAPDH in both mice and humans through electrophilic attack on a crit-
ical active-site cysteine, inhibiting glycolytic flux in activated macrophages and lymphocytes. The immunologic actions
of DMF were mitigated by GAPDH overexpression or saturating concentrations of glucose, and replicated by the more
specific GAPDH inhibitor heptelidic acid. Similar to glycolytic blockade with 2-DG or HIF-1α knockout, DMF recipro-
cally inhibited TH1 and TH17 survival, differentiation, and effector functions while promoting Treg development, which
is consistent with the clinical observation in patients that DMF induces lymphopenia selectively impacting effector cells
while sparing Treg cells and naïve T lymphocytes. By demonstrating that a clinically safe and effective immunomodula-
tory drug acts by inhibiting aerobic glycolysis, these findings support the clinical potential of targeting metabolism to
regulate immune responses. Interestingly, Liao et al. (2019) recently showed that the endogenous metabolite itaconate
and its derivative 4-octyl itaconate, which are electrophilic compounds known to have anti-inflammatory effects (Mills
et al., 2018), also target GAPDH.

The kinetic properties of GAPDH suggest that it may be an ideal target for selective inhibition of Warburg glycoly-
sis, in both cancer and autoimmunity. Several recent studies have shown that GAPDH, which is not a rate-limiting
enzyme under basal conditions, becomes rate-limiting under Warburg conditions (Liberti et al., 2017; Shestov et al.,
2014; Yun et al., 2015), which is consistent with our own finding that DMF inhibited glycolytic flux in activated, but
not resting, macrophages. As such, GAPDH inhibition has the potential to selectively impact glycolysis in activated,
inflammatory immune cells while sparing other tissues exhibiting normal energy metabolism. Consistent with this
hypothesis, a therapeutic window for heptelidic acid was recently shown in a mouse model of breast cancer (Liberti
et al., 2017). There are of course caveats to specifically targeting GAPDH. For instance, inhibition of GAPDH prevents
ATP production from glycolysis and necessarily increases the concentration of upstream glycolytic metabolites, includ-
ing G3P and DHAP. As described earlier, G3P and DHAP can be non-enzymatically converted to the advanced
glycation end-product MGO, which in turn is metabolized to D-lactate by glyoxalase enzymes. MGO, which increases
with GAPDH inhibition, is a reactive intermediate that may serve dedicated signaling roles (Bollong et al., 2018;
Gaffney et al., 2019; Galligan et al., 2018) but also is potentially toxic (Beisswenger, Howell, Smith, & Szwergold, 2003;
Marín-Hernández et al., 2016). D-lactate derived from MGO can produce acidosis. The degree to which GAPDH inhibi-
tion predisposes to toxic effects from these byproducts remains uncertain. Interestingly, MGO-derived modifications are
enriched in glycolytic enzymes including GAPDH and appear to block glycolytic flux at the level of GAPDH (Gaffney
et al., 2019), which may serve as a feedforward mechanism augmenting the effect of DMF on glycolysis.

Other clinically used drugs with immunologic actions may similarly target aerobic glycolysis. Teriflunomide, a
dihydroorotate dehydrogenase inhibitor that limits T cell activation and is approved for treatment of MS, was recently
shown to interfere with OXPHOS and aerobic glycolysis in activated T cells via functional inhibition of respiratory
chain complex III (Klotz et al., 2019). Inhibitors of lactate dehydrogenase A (LDH-A), which are under development for
cancer, may find complementary roles as immunomodulators (Farabegoli et al., 2012; Rai et al., 2017).

Despite promising work in animal models and the discovery that some approved human therapies target glycolysis,
it is important to note that the therapeutic window and long-term safety of glycolysis inhibitors remain far from certain.
Although many, if not most, differentiated tissues exhibit predominantly oxidative energy metabolism, critical excep-
tions exist. For instance, the brain is highly glycolytic and requires glucose in the absence of ketone bodies (Bélanger,
Allaman, & Magistretti, 2011). As previously mentioned, many proliferative cell types depend on glycolysis, as well
(De Bock et al., 2013; Folmes et al., 2011; Kondoh et al., 2007). Furthermore, under pathologic conditions such as ische-
mia, normally oxidative tissues may be forced to rely exclusively on glycolysis. Interestingly, DMF-induced ketonuria
(peaking 2 hr after each dose) has been reported in a patient with Type 1 diabetes mellitus (Krzystanek & Jarosz-
Chobot, 2018), suggesting that individuals with coexisting metabolic conditions might be particularly susceptible to
adverse effects of glycolysis inhibition. The long-term feasibility of pharmacologically targeting glycolysis in humans
thus remains unknown and represents a major caveat to this approach as a treatment for autoimmune disease.

4.2 | Dietary approaches

Metabolic pathways can be manipulated not only with pharmacologic agents, but also through dietary interventions
(Table 1). The importance of glycolytic reprogramming in inflammatory responses suggests that glucose-restricted diets,
such as the ketogenic diet and modified Atkins diet, have potential benefit in inflammatory and autoimmune diseases.
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Ketogenic diet does, in fact, attenuate the course of EAE, with a concomitant decrease in markers of inflammation
(Choi et al., 2016; Kim et al., 2012). In a small, randomized pilot trial in MS patients, 6 months of ketogenic diet led to
improvements in patient-reported physical and mental health outcomes compared to a control diet (Choi et al., 2016).
Interestingly, glucose restriction with a ketogenic diet produced a decrease in patient lymphocyte counts relative to con-
trol diet, consistent with effects observed in patients taking DMF. Similar improvements in patient-reported outcomes,
namely depression and fatigue, were observed in an open-label trial of the modified Atkins diet in MS patients
(Brenton et al., 2019). It should be noted, however, that a ketogenic diet may produce immunologic actions through
multiple mechanisms in addition to impaired glycolysis, such as via direct anti-inflammatory signaling mediated by
ketone bodies themselves. The ketone body β-hydroxybutyrate, for instance, blocks NLRP3 inflammasome activation
and has additional anti-inflammatory actions via HCAR2 (Graff, Fang, Wanders, & Judd, 2016; Youm et al., 2015).

A number of other dietary strategies that include glucose restriction have been studied in animal models of autoim-
munity and human patients with autoimmune disease, although many of these involve broad dietary restriction that
makes isolating the importance of glucose difficult. For instance, continuous calorie restriction (CR) alters the immune
response and improves neurologic outcomes in EAE (Esquifino et al., 2004, 2007; Piccio et al., 2008). Various forms of
intermittent fasting (IF) and fasting-mimicking diet (FMD) similarly produce benefit in EAE (Choi et al., 2016;
Cignarella et al., 2018; Kafami et al., 2010), with a contribution from the gut microbiome (Cignarella et al., 2018). Short
(7–10 day) periods of fasting have been evaluated in small, randomized studies of RA (Kjeldsen-Kragh et al., 1991;
Sköldstam, 1986) and MS (Choi et al., 2016), with improvement in patient-reported outcomes. A randomized pilot study
of CR and IF versus control diet in MS patients demonstrated the safety and feasibility of these diets over 8 weeks, with
some improvement in patient-reported emotional health outcomes (Fitzgerald et al., 2018).

Clearly, much more work is needed to fully understand the immunologic (and non-immunologic) consequences of
glucose restriction and other dietary interventions. Although based on a biological rationale with supportive evidence
in animal models, much longer and larger clinical studies are required before any such dietary interventions should be
recommended to patients, given the complexity of human physiology and the possibility of long-term adverse effects.

5 | CHALLENGES AND FUTURE DIRECTIONS

Despite the promise of targeting the unique glucose metabolism of activated immune cells to fine-tune their behavior,
many challenges and unanswered questions remain. One challenge particularly deserving of attention is the possibility
that metabolic programs differ between cells studied in vitro versus in vivo. For instance, it has been reported that
TH17 cells generated in vivo rely on OXPHOS rather than glycolysis (Franchi et al., 2017). Differences between cells
generated in vitro versus in vivo have similarly been reported within other metabolic pathways and immune cell types,
such as with serine metabolism in macrophages (Rodriguez, Ducker, Billingham, Weinberg, & Rabinowitz, 2019).
Mechanistically, major questions remain as to why aerobic glycolysis is required for inflammatory immune responses,
building on prior seminal studies. And finally, the gap between animal and human studies must be bridged to deter-
mine the true promise of immunometabolism in clinical disease—including the long-term safety and feasibility of
targeting essential pathways such as glycolysis. Pharmacologic and dietary studies in humans will ultimately determine
whether metabolism can be targeted to produce selective modulation of the immune response without broadly toxic
effects. The need for human data is of particular importance for dietary interventions, which have become popular
among patients and the lay public despite a lack of evidence regarding safety and efficacy.

This review has focused on approaches for dampening immune responses in autoimmune disease. Attempts to
exploit metabolic pathways to enhance tumor immunotherapy are much more complex, given the complicated inter-
play between the unique metabolic characteristics of tumors and infiltrating immune cells.

6 | CONCLUSION

Initially thought to be unique to cancer cells, the Warburg effect, characterized by upregulated glycolysis with preferen-
tial fermentation of glucose to lactate even in the presence of oxygen, is observed in a wide range of inflammatory
immune cells. Myeloid and lymphoid cells of both the innate and adaptive immune systems, ranging from lymphocytes
and NK cells to DCs and macrophages, undergo Warburg-like metabolic reprogramming in response to inflammatory
stimuli. Blocking this upregulation of aerobic glycolysis dampens inflammatory responses, impairing the differentiation
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and function of pro-inflammatory cell types while favoring anti-inflammatory and regulatory immune phenotypes. The
mechanisms underlying the requirement for glycolytic reprogramming remain incompletely understood. Common
assumptions about the connection between aerobic glycolysis and anabolic biomass production or the kinetics of ATP
production have not been definitively demonstrated. Several key mechanistic insights have been made, such as the role
of the glycolytic enzyme GAPDH in regulating translation of cytokine mRNA and the importance of glycolytic enzymes
and metabolites in regulating inflammatory transcriptional programs. Nonetheless, much work remains to fully under-
stand why aerobic glycolysis is required for inflammatory immune functions.

There has been much interest in targeting aerobic glycolysis as a means of fine-tuning the immune response to treat
autoimmune diseases. Treatments targeting aerobic glycolysis take the form of both pharmacologic agents, such as
inhibitors of glycolytic enzymes, and dietary interventions, including glucose-restricted diets such as the ketogenic diet.
A variety of pharmacologic inhibitors of glycolysis have shown promise in animal models of autoimmune disease,
including 2-deoxyglucose, inhibitors of the glucose transporter GLUT1, and dichloroacetate, which is an inhibitor of
the enzyme PDHK1. DMF, an incompletely understood immunomodulatory drug used to treat psoriasis and MS, was
recently shown to produce anti-inflammatory effects through inhibition of GAPDH and aerobic glycolysis, providing
proof of concept that targeting glycolysis is a viable strategy for treating human disease. GAPDH appears to play a
unique regulatory role in Warburg glycolysis, making it an attractive target for selective modulation of glycolysis in acti-
vated immune cells without broad metabolic toxicity. Dietary strategies, including the ketogenic diet as well as
restricted-feeding diets such as CR and IF, have also shown benefit in animal models of autoimmunity and may have a
role as adjunct therapy in humans. Although such diets have become highly popular among patients and the healthy
lay public alike, evidence for the safety and efficacy of these diets in humans is lacking. Larger and longer studies are
required before any of these diets should be recommended to patients.
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