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Abstract

Over the last decade, GWAS meta-analyses have used a strict P-value threshold of 5�10�8 to classify associations as significant. Here, we
use our current understanding of frequently studied traits including lipid levels, height, and BMI to revisit this genome-wide significance
threshold. We compare the performance of studies using the P¼ 5�10�8 threshold in terms of true and false positive rate to other multi-
ple testing strategies: (1) less stringent P-value thresholds, (2) controlling the FDR with the Benjamini–Hochberg and Benjamini–Yekutieli
procedure, and (3) controlling the Bayesian FDR with posterior probabilities. We applied these procedures to re-analyze results from the
Global Lipids and GIANT GWAS meta-analysis consortia and supported them with extensive simulation that mimics the empirical data. We
observe in simulated studies with sample sizes �20,000 and >120,000 that relaxing the P-value threshold to 5�10�7 increased discovery
at the cost of 18% and 8% of additional loci being false positive results, respectively. FDR and Bayesian FDR are well controlled for both
sample sizes with a few exceptions that disappear under a less stringent definition of true positives and the two approaches yield similar
results. Our work quantifies the value of using a relaxed P-value threshold in large studies to increase their true positive discovery but also
show the excess false positive rates due to such actions in modest-sized studies. These results may guide investigators considering different
thresholds in replication studies and downstream work such as gene-set enrichment or pathway analysis. Finally, we demonstrate the viabil-
ity of FDR-controlling procedures in GWAS.
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Introduction
There has been recent discussion in the statistical community on
changing the standard P-value significance threshold for a single
test from 0.05 to 0.005 (Benjamin et al. 2018; Amrhein et al. 2019;
Wasserstein et al. 2019). Although the authors of the correspond-
ing paper (Benjamin et al. 2018) commended human geneticists
for using very stringent P-value thresholds to help ensure repro-
ducibility, the cost of this strategy in current genetic studies is
that many true genetic signals are not identified. The benefit is,
of course, rigorous control of false positives.

To account for multiple testing in genome-wide association
studies (GWAS), a fixed P-value threshold of 5� 10�8 is widely
used to identify association between a common genetic variant
and a trait of interest. Risch and Merikangas (1996) suggested
this strict P-value threshold for studying the genetics of complex
diseases due to the many false positive discoveries reported by
candidate gene studies at that time. Later, the International
HapMap Consortium (Altshuler and Donnelly 2005), Dudbridge
and Gusnanto (2008), and Pe’er et al. (2008) independently sug-
gested near-identical thresholds for common variant (minor al-
lele frequency [MAF] >5%) GWAS. Each group of investigators
sought to control the family-wise error rate (FWER) through
Bonferroni correction for the effective number of independent

tests given the linkage disequilibrium (LD) structure of the ge-
nome; they used different approaches to estimate the effective
number of independent tests. Based on these studies and rein-
forced by widespread use, the P¼ 5� 10�8 threshold soon be-
came standard for common variant GWAS. Using this threshold
has been remarkably successful in limiting false positive associ-
ation findings, leading to robust and reproducible results in a
field that prior to GWAS had reported many nonreplicable
results.

Since the acceptance of the P¼ 5� 10�8 threshold a decade ago,
there have been substantial experimental and methodological
advances that have allowed study of many more common var-
iants in much larger samples. The construction of denser genotype
arrays (Burdick et al. 2006), development of genotype imputation
(Li et al. 2009, 2010), and increasing sizes of imputation reference
panels (McCarthy et al. 2016) now allow assay of nearly all com-
mon human genetic variants. Development of tools for meta-
analysis (Willer et al. 2010; Winkler et al. 2014) has facilitated the
aggregation of results across GWAS and contributed to the in-
creasing sample sizes of genetic studies. With this changing land-
scape, it is worthwhile to revisit (Panagiotou and Ioannidis 2012)
the common variant genome-wide threshold of P¼ 5� 10�8 con-
sidering the knowledge and data acquired in the last decade.
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Instead of controlling the FWER, an inherently conservative
metric, an alternative approach to multiple testing corrections is
to use adjusted P-values to control the false discovery rate (FDR)
or to use posterior probabilities to control the Bayesian FDR
(Efron et al. 2001). Although using the Benjamini–Hochberg (B–H)
procedure (Benjamini and Hochberg 1995) is the standard prac-
tice in expression quantitative trait locus (eQTL) studies and sev-
eral Bayesian counterparts has also been proposed (Tang et al.
2007; Bogdan et al. 2008; Wen 2017), FDR-controlling procedures
have not been widely used in GWAS. In the case of B–H, this may
be due to concerns about excess estimates of FDR under the LD
structure observed in genetic data (Schwartzman and Lin 2011).
Recently, Brzyski et al. (2017) proposed a blocking strategy that
groups tested variants into clusters based on LD before applying
B–H and showed that this adapted procedure controlled the FDR
at their target threshold of 5%. However, their analysis was lim-
ited to 364,590 variants in 5,402 samples and it is unclear how
their procedure applies to meta-analysis of multiple studies.
There is a need to evaluate this adapted B–H and the more con-
servative Benjamini–Yekutieli (B–Y) procedure (Benjamini and
Yekutieli 2001) as well as other procedures that control the
Bayesian FDR over a broad range of FDR thresholds at the current
scale of common variant GWAS with larger samples and millions
of variants.

Here, we use knowledge gathered from current studies to re-
evaluate earlier common variant GWAS meta-analyses and as-
sess the impact of different multiple testing procedures on true
and false positive rate. Along with varying the P-value threshold
which controls the FWER, we evaluate the B–H and B–Y proce-
dures to control the FDR, and the Bayesian false discovery proba-
bility (BFDP) (Wakefield 2007) procedure to control the Bayesian
FDR. We apply the multiple testing procedures to earlier common
variant meta-analyses from the Global Lipids (GLGC) and GIANT
GWAS consortia on several frequently studied traits: lipid levels,
height, and body mass index (BMI). For the lipid traits which are
correlated, we also consider the performance of the multiple test-
ing procedures in multivariate analysis of multiple traits and
compare it with multiple univariate analyses. Since the true set
of causal variants for each trait is unknown, we use the latest
and largest meta-analyses for each trait as the approximate
“truth” to evaluate the performance of the multiple testing proce-
dures in our empirical datasets. We supplement this analysis
with simulation studies where the truth is known. Our results
demonstrate that the standard 5� 10�8 P-value threshold is the
best multiple testing procedure for limiting false positives and is
appropriate for modest-sized studies or for resource-intensive
follow-ups such as constructing animal models where the cost of
follow-up for each locus is high. In contrast, a less stringent P-
value threshold of 5� 10�7 [as first suggested by the Wellcome
Trust Case Control Consortium (2007)] or the adapted B–H proce-
dure at target FDR thresholds of 5% increases power to detect
true positives in large studies and can be viable for follow-ups
where the cost of including a modestly greater set of false posi-
tives is low, such as gene set enrichment, pathway analysis, or
high-throughput functional follow-ups. This in-depth examina-
tion provides useful guidance to investigators who are currently
conducting GWAS.

Materials and methods
Introduction
We first consider an additive genetic model for a single continu-
ous trait Y and the genotype Gj at variant j ¼ 1; . . . ; m

Y ¼ XTbþ Gjhj þ ej; (1)

where X is a p� 1 vector of covariates including the intercept, b

is a p� 1 vector of covariate effects, hj is the effect of variant j,
and ej is the normally distributed error with mean 0 and vari-
ance r2

j. This model can be applied to binary traits using a logit
link function.

In a sample of n individuals, we wish to test the null hypothe-
ses H0;j : hj ¼ 0 against the alternatives H1;j : hj 6¼ 0 for each vari-
ant j. Table 1 summarizes the possible outcomes for the m tests
of which m0 null hypotheses are true. For studying multiple test-
ing procedures, we focus on the first row of the table: R is the to-
tal number of rejected null hypotheses, V the number of null
hypotheses incorrectly rejected (false positives), and S the num-
ber of null hypotheses correctly rejected (true positives). The pro-
portion of false positives Q among all rejected hypotheses is then
equal to V/R for R> 0 and set to 0 for R¼ 0.

Several procedures can be used to address the issue of control-
ling false positives when testing multiple hypotheses. In the re-
mainder of this section we describe four such procedures, their
extension to joint analysis of multiple traits, and application and
assessment of these procedures in empirical and simulation
studies in the context of common variant GWAS.

FWER control
The standard procedure to correct for multiple testing in GWAS
is to control the FWER, the probability of rejecting at least one
true null hypothesis:

FWER ¼ P V > 0ð Þ ¼ P Q > 0ð Þ:

Fixed P-value thresholds often control the FWER by using the
Bonferroni procedure which provides control of FWER at level a

by rejecting any null hypothesis H0;j for variant j ¼ 1; . . . ; m with
P-value:

pj � a
m :

The Bonferroni criterion is conservative in two senses. One, by
definition it tries to protect against making at least one mistake/
false positive under the global null. The second is regarding the
conservative behavior, with FWER often falling far below the de-
sired nominal level due to correlated test statistics. This leads to
loss of power. When the variants are in LD and the corresponding
test statistics are correlated, one can increase the power of the
Bonferroni procedure by adjusting for the effective number of in-
dependent tests (Altshuler and Donnelly 2005; Dudbridge and
Gusnanto 2008; Pe’er et al. 2008) m0 � m that takes into account
LD.

FDR control
Although FWER procedures control the probability of incorrectly
rejecting at least one true null hypothesis, FDR procedures con-
trol the expected proportion of incorrectly rejected true null hy-
potheses. At equal values of a, control of FDR is less conservative

Table 1 Outcomes for testing multiple hypotheses

True hypothesis Total

H0 H1

Test H0 rejected V S R
H0 not rejected U T m-R

Total m0 m-m0 m
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than control of FWER (Goeman and Solari 2014). In the context of
Table 1,

FDR ¼ E Q½ � ¼ E
V
R

� �
if R > 0

0 if R ¼ 0
:

8<:
The B–Y procedure controls the FDR at level a under any de-

pendency structure by ordering the P-values for the m variants
from smallest to largest: pð1Þ; . . . ; pðmÞ and rejecting all null hy-
potheses H0;j; j ¼ 1; . . . ; k where k is the largest value for which:

pðkÞ � k
m

a
c mð Þ

� �
and

c mð Þ ¼
Pm

i ¼ 1
1
i :

The B–H procedure, a commonly used FDR procedure that is
valid when test statistics are positively correlated, is a special
case of B–Y where c(m) is instead defined to be equal to 1. It
requires an assumption of positive regression dependence on a
subset (PRDS) among the test statistics as formally defined in
Benjamini and Yekutieli (2001). In GWAS, the PRDS assumption
means that a variants with a less significant P-value than an-
other must also be more likely to have no effect on the trait (i.e.
truly null). For the complete set of GWAS results, PRDS is likely
to be violated due to correlation among tested variants. We de-
tail below a modification of the B–H procedure proposed by
Brzyski et al. (2017) that satisfies the PRDS assumption by filter-
ing the full set of tested variants into independent variants us-
ing LD.

Applying the B–H or B–Y procedure to GWAS can be chal-
lenging because discoveries are counted in units of loci (clus-
ters of nearby variants that are correlated due to LD) rather
than by each individual variant. Thus, FDR-controlling proce-
dures need to control for a subset of tested variants, typically
the most strongly associated (lead) variant at each locus.
Since FDR-control does not extend to a subset of the rejected
null hypotheses (Goeman and Solari 2014), we adapt the B–H
and B–Y procedures to GWAS by applying an approach pro-
posed by Brzyski et al. (2017) We first cluster the m null hy-
potheses into m* < m loci by performing LD clumping on the
m variants using a LD threshold of r2 > 0.1 and a maximal
variant distance of 1 Mb (e.g. Fritsche et al. 2019). This proce-
dure can be done using Swiss (https://github.com/statgen/
swiss). We then form a set of m* P-values using the lead vari-
ant from each locus and apply the B–H or B–Y procedures on
these m* P-values.

Bayesian approach to multiple testing
A Bayesian approach to multiple testing involves calculating the
posterior probability of the null hypotheses of no association
given the data. For a single variant j, let the likelihood of the ob-
served data D ¼ Y;X;Gj

� �
given the null hypothesis H0;j be

p DjH0;j
� �

. Then by Bayes’ theorem, the probability of the null hy-
pothesis given the data is:

P H0;jjD
� �

¼
p DjH0;j
� �

P H0;j
� �

p DjH0;j
� �

P H0;j
� �

þ p DjH1;j
� �

1� P H0;j
� �� � ¼ BF� PO

BF� POþ 1
;

where BFj ¼ p DjH0;j
� �

=p DjH1;j
� �

is the Bayes factor and POj ¼
P H0;j
� �

= 1� P H0;j
� �� �

is the prior odds of no association. Here, we
make the commonly accepted exchangeability assumption that ev-
ery tested variant has the same prior probability of being associated
with the trait, i.e. 1� P H0;j

� �
¼ p1 and then conservatively estimate

p1 as the proportion of tested variants with P< 5� 10�8 in the ob-
served summary statistics. This assumption can be easily relaxed,
allowing for different priors among tested variants based on their
functional annotations (Yang and Wang 2015).

For calculating an approximation of the posterior probability
called the Bayesian false discovery probability (BFDP), Wakefield
(2007) proposed using an approximate Bayes Factor (ABF) based
on the maximum likelihood estimator (MLE) ĥj of the variant ef-
fect hj as a succinct summary of the observed data D. Following
Wakefield, we approximate the BF by P ĥ jjH0;j

� �
=P ĥ jjH1;j

� �
.

Further assuming the sampling distribution of ĥj is normal with
mean hj and variance Vj and that hj has a prior normal distribu-
tion with mean 0 and variance Wj, we calculate the ABF as a ratio
of prior predictive densities ĥ jjH0;j � Nð0;Vj) and ĥ jjH1;j �
Nð0;Vj þWjÞ and use it to approximate the BFDP:

ABFj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� rj
p exp �

Z2
j

2
rj

" #

BFDPj ¼
ABFj � PO

ABFj � POþ 1
; (2)

where Zj is the test statistic and rj ¼Wj=ðVj þWjÞ is the ratio of
the prior variance to the total variance where the prior variance
Wj is specified based on the study (Wakefield 2007) and Vj is the
variance of Zj. Calculating the approximate BFDP requires effect
size or standard error estimates. These may not be included in
publicly available GWAS results, which often are limited to P-val-
ues and/or Z statistics. If necessary, we can reliably estimate the
effect size and standard error for each variant from its Z statistic
and estimated MAF (Zhu et al. 2016).

Bayesian FDR is the expected proportion of false positives
among all discoveries conditional on the observed data, whereas
the traditional FDR is the average Bayesian FDR over many hypo-
thetically repeated experiments (Wen 2017). Controlling the
Bayesian FDR (Müller et al. 2004; Wen 2017) is similar to control-
ling the FDR except we use BFDP in the procedure in place of
P-values. To control the Bayesian FDR in multiple hypotheses
testing at level a, we order the BFDPs for m variants from smallest
to largest: BFDPð1Þ; . . . ;BFDPðmÞ and reject all null hypotheses H0;j,
j ¼ 1; . . . ; k where k is the largest value for which:

Pk
i ¼ 1 BFDPi

k
� a:

As with the B–H and B–Y procedures, we first cluster the tested
variants into loci and then apply the BFDP procedure on the lead
variant for each locus.

Joint analysis of multiple traits
In studies of L correlated traits, there is potentially more power to
detect association if the traits are analyzed together (Diggle et al.
2002). One approach is to conduct L parallel univariate tests and
correct for testing multiple traits simultaneously (i.e. divide the P-
value thresholds by L); an alternative is to jointly analyze the L
traits using multivariate test statistics and then apply the usual
multiple testing procedures to the m resulting tests.

Consider joint testing of the association between genetic vari-
ant j and the L traits under an extension of (1):

Y1�L ¼ XT
1�pbp�L þ Gjhj;1�L þ ej;1�L; (3)

where ej is normally distributed with mean 01�L and variance RL�L

representing the covariance matrix of the trait residuals. In (3),
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we test the m null hypotheses of no association with any trait:
H0;j : h1;j ¼ � � � ¼ hL;j ¼ 0 for each variant j ¼ 1; . . . ; m.

For Bonferroni and B–H/B–Y, we jointly analyzed all traits with
metaMANOVA (Bolormaa et al. 2014; Ray and Boehnke 2018) us-
ing the test statistic:

tmetaMANOVA ¼ Z
0
X̂
�1

Z;

where Z is the vector of test statistics for the L traits, X̂ is the esti-
mated correlation matrix for the L traits, and tmetaMANOVA follows
an apoproximate chi-squared distribution with L degrees of free-
dom. We then apply the Bonferroni and B–Y procedures to the
multivariate test statistics using the same approach as for the
univariate study. To control BFDP, we use an extension
(Wakefield 2007) of the ABF in (2) to multiple traits (Appendix 1 of
this paper).

Empirical studies
We evaluated the performance of the multiple testing procedures
in the context of common variant GWAS by using publicly avail-
able meta-analysis results from the GLGC and the GIANT consor-
tia. For each procedure, we calculated the empirical false
discovery rate (eFDR) as the number of false positive loci in the
test set (V in Table 1) divided by the total number of significant
loci identified in the test set (R in Table 1). Since V is unknown as
we do not know the truth, we assume that the largest, most re-
cent GWAS represents “truth.” We clustered variants declared
significant by each procedure into loci using LD clumping. First,
we ordered the significant variants by P-values and then using
the variant with the smallest P-value (i.e. most significant) as the
lead variant, we grouped all other variants that had LD threshold
of r2 > 0.1 with the lead variant and within 61 Mb of the lead vari-
ant into one locus. Next, we repeated this step on the remaining
ungrouped variants until all significant variants were clustered
into loci. For the adapted B–H and BFPD procedures, we first used
LD clumping on all tested variants and then applied the proce-
dures on the lead variant from each locus to obtain a set of signif-
icant loci. In the test set, we labeled loci whose lead variants had
high LD (defined as r2 > 0.80) with a variant in the truth set with
P< 5� 10�8 as true positives; the remaining loci we considered
false positives. We also performed sensitivity analyses on a re-
laxed definition of true positive which lowered the r2 threshold to
0.60, corresponding to moderate LD between test and truth var-
iants.

Out of four GWAS meta-analyses (Willer et al. 2008;
Kathiresan et al. 2009; Teslovich et al. 2010; Willer et al. 2013) se-
quentially carried out for plasma high-density lipoprotein choles-
terol (HDL), low-density lipoprotein cholesterol (LDL), and
triglycerides (TG) levels, we picked the largest meta-analysis
(Willer et al. 2013) with n¼ 188,577 to serve as the truth set and
the second smallest meta-analysis (Kathiresan et al. 2009) with
n¼ 19,840 to serve as the test set. We do not present results for
the other two meta-analyses in the main text because one (Willer
et al. 2008) (n¼ 8,816) had limited power and detected few signifi-
cant variants and the other (Teslovich et al. 2010) (n¼ 100,184)
had very substantial overlap in samples with the truth set so that
there was insufficient sample size differences for the truth set to
well approximate the truth. Of the 2,373,282 variants analyzed in
both the truth and test sets, we analyzed the 2,120,069 (89%) with
MAF >5% in both sets and imputed to the HapMap 3 reference
panel (Altshuler et al. 2010).

To evaluate the multiple testing procedures over a wider range
of sample sizes and genetic architectures, we also applied the
procedures to meta-analyses for height and body mass index

(BMI) from the GIANT consortium (Lango Allen et al. 2010;
Speliotes et al. 2010; Yengo et al. 2018). We present results for
these meta-analyses from a larger set of sequential meta-
analyses (Lango Allen et al. 2010; Speliotes et al. 2010; Wood et al.
2014; Locke et al. 2015; Yengo et al. 2018) using the same rationale
as described above for GLGC: the largest, most recent meta-
analyses (Yengo et al. 2018) for height and BMI (n¼ 694,529 and
n¼ 681,275, respectively) served as the truth sets and the small-
est meta-analyses (Lango Allen et al. 2010; Speliotes et al. 2010)
for each trait (n¼ 133,653 and n¼ 123,865) served as the test sets.
Of the 2,282,242 variants analyzed in both meta-analyses for
height, we analyzed the 2,036,404 (89%) with MAF > 5%. Of the
2,282,195 variants in both meta-analyses for BMI, we analyzed
the 2,035,656 (89%) with MAF > 5% in both sets and imputed to
the HapMap 3 reference panel (Altshuler et al. 2010).

For univariate analysis of each lipid and anthropometric
trait, we used published meta-analyses results. Detailed
descriptions of the statistical analyses for each of the results
can be found in their respective papers (Kathiresan et al. 2009;
Lango Allen et al. 2010; Speliotes et al. 2010; Willer et al. 2013;
Yengo et al. 2018). For multivariate analysis of the three lipid
traits together, we combined the univariate results using the
appropriate multivariate extension for each of the procedures
as described above.

Simulation studies
To evaluate the multiple testing procedure when truth is known,
we generated 1000 replicate datasets based on a simplified ver-
sion of the empirical association structure observed in the latest
GWAS for each of the five traits. Since we are only using the sig-
nificant variants from the empirical study as causal variants in
our simulation study, the number of true and false positives may
differ between the two studies. We assessed the true and false
positive rate of each procedure using the same method as de-
scribed for our empirical studies.

To mimic the GLGC test set which consisted of European
cohorts, we randomly sampled 19,840 individuals from 276,791
unrelated individuals of white British ancestry in the UK BioBank
dataset. For each replicate, we used the genotypes of these indi-
viduals to generate outcomes on n¼ 19,840 individuals for each
lipid trait following model (1). We assumed the trait value Y is in-
verse normalized to maintain consistency with the empirical
studies, we chose the causal variant effect sizes h from the esti-
mated values for variants with P< 5� 10�8 latest GLGC GWAS
(the truth set), and the error term is normally distributed with
mean 0 and variance equal to 1 minus the proportion of trait vari-
ance explained by the simulated causal variants. We ran associa-
tion analysis with each replicate dataset using a linear regression
model with no additional covariates. We took a similar approach
for simulating height and BMI based on the GIANT dataset using
separate generation models for the two traits. An estimated num-
bers of causal variants that can be detected in simulation for the
five traits at different P-value thresholds of can be found in
Supplementary Table S1.

Data availability
Meta-analyses results for the Global Lipids Genetics Consortium
are available at http://lipidgenetics.org. Meta-analyses results for
the GIANT Constortium are available at https://portals.broadinsti
tute.org/collaboration/giant/index.php/GIANT_consortium_data
_files. UK Biobank genotype data are available at http://biobank.
ctsu.ox.ac.uk/crystal/label.cgi?id¼263.
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Supplementary material is available at figshare DOI: https://
doi.org/10.25387/g3.13211507.

Results
We applied the multiple testing procedures to HDL, LDL, TG,
height, and BMI to assess their performances for different sample
sizes and genetic structures.

P-value threshold
Applying various fixed P-value thresholds to the empirical GLGC
and GIANT test sets, we observed as expected that the empirical
false discovery rate (eFDR) generally increased as the P-value
threshold increased (Tables 2 and 3). The lone exception (for
HDL) likely reflected statistical noise due to the small number of
identified loci.

For height and BMI, we identified substantially more loci by
relaxing the threshold from P¼ 5� 10�8 to P¼ 5� 10�7 with
nearly all these new loci being true positives (Table 2 and
Figure 1): 60 of 61 (98%) for height; 15 of 15 (100%) for BMI
(Table 3). Further relaxing the threshold from P¼ 5� 10�7 to
P¼ 5� 10�6 maintained high proportions of true positives among
the additional loci: 95 of 96 (99%) for height, 18 of 19 (95%) for
BMI. For the lipid traits in the GLGC test set, relaxing the thresh-
old from P¼ 5� 10�8 to P¼ 5� 10�7 resulted in HDL, LDL, and TG
gaining 2, 5, and 3 loci with 2, 2, and 2 (100%, 40%, and 67%) being
true positives. Further relaxing the threshold from P¼ 5� 10�7 to
P¼ 5� 10�6 resulted in � 56% of the additional loci being true
positives for the lipid traits.

We observed in the GLGC- and GIANT-based simulated data-
sets that the average eFDR increased as the P-value threshold in-
creased for all traits (Table 3); the inconsistency described before

for the empirical HDL test set disappeared when we averaged
over 1,000 simulation replicates. Consistent with the empirical
results, there was a clear difference in the proportion of true posi-
tives between the lipid and anthropometric traits in the simu-
lated results (Table 3). Relaxing the threshold from P¼ 5� 10�8 to
P¼ 5� 10�7 in the simulated datasets resulted in an average of
77% to 87% of the additional loci being true positives for the lipid
traits and 93% and 90% for height and BMI. Further relaxing the
threshold from P¼ 5� 10�7 to P¼ 5� 10�6 resulted in 47% to 60%
of the additional loci being true positives for lipids, and 84% and
79% for height and BMI.

To address whether the higher rates of true positives we ob-
served when relaxing the P-value threshold for height and BMI
compared to those for lipids were the result of differences in sam-
ple sizes, we simulated test sets for height and BMI at the same
sample sizes (n¼ 8,816 and n¼ 19,840) as the GLGC meta-
analyses. For both traits, an increase in sample size generally led
to higher proportion of true positives gained from relaxing the P-
value threshold (Table 4), suggesting a better yield of true posi-
tives by using relaxed thresholds in larger samples than in
smaller ones.

Benjamini–Hochberg and Benjamini–Yekutieli
procedures
As expected, empirical results for the two FDR controlling proce-
dures showed B–Y was conservative, resulting in eFDR far below
the target FDR threshold for all traits at commonly used (5-15%;
Table 5) and more extreme (1–25%; Supplementary Table S2)
thresholds. B–H controlled the eFDR at the target thresholds
(Table 6 and Supplementary Table S3) for height and BMI but not
lipid traits, likely because the number of lipid trait discoveries
was modest (� 26 loci for B–H) so that even a small change in

Table 2 Empirical and simulation results for all traits and commonly used thresholds

Empirical Simulation

Positives eFDRb Positives eFDR (SE)

False Truea False True

HDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

P¼ 5� 10�8 1 16 5.9% 0.28 9.5 2.9% (0.33%)
P¼ 5� 10�7 1 18 5.3% 0.89 12 6.7% (0.45%)

BH¼ 5% 1 18 5.3% 0.70 12 5.6% (0.43%)
BY¼ 5% 0 14 0% 0.17 8.2 2.0% (0.31%)

BFDP¼ 5% 1 17 5.6% 0.41 10 4.0% (0.37%)
LDL

(ntest ¼ 19,840
ntruth ¼ 188,577)

5� 10�8 0 14 0% 0.19 13 1.5% (0.19%)
5� 10�7 3 16 16% 0.71 16 4.2% (0.27%)
BH¼ 5% 3 16 16% 0.67 16 4.0% (0.27%)
BY¼ 5% 0 14 0% 0.13 12 1.1% (0.17%)

BFDP¼ 5% 2 17 11% 0.37 14 2.5% (0.22%)
TG

(ntest ¼ 19,840
ntruth ¼ 188,577)

5� 10�8 1 8 11% 0.11 9.0 1.2% (0.21%)
5� 10�7 2 10 17% 0.54 10 4.9% (0.37%)
BH¼ 5% 2 9 18% 0.32 10 3.1% (0.30%)
BY¼ 5% 0 8 0% 0.05 8.5 0.58% (0.16%)

BFDP¼ 5% 1 10 9.1% 0.36 9.8 3.6% (0.32%)
Height

(ntest ¼ 133,653
ntruth ¼ 693,529)

5� 10�8 0 157 0% 1.6 181 0.89% (0.042%)
5� 10�7 1 217 0.46% 4.9 223 2.2% (0.055%)
BH¼ 5% 2 351 0.57% 22 301 6.8% (0.086%)
BY¼ 5% 0 197 0% 4.3 217 2.0% (0.054%)

BFDP¼ 5% 2 338 0.59% 28 317 8.1% (0.077%)
BMI

(ntest ¼ 123,865
ntruth ¼ 681,275)

5� 10�8 0 22 0% 0.62 39 1.6% (0.13%)
5� 10�7 0 37 0% 2.7 58 4.4% (0.19%)
BH¼ 5% 1 41 2.4% 6.6 77 7.9% (0.19%)
BY¼ 5% 0 20 0% 0.83 41 2.0% (0.15%)

BFDP¼ 5% 0 35 0% 3.9 67 5.4% (0.18%)

a Number of loci in truth set for HDL: 89, LDL: 72, TG: 60, height: 1100, BMI: 724.
b eFDR is calculated as number of false positives divided by sum of true and false positives.
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numbers of true and false positives substantially influenced esti-
mated eFDR. When the total number of discoveries is small, it is
more useful to assess control of FDR averaged over a large num-
ber of datasets in simulation since the variance of the eFDR based
on a single empirical study can be quite large.

Simulation results for B–Y were consistent with empirical
results in showing that B–Y is overly conservative for all five
traits and all target FDR thresholds (Table 5 and Supplementary
Table S2). For example, the observed eFDR for target threshold of
15% is < 3.4% for all traits and the equivalent P-value threshold
for that target threshold is 10 times more stringent for B–Y than
B–H (Supplementary Table S4). Compared to the empirical
results, B–H did a better job of controlling eFDR at the commonly
used thresholds (Table 6) for all traits; only for height at 5% and
BMI at 5% did B–H show noticeable excess in eFDR (6.8% for
height, 7.9% for BMI). When we relaxed our criterion for defining
a true positive (see below), excess eFDR for height and BMI de-
creased (eFDR ¼ 5.5% and 5.2%) (Supplementary Table S5). eFDR
was well-controlled at high thresholds 20% and 25% for all five
traits but poorly-controlled at low thresholds 1% and 3%
(Supplementary Table S3).

We investigated whether FDR control for B–H and B–Y ex-
tended across sample sizes by using simulated datasets for
height and BMI at n¼ 8,816, n¼ 19,840 and n¼ 133,653 (height) or
123,865 (BMI). Both procedures controlled eFDR at the target FDR
thresholds 5-15% for height (Supplementary Tables S6 and S7);
BMI showed excess eFDR under B–H for all test sets which disap-
peared under the relaxed definition of true positives
(Supplementary Table S5; data not shown for smaller sample
sizes).

Bayesian false discovery probability
For the BFDP procedure, we estimated the prior probability of as-
sociation at a variant site (p1) separately for each test set using
the proportion of tested variants with P< 5� 10�8. Empirical
results showed that eFDR was well controlled for height and BMI
at target Bayesian FDR thresholds 1-25% but poorly controlled for
lipid traits (Table 7 and Supplementary Table S8), again likely
due to the smaller number of discoveries for lipid traits (� 24 loci
for BFDP).

Simulation results for BFDP showed that eFDR was generally
well controlled at target Bayesian FDR thresholds 5-15% (Table 7)
for all traits except height (eFDR ¼ 8.1%, 13%, and 17%). For more
extreme thresholds (Supplementary Table S8), eFDR was con-
trolled at 1 and 3% for lipid traits, albeit with excess eFDR for
HDL at 1%; eFDR was controlled at 20% and 25% for all traits.

Multi-trait analysis results for lipids
In empirical results (Supplementary Table S9), the P¼ 5� 10�8

threshold had the lowest eFDR for the parallel univariate tests
both adjusted (Bonferroni corrected threshold of 1.67� 10�8) and
unadjusted (5� 10�8) for testing three traits. For the multivariate
tests, the P¼ 5� 10�8 and P¼ 5� 10�7 thresholds had identical
eFDR of 0%. Between the three sets of thresholds, the multivari-
ate analysis had the lowest eFDR as well as the highest propor-
tion of true positive discoveries when relaxing the P-value
thresholds. For both the B–H and BFDP procedures, multivariate
tests had lower eFDR than the univariate tests but only the multi-
variate B–H procedure controlled the eFDR at target thresholds 5-
15%.

In simulation results (Supplementary Table S10), the
P¼ 5� 10�8 threshold had the lowest eFDR for all three sets of
tests. Consistent with empirical results, multivariate tests had
the lowest eFDR at all three P-value thresholds and better true
positive rate for relaxing thresholds compared with the univari-
ate tests. For the B–H and BFDP procedure, both univariate and
multivariate tests controlled the eFDR at target thresholds 5-15%.

Sensitivity analyses
We defined true positives in the test set strictly as loci whose lead
variants had LD threshold of r2 > 0.80 with a genome-wide signif-
icant (P < 5� 10�8) variant in the truth set. We chose this strict
criterion to avoid underestimating the number of false positives
in our analysis but it likely led to overestimation of eFDR. To as-
sess the impact of this, we repeated our simulation analyses us-
ing a relaxed definition of true positives by lowering the LD
threshold requirement to 0.60 and the P-value requirement to
5� 10�7 (Supplementary Table S5). As expected, under this re-
laxed definition we observed fewer false positives and occur-
rences of excess eFDR largely disappeared as well. For example,
simulation results for height using the BFDP procedure at FDR

Table 3 Empirical and simulation results for P-value thresholds

Trait Threshold (P-value) Empirical Simulation

Positives eFDRb D in #of sig.
loci (% true)

Positives eFDR D in #of sig.
loci (% true)

False Truea False True

HDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

5� 10�8 1 16 5.9% – 0.28 9.5 2.9% –
5� 10�7 1 18 5.3% þ2 (100%) 0.89 12 6.7% þ3.6 (83%)
5� 10�6 8 21 28% þ10 (30%) 4.2 17 20% þ8.2 (60%)

LDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

5� 10�8 0 14 0% – 0.19 13 1.5% –
5� 10�7 3 16 16% þ5 (40%) 0.71 16 4.2% þ3.9 (87%)
5� 10�6 10 19 34% þ10 (30%) 4.6 22 17% þ9.1 (58%)

TG
(ntest ¼ 19,840
ntruth ¼ 188,577)

5� 10�8 1 8 11% – 0.11 9.0 1.2% –
5� 10�7 2 10 17% þ3 (67%) 0.54 10 4.9% þ1.9 (77%)
5� 10�6 6 15 29% þ9 (56%) 3.8 13 22% þ6.1 (47%)

Height
(ntest ¼ 133,653
ntruth ¼ 693,529)

5� 10�8 0 157 0% – 1.6 181 0.89% –
5� 10�7 1 217 0.46% þ61 (98%) 4.9 223 2.2% þ46 (93%)
5� 10�6 2 312 0.64% þ96 (99%) 16 283 5.4% þ72 (84%)

BMI
(ntest ¼ 123,865
ntruth ¼ 681,275)

5� 10�8 0 22 0% – 0.62 39 1.6% –
5� 10�7 0 37 0% þ15 (100%) 2.7 58 4.4% þ22 (90%)
5� 10�6 1 55 1.8% þ19 (95%) 11 90 11% þ41 (79%)

a Number of loci in truth set for HDL: 89, LDL: 72, TG: 60, height: 1100, BMI: 724.
b eFDR is calculated as number of false positives divided by sum of true and false positives.
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Figure 1 Manhattan plot of empirical P-value thresholds for variants with P � 5x10�8. Plots of different P-value thresholds applied to empirical test sets
for HDL, BMI, and height. Colored variants depict true positive loci (blue) and false positive loci (red) for variants with P � 5x10�8. Lead variants for true
and false positive loci are represented by large blue circles and large triangles, respectively.

Table 4 Effect of sample size on simulation results for P-value thresholds

Trait Threshold (P-value) n¼8,816 n¼19,840 n¼133,653 or 123,865

Positives eFDRb D sig. loci
(% True positive)

Positives eFDR D sig. loci
(% True
positive)

Positives eFDR D sig. loci
(% True
positive)False Truea False True False True

Height 5� 10-8 0.04 0.90 4.3% – 0.03 11 0.27% – 1.6 181 0.89% –
5� 10�7 0.40 2.2 15% þ1.7 (78%) 0.32 18 1.7% þ7.4 (96%) 4.9 223 2.2% þ46 (93%)
5� 10�6 3.0 5.9 34% þ6.3 (58%) 3.6 30 11% þ15 (79%) 16 283 5.4% þ72 (84%)

BMI 5� 10�8 0.04 0.20 17% – 0.09 1.5 5.7% – 0.62 39 1.6% –
5� 10�7 0.34 0.41 45% þ0.51 (41%) 0.46 2.4 16% þ1.3 (72%) 2.7 58 4.4% þ22 (90%)
5� 10�6 3.1 1.2 73% þ3.5 (21%) 3.2 4.6 41% þ5.0 (44%) 11 90 11% þ41 (79%)

a Number of loci in truth set for HDL: 89, LDL: 72, TG: 60, height: 1100, BMI: 724.
b eFDR is calculated as number of false positives divided by sum of true and false positives.
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thresholds of 10% and 15% showed eFDR of 13% and 17% under
the strict definition and 10% and 14% under the relaxed defini-
tion.

In addition to our LD-based definitions, we used physical dis-
tance to define loci and true positives. We grouped variants
within 61Mb of the lead variants into loci and defined true posi-
tives as loci whose lead variants were within 650kb of a genome-
wide significant variant in the truth set. The analyses results
(Supplementary Table S11) showed that the distance-based defi-
nitions led to smaller numbers of true and false positives for all
traits and multiple testing procedures.

Discussion
In this paper, we leverage the sequentially growing nature of
GWAS meta-analyses to evaluate true and false positive rate of P-
value thresholds and other multiple testing procedures.

Although the standard procedure for identifying significant asso-
ciations in common variant GWAS is to use a P-value threshold
of 5� 10�8, relaxing the significance criteria, whether through
use of less stringent P-value thresholds or controlling for alterna-
tive error rate measures such as FDR (depending on the target
threshold) increases the number of identified loci. We demon-
strated that a substantial proportion of the additional loci identi-
fied by relaxed P-value thresholds are true positives, with larger
proportions of true positives in analysis of larger samples.

Application to downstream analyses
GWAS identify trait-associated variants and loci based on associ-
ation analysis of millions of variants. The identified loci are often
further validated in replication studies before being used for sta-
tistical and functional analyses to identify causal genes, variants,
and mechanisms. Although relaxed P-value thresholds are often
used to generate the list of loci for replication, the expected true

Table 5 Empirical and simulation results for Benjamini–Yekutieli procedure

Trait Threshold (FDR) Empirical Simulation

Positives eFDRb Positives eFDR

False Truea False True

HDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 0 14 0% 0.17 8.2 2.0%
10% 1 16 5.9% 0.25 9.1 2.7%
15% 1 16 5.9% 0.31 9.6 3.1%

LDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 0 14 0% 0.13 12 1.1%
10% 0 14 0% 0.19 13 1.5%
15% 0 15 0% 0.26 13 1.9%

TG
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 0 8 0% 0.05 8.5 0.58%
10% 0 8 0% 0.06 8.7 0.68%
15% 1 8 11% 0.11 9.0 1.2%

Height
(ntest ¼ 133,653
ntruth ¼ 693,529)

5% 0 197 0% 4.3 217 2.0%
10% 1 234 0.43% 6.3 235 2.6%
15% 1 249 0.40% 7.9 246 3.1%

BMI
(ntest ¼ 123,865
ntruth ¼ 681,275)

5% 0 20 0% 0.83 41 2.0%
10% 0 22 0% 1.4 47 2.9%
15% 0 26 0% 1.8 52 3.4%

a Number of loci in truth set for HDL: 89, LDL: 72, TG: 60, height: 1100, BMI: 724.
b eFDR is calculated as number of false positives divided by sum of true and false positives.

Table 6 Empirical and simulation results for Benjamini–Hochberg procedure

Trait Threshold (FDR) Empirical Simulation

Positives eFDRb Positives eFDR

False Truea False True

HDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 1 18 5.3% 0.70 12 5.6%
10% 5 18 22% 1.3 13 8.5%
15% 6 20 23% 1.7 14 11%

LDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 3 16 16% 0.67 16 4.0%
10% 4 16 20% 1.1 18 6.0%
15% 7 17 29% 1.7 18 8.6%

TG
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 2 9 18% 0.32 10 3.1%
10% 5 10 33% 0.63 11 5.6%
15% 5 10 33% 0.96 11 8.0%

Height
(ntest ¼ 133,653
ntruth ¼ 693,529)

5% 2 351 0.57% 22 301 6.8%
10% 4 421 0.94% 37 331 10%
15% 8 468 1.7% 50 351 13%

BMI
(ntest ¼ 123,865
ntruth ¼ 681,275)

5% 1 41 2.4% 6.6 77 7.9%
10% 1 47 2.1% 11 91 11%
15% 1 55 1.8% 16 102 14%

a Number of loci in truth set for HDL: 89, LDL: 72, TG: 60, height: 1100, BMI: 724.
b eFDR is calculated as number of false positives divided by sum of true and false positives.
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and false discovery rates under different thresholds have not
been quantified. We showed by simulation for common variant
GWAS with sample size > 100,000 that 90-93% of additional dis-
coveries with P-values between 5� 10�8 and 5� 10�7 were true
positives, representing true associations that would be lost under
a more stringent threshold. However, for more modest sample
sizes (�20,000), our simulation showed that only 77-87% of addi-
tionally discovered loci with P-values between 5� 10�8 and
5� 10�7 were true positives. Here, investigators should exercise
caution when relaxing the significance threshold for replication
studies as the increase to replicated associations may not out-
weigh the excess false discovery rate.

For follow-up studies such as constructing animal models
where the per-locus cost of follow-up is high, a stringent P-value
threshold of 5� 10�8 is appropriate in both large and modest-
sized studies to generate a highly accurate list of associated loci.
However, such threshold may be unhelpfully conservative for
analyses where including (many) more true loci at the cost of (a
few) more false positives is acceptable such as gene-set enrich-
ment or pathway analysis. In these situations, a relaxed thresh-
old of 5� 10�7 may be better served to prioritize GWAS results for
downstream analyses.

FDR- and Bayesian FDR-control
FDR-control is an appropriate choice for practitioners who are
willing to tolerate some proportion of false positive discoveries as
long as it can be controlled below a target threshold. At equal
thresholds, controlling the FDR is less conservative than control-
ling the FWER and thus expands the GWAS-identified set of asso-
ciated loci for downstream analysis, especially for highly
polygenic traits. We showed that the B–H procedure adapted for
GWAS (see Materials and Methods) provided approximate control
of the empirical estimate of FDR (eFDR) for the tested traits and
samples at target thresholds 5-25%. The B–Y procedure is far too
conservative in GWAS as the correction factor which removes
assumptions on the dependency structure of test statistics is un-
necessary under the adapted B–H procedure which forms inde-
pendent test statistics using the lead variants from each locus.

For BFDP, a Bayesian alternative to B–H, we estimated the pro-
portion of trait-associated variants p1 using the proportion of
tested variants with P-values less than 5� 10�8 and found the
Bayesian FDR to be reasonably well controlled at thresholds of 5-
25%. For comparison, when we estimated p1 as the number of
loci with lead variant P< 5� 10�8 divided by 1 million [an esti-
mate for the total number of independent common variants in
the genome (Altshuler and Donnelly 2005; Pe’er et al. 2008)], the
resulting lower p1 estimates led to conservative results
(Supplementary Table S12).

Comparison between procedures
A P-value threshold has the advantages of familiarity, simplicity,
and ease of implementation, whereas B–H and BFDP control the
eFDR across a range of sample sizes. A stringent P-value thresh-
old is needed if our primary goal is to limit the number of false
positives as both B–H and BFDP struggled to control the eFDR at
low target thresholds 1% and 3%. In addition, the P-value thresh-
old can also be used to control the Per Family Error Rate (PFER) as
discussed in Gordon et al. (2007) since the Bonferroni procedure
can be trivially extended to control PFER.

Limitations
Our analysis is based on five anthropometric and lipid traits
which obviously do not fully reflect the wide range of phenotypes
studied in GWAS. However, our simulated traits do represent dif-
ferent levels of polygenicity ranging from HDL with 89 causal var-
iants and some larger effect sizes (Supplementary Figure S1) to
height with 1100 causal variants and generally smaller effect
sizes, covering a wide range of genetic architectures for quantita-
tive phenotypes.

Our analysis is also limited to studies of European-origin indi-
viduals. Further work using test and truth sets with non-
European samples would be welcome to confirm that our find-
ings are applicable more generally.

We relied on publicly available meta-analyses results from
the GLGC and GIANT consortia for our empirical and simulation
studies. However, imputation qualities were not provided for
these datasets, which raises the concern that our analyses would

Table 7 Empirical and simulation results for BFDP procedure

Trait Threshold
(Bayesian FDR)

Empirical Simulation

cp1
a Positives eFDRc cp1

d Positives eFDR

False Trueb False True

HDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 1.3� 10�4 1 17 5.6% 8.7� 10�5 0.41 10 4.0%
10% 4 17 19% 0.76 12 6.1%
15% 6 18 25% 1.2 13 8.4%

LDL
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 1.3� 10�4 2 17 11% 9.6� 10�5 0.37 14 2.5%
10% 5 17 23% 0.83 16 4.9%
15% 6 18 25% 1.3 18 7.0%

TG
(ntest ¼ 19,840
ntruth ¼ 188,577)

5% 2.1� 10�4 1 10 9.1% 1.6� 10�4 0.36 9.8 3.6%
10% 4 10 29% 1.0 11 8.4%
15% 4 12 25% 1.6 12 12%

Height
(ntest ¼ 133,653
ntruth ¼ 693,529)

5% 2.0� 10�3 2 338 0.59% 2.9� 10�3 28 317 8.1%
10% 7 406 1.7% 51 356 13%
15% 9 468 1.9% 76 385 17%

BMI
(ntest ¼ 123,865
ntruth ¼ 681,275)

5% 3.6� 10�4 0 35 0% 5.2� 10�4 3.9 67 5.4%
10% 0 43 0% 7.2 82 8.0%
15% 0 50 0% 11 93 10%

a cp1 is the estimated prior probability of association at a variant site equal to the proportion of tested variants with P < 5�10�8.
b Number of loci in truth set for HDL: 89, LDL: 72, TG: 60, height: 1100, BMI: 724.
c eFDR is calculated as number of false positives divided by sum of true and false positives.
d Average p̂1 in 1,000 replicate datasets.
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have missed the effects of poorly imputed variants. Since we re-
stricted our analyses to �2 million HapMap3 common variants
with consistently high imputation r-squared across past studies,
we believe our results were not substantially affected by varia-
tion in imputation quality.

We defined true and false positive discoveries in our empirical
analysis using the largest, most recent common variant GWAS
which we called the truth sets. Since our empirical test set came
from the same sequential set of meta-analyses as the truth set,
the samples in our test set were a complete subset of those in the
truth set. Although this procedure did not guarantee the (un-
known) list of loci truly associated with each tested trait, the
truth sets served as reasonable approximations when there were
considerable sample size differences between the truth and test
sets. When we repeated our analysis for smaller test sets
(n¼ 8,816), we observed well-controlled eFDR for the B–H proce-
dure as expected. However, in larger test sets (n¼ 253,288), we ob-
served noticeable excess in eFDR which disappeared in
simulations. This is likely because the sample size differences be-
tween the larger empirical test sets and the approximate truth
set is small enough that the “truths” may no longer be accurate.
When this occurs, false positive discovery in the test set can be-
come biased since a false positive in the test set may be discov-
ered (and thus become a true positive) in a subsequent study
larger than the truth set. In simulated datasets where the truth
was known, the eFDR was well-controlled.

Association results on the same samples may differ owing to
changes in quality control and/or statistical analysis. For exam-
ple, some studies may choose not to apply genomic control which
can then lead to inflated P-values due to confounding from popu-
lation stratification. In this scenario, relaxing the significance
threshold may not be appropriate since the number of false posi-
tives would already be higher than expected. We did not observe
substantial genomic inflation in our analyses (average lambda
GC of 1.04, 95% CI: 1.02, 1.05) and so could not easily investigate
how our results would have changed depending on whether GC is
or is not applied.

Although our results showed only modest differences between
multivariate and univariate tests in terms of multiple testing cor-
rections, we only considered the case of three correlated traits as
opposed to the tens to thousands of traits that might simulta-
neously be tested in metabolomics or imaging studies. With
many traits, combining univariate tests but not adjusting for
multiple traits will surely lead to excess false positive discoveries
(as even our limited results demonstrated), whereas adjusting for
hundreds of traits may be overly conservative. Here, multivariate
tests may represent an attractive option.

In this study, we focused on common variants (MAF > 5%).
This allowed us to construct likely highly accurate truth sets of
loci based on serial common variant GWAS for anthropometric
and lipid traits to facilitate the evaluation of different procedures
for multiple testing corrections. We plan next to consider multi-
ple testing in the context of rare variant analysis (Pulit et al. 2017;
Lin 2019) which necessarily will increase the number of hypothe-
sis tests for which we need to correct and introduce the consider-
ation of gene- and more generally set-based association tests.

Summary
In this study, we evaluated the performance of four procedures
for multiple testing corrections in the context of common variant
GWAS: P-value thresholds, B–H and B–Y for FDR control, and
BFDP for Bayesian FDR control. We have shown that for studies
based on large samples, using a less stringent P-value threshold

of 5� 10�7 or use of FDR-controlling procedure (B–H) at target
threshold of 5% substantially increases the number of true posi-
tive discoveries that can be used in downstream analyses while
only modestly increasing false positives compared with the com-
monly used 5� 10�8 P-value threshold. The latter threshold
remains the preferred choice for modest-sized studies or when a
stringently curated list of loci is desired. Finally, we show that
FDR-control largely extends across sample sizes with a few
exceptions that disappear under a relaxed definition of true posi-
tives and FDR-controlling procedures can be similarly applied to
large and modest-sized studies.
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Appendix 1: Multivariate BFDP
Consider joint testing of the association between a genetic vari-
ant and L traits under model (3). To match our analysis, we set
L¼ 3 for the rest of this section but this multivariate extension
can be applied to any number of traits.

As in the univariate case described in Materials and Methods and
in Wakefield (2007), we approximate the multivariate Bayes’ fac-
tor by P ĥjH0Þ=P ĥjH1Þ

��
where ĥ ¼ ðĥ1; ĥ2; ĥ3Þ is the estimated vec-

tor of variant effect sizes for the three traits. We assume the
sampling distribution of ĥ is multivariate normal with mean h

and variance V and that h has a prior multivariate normal distri-
bution with mean 0 and variance W. If q is the 3� 3 matrix of cor-
relation between the traits and qij is the correlation between
traits i and j, then:

V ¼
V1 q12

ffiffiffiffiffiffiffiffiffiffiffi
V1V2
p

q13
ffiffiffiffiffiffiffiffiffiffiffi
V1V3
p

q21
ffiffiffiffiffiffiffiffiffiffiffi
V2V1
p

V2 q23
ffiffiffiffiffiffiffiffiffiffiffi
V2V3
p

q31
ffiffiffiffiffiffiffiffiffiffiffi
V3V1
p

q32
ffiffiffiffiffiffiffiffiffiffiffi
V3V2
p

V3

24 35

W ¼
W1 q12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1W2
p

q13
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1W3
p

q21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2W1
p

W2 q23
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2W3
p

q31
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3W1
p

q32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W3W3
p

W3

24 35;

where Vk is the sample variance and Wk is the prior variance for
trait k. Finally, the multivariate approximate Bayes’ factor (ABF)
can be calculated as a ratio of prior predictive densities
ĥjH0 � MVNð0; V) and ĥjH1 � MVNð0;V þWÞ and used to approxi-
mate the BFDP:

ABFmulti ¼ V�
1
2V þW

1
2exp ĥT �V�1 þ V þWð Þ�1

� �
ĥ

2
�

�

BFDPmulti ¼
ABFmulti � PO

ABFmulti � POþ 1
:

For the prior odds of no association, we estimate the prior
probability of being associated with the three traits (cp1 multi) as the
average of the cp1 ’s from each trait which is calculated as de-
scribed in Materials and Methods.

To obtain the combined univariate results for the multiple test-
ing procedures, we merged the dataset for the three lipid traits and
calculated the number of unique variants that were deemed signif-
icant by the multiple testing methods. Then, we used the proce-
dure described in Materials and Methods to determine which of the
significant variants were true or false positives.
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