
DATA REPORT OPEN

Expanding the known phenotype of
Mullegama–Klein–Martinez syndrome in male patients
Fiona Freyberger1,2, Tomislav Kokotović 1,2,3, Goran Krnjak4, Sanda Huljev Frković5 and Vanja Nagy 1,2,3✉

© The Author(s) 2021

Here, we report a novel case of a male patient with a hemizygous missense variant in STAG2 (p.Tyr159His) resulting in
Mullegama–Klein–Martinez syndrome (MKMS), a rare X-linked cohesinopathy. He shares distinct clinical features with a
previously reported male patient carrying the STAG2 variant p.Tyr159Cys, suggesting that this phenotype is determined by the
position of the mutation. Additionally, our patient exhibits symptoms not previously associated with MKMS, expanding the
known clinical phenotype of this rare disease.

Human Genome Variation (2021) 8:1–6; https://doi.org/10.1038/s41439-021-00169-3

Mullegama–Klein–Martinez syndrome (MKMS), OMIM#301022, is a
rare disease caused by deleterious variants in the STAG2 gene, which
codes for the cohesin subunit, Stromal Antigen 2 (STAG2). MKMS is
associated with diverse clinical symptoms, including developmental
delay, intellectual disability, craniofacial abnormalities, and brain
malformations. STAG2 is a component of the multimeric cohesion
complex that regulates sister chromatid cohesion during mitosis and
meiosis; it also regulates DNA replication, DNA repair, and
transcription1. The protein is predicted to consist of a STAG domain2

and a stromalin conservative domain (SCD) (https://www.uniprot.org/
uniprot/Q8N3U4). Mutations within STAG2 have been identified in
several different cancers and are highly constrained toward loss of
function with a pLI= 1 and o/e= 0.02 (https://gnomad.
broadinstitute.org/gene/ENSG00000101972?dataset=gnomad_r2_1).
MKMS is inherited in an X-linked manner and has highly variable
phenotypes. Among the 18 patients reported in total, 15 were
female, and 3 were male. In females, 13 of the 15 variants were
truncating, 1 variant led to a missense change, and 1 variant was in
a splicing area, while in males, only missense variants were
reported (Yuan: de novo; Mullegama: de novo; Soardi: maternal)1–8.
As the disorder is highly variable in phenotype and the clinical
information on male patients has been limited to only three cases,
there is a need for additional, more detailed case reports to shed
light on all aspects of the disorder, including possible sex-related
differences. Here we report the 19th case of MKMS, a 10-year-old
male patient with a hemizygous missense STAG2 variant (GRCh37/
hg19: chrX:123179026, c.475T>C, p.Tyr159His; NC_000023.11:
g.124045176T>C) with previously unreported clinical features that
expand the known manifestation of the disorder.
The patient was resuscitated at birth and showed hypotonia and

decreased response to external stimuli (Table 1). Postnatally, he was
referred to a pediatric geneticist because of his dysmorphic
features. He was described to have dolichocephaly, coarse facial
features, a narrow bifrontal diameter, a high forehead, a prominent

metopic suture, a broad nasal bridge, a bulbous nose, antimongo-
loid palpebral fissures, thick lips, and a high-arched palate (Fig. 1A).
His hands and feet as well as his fingers and toes were broad, with
soft dorsal surfaces; the nails were deeply inserted; and the joints of
the hands and feet were hyperextensible. The patient’s metabolic
findings and karyotype were normal.
Initial magnetic resonance imaging (MRI), performed at the age

of 10 months, revealed left-sided perisylvian polymicrogyria
associated with a hypoplastic corpus callosum. At the age of 7
years, lamotrigine therapy was started due to an episode of
generalized tonic–clonic seizures. The patient’s electroencephalo-
gram showed continuous beta activity bilaterally over the
frontocentral regions, but there was no epileptiform activity
(Fig. 1C).
Due to epilepsy, a second brain MRI was performed at the age

of 7 years, showing an extensive frontotemporoparietal area of
cortical thickening consistent with polymicrogyria (Fig. 1B); the left
parietal lobe had a deep sulcus impressed into the lateral
ventricle. Additionally, a small area of T2/FLAIR hyperintensity
was described in the right peritrigonal region as a consequence of
perinatal hypoxia. The lateral ventricles were moderately dilated,
without signs of hypertensive hydrocephalus. The presplenial part
of the corpus callosum was hypotrophic. The pineal gland was
medially positioned with a thin infundibulum and a small,
medially positioned adenohypophysis. An ectopic neurohypophy-
sis was positioned along the caudal part of the infundibulum.
Ophthalmological findings showed an atrophic retinal and uveal
scar of the right eye. Additionally, echocardiography revealed a
persistent foramen ovale with a small, hemodynamically insignif-
icant shunt; however, by the next follow-up 1 year later, it was
closed. Currently, at 10 years of age, the patient has short stature.
He has motoric problems such as coarse and uncoordinated fine
motor skills, truncal hypotonicity with fluctuation to hypertonus,
and increased tendon reflexes. He cannot walk, needs assistance
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standing, and has severe left-sided planovalgus and right-sided
equinovarus (Table 1). His speech development is delayed; he is
able to communicate but has difficulties in pronunciation.
For the genetic analysis of the patient and family, genomic DNA

(gDNA) was isolated from blood samples using the Qiagen’s
DNeasy Blood and Tissue Kit. The patient’s gDNA was submitted for
whole-exome sequencing (Illumina HiSeq3000) with an average
target coverage of 91×. Bioinformatical analysis of the raw
sequencing was performed as described previously7. Subsequent
filtering for rare variants with minor allele frequency <0.01 was
performed in the gnomAD general population and subpopulation
and in our internal cohort of approximately 2500 exomes using a
custom filtering program. The results were checked manually using
IGV Browser (https://software.broadinstitute.org/software/igv/). Fil-
tering revealed a hemizygous missense variant in the STAG2 gene
(chrX:123179026, c.475T>C, p.Tyr159His) (Fig. 2A), while other rare
variants could be excluded by phenotype and mode of inheritance.
The research study was approved by the ethics committees at The
University of Vienna, Austria and Varazdin General Hospital, Croatia.
Biological materials from the patient and healthy donors were
obtained with written informed consent in accordance with the
Declaration of Helsinki. Pathogenicity predictions of the STAG2
variant indicated a CADD-Phred score of 26.8, a PolyPhen of
“probably damaging,” and a SIFT of “deleterious.” Furthermore, this
variant has not been reported in the gnomAD or ClinVar database.
Segregation within the family showed that both the healthy
mother and sister are heterozygous for the variant and are
therefore carriers of the disease (Fig. 2A). There was no family
history of neurological disorders reported.
Since the first case of MKMS was described in 20159, 17 other

cases have been reported worldwide, of which only 3 are male
(Fig. 2B). As STAG2 is inherited in an X-linked manner with a wide
variety of signs and symptoms (Fig. 2C), the severity of the
phenotype seems to differ between male and female patients. It
has been suggested that females, because of the second copy of
the STAG2 allele, can endure more severe mutations, while the
same variants in males would lead to early embryonic lethality1.
Consequently, females can show stronger phenotypes than males
or, conversely, may not be affected by a mutation that leads to a
phenotype in males. This is likely the case for the female family
members of our index patient, who are healthy but are
heterozygous carriers of the disease. Several healthy female
carriers have also been described by Soardi et al.3, who reported
an X-linked recessive inheritance pattern for a familial STAG2
missense variant. The missense variants in the other two male
patients reported are de novo mutations4,5.
In addition to differences in phenotype severity between males

and females, there are differences in variant locations. The variants
identified in male patients are localized mainly in functional
domains of the protein (the STAG and SCD domains), with only
one male patient having a variant more toward the C-terminal end
of the protein and not in a known functional domain. The variants
of female patients, on the other hand, are located in a cluster-like
fashion at different positions in the gene and are not limited to
known functional domains (Fig. 2B). We therefore hypothesize
that, for male patients, missense mutations in the functional
domains or in amino acids essential for functionality are sufficient
to cause a phenotype, while in females, the second copy of the
gene can compensate for this effect.
Due to the truncating variants in females, the severity of their

MKMS symptoms can be greater than that of males, but there also
seem to be differences in the types of symptoms reported in
females and males. In general, females display a broader variety of
symptoms, while male patients either show fewer symptoms or
have not been described in the same level of detail (Table 1).
Symptoms described only in female patients thus far are
brachycephaly, long curly eyelashes, anteverted nares, long,
smooth philtrum, downturned mouth, hypoplastic nails, hirsutism,Ta
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cutis marmorata, strabismus, congenital diaphragmatic hernia,
pulmonary hypoplasia, gastroesophageal reflux, rib fusion, verteb-
ral abnormalities, single transverse palmar crease, and abnormal
echocardiograms (Table 1). As new male case reports become
available, the sex differences in the manifestation of MKMS will be
clarified.
The clinical features of the patient reported by us closely

overlap with other cases, with key symptoms including intellectual
disability, developmental delay, short stature, hypotonia, micro-
gnathia, dysmorphic facial features, and dysmorphic ears (Table 1).
However, polymicrogyria, bilateral pes planus, and broad fingers
and toes with soft dorsal surfaces and deeply inserted nails have
not yet been reported in MKMS. It is interesting to note that our
patient shared distinct features with a male patient reported
previously (patient 11)4, who had a missense mutation at exactly
the same position in the functional domain STAG (p.Tyr159Cys).
Both patients initially showed a minimal patent foramen ovale
(PFO) in an echocardiogram, which was found to have closed

during a follow-up visit. Additionally, brain MRI in both patients
revealed an ectopic posterior pituitary with a short, thin pituitary
stalk. These common findings suggest that the position of the
variant may contribute to the details of this phenotype in these
two cases. Distinct symptoms such as minimal PFO and ectopic
posterior pituitary with abnormal pituitary stalk could therefore
reflect a dysfunction of the STAG domain due to the deleterious
variants localized there. Interestingly, there were two reported
female patients with the same c.205C>T/p.Arg69* variant that did
not show any special common features. In female patients,
differences in X inactivation might increase phenotypic variability,
and these two p.Arg69* cases showcase the high variability of the
disorder. It is tempting to postulate that clinical features in males
may be less diverse than those in females because they are not
influenced by X inactivation.
More common congenital abnormalities were described for

hands and feet (Table 1). The severity of the bilateral pes planus is
specific to our patient, which, possibly in combination with his
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2 F3-C3
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Fig. 1 Patient phenotype and EEG. A Clinical photos of the patient at 11 years of age. B MRI images taken at 7 years of age. The upper left
panel shows presplenial corpus callosum hypoplasia and an ectopic neurohypophysis positioned along the caudal part of the infundibulum
(indicated by arrow, T1 sequence). The other three images show an extensive frontotemporoparietal area of cortical thickening consistent
with polymicrogyria; the left parietal lobe had a deep sulcus impressed into the lateral ventricle (T2 sequence). C Bilateral longitudinal
montage, sensitivity 7 µV/mm. Asleep, N2 stage. Continuous beta activity was most pronounced over frontocentral regions. The EEG was
taken at 7 years of age.
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polymicrogyria, renders him unable to stand or walk unaided.
Additionally, the patient has broad fingers and toes with soft dorsal
surfaces and deeply inserted nails, which have not been described
in any other case. Notably, our patient presents with a unique
neuroanatomical symptom in the form of polymicrogyria in the
temporal and parietal lobe of the left hemisphere. Epilepsy was
reported in only two other patients4 and may, in our patient,
originate from polymicrogyria since this defect is often linked to
seizures. Including our patient, seizures have been noted in only 3/
19 cases of MKMS but are more frequent among patients with
increased STAG2 expression (Xq25 duplication syndrome,
OMIM#300979)10.
MKMS is a rare and highly variable disease, additional cases of

which will shed light on sex-dependent clinical differences and
possible variant-specific symptoms.

HGV DATABASE
The relevant data from this Data Report are hosted at the Human
Genome Variation Database at https://doi.org/10.6084/m9.figshare.
hgv.3095.
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