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Editorial: CAZymes in Biorefinery: From Genes to Application

Carbohydrate-Active EnZymes (CAZymes) encompasses all enzymes involved in the modification,
degradation, or biosynthesis of carbohydrates and their derivatives. Especially the CAZymes acting
on glycosidic bonds have proven to be crucial for the significant biotechnological advances within
sectors that include bioenergy and biobased (food/feed, materials, and chemicals) industries. The
concept of CAZymes and their organization into families, based on similar structurally related
catalytic or functional domains, was established in the late 1990’ties, and in 1999 Lombard
et al. (2014) launched the CAZy database (www.cazy.org). The CAZy database, and associated
bioinformatics tools, organize all known CAZymes into the following classes; glycoside hydrolases
(GHs), glycosyl transferases (GTs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and
auxiliary activities (AAs) (Levasseur et al., 2013; Lombard et al., 2014).

Biorefinery has received increasing relevance in the last decades, fueled by the significant
drawbacks of unsustainable fossil fuel-based production and its negative effect on the global
climate (Junqueira et al., 2017; Islam et al., 2020). The biorefinery concept entails the conversion
(refinement) of plant biomass into relevant products or energy (Fernandes et al., 2017; Özdenkçi
et al., 2017; Chuaboon et al., 2019). The biorefinery process is highly dependent on CAZymes for the
complete deconstruction of plant biomass or its transformation to high added-value compounds.
Especially, CAZymes capable of degrading polysaccharide fraction of plant biomass into simple
sugars have proven significant, as the resulting monomers can either be used a carbon source for
fermentation-based production processes or be biotransformed into bioactive compounds, such as
bioactive oligosaccharides like alginate oligosaccharides (Falkeborg et al., 2014; Rakotoarivonina
et al., 2016; Oliveira et al., 2019). The non-carbohydrate fraction of plant biomass, like lignin, can
also be converted into relevant products, such as ferulic acid and vanillin, by lignin-modifying
enzymes (Sainsbury et al., 2013; Tian et al., 2017; Fetherolf et al., 2020).

Further advancement of the biorefinery field will depend on the prospection for new and
more efficient enzymes to expand the available enzymatic toolbox. Secondly, the development of
new enzymatic cocktails for efficient degradation of more complex plant biomass with diverse
composition in terms of hemicellulose, pectin, and lignin content. Third, by gaining a system-level
understanding of the used cell factory to allow for optimization of their functionality by genetic
engineering, to increase the range of compounds that can be processed in the biorefinery context.

Although there are many papers on CAZymes in the biorefinery context (Chettri et al., 2020; Li
et al., 2020; Meng et al., 2020), in this editorial, we focus on the works published in this research
topic. We would like to thank all the authors that have contributed to this special feature series of
articles on CAZymes in Biorefinery. The issue include six original articles and one review article,
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which combined, covers different aspects of the role of CAZymes
in the context of biorefineries.

Microbial genome sequencing projects routinely reveals a
tremendous diversity of CAZyme encoding genes, many of which
have unknown functions that potentially can be utilized in
biorefineries. One way of gaining insight into the enzymatic
arsenal used an organism for plant biomass deconstruction
is via transcriptomics analysis of the organism grown on the
given substrate. Corrêa et al. used a similar approach to
analyze the lignocellulolytic enzyme secretion by Aspergillus
terreus cultivated in sugarcane bagasse and soybean hulls. An
analysis that reveals different sets of responsible genes, encoding
transcription factors, transporters and enzymes, with CAZymes
predominant among the latter group.

Secretomics analysis (exoproteome) is another approach that
can provide valuable insights into the versatile CAZyme arsenal
deployed by microorganisms during biomass degradation.
In the study by Grieco et al., the secretome analysis of
Myceliophthora thermophila cultivated on pretreated sugarcane
bagasse revealed the presence of CAZymes belonging to
the GH and AA families. Further biochemical analysis
of two of the identified LPMOs (lytic polysaccharide
monooxygenases) showed that they possessed different
temperature optima and regioselectivity. The addition of
both enzymes to a commercial Trichoderma reesei enzyme
cocktail was found to boost plant biomass saccharification.
Machado et al. studied the exoproteome of two white-rot
fungi, Phanerochaete chrysosporium and Trametes versicolor,
cultured in microcrystalline cellulose (Avicel). The most
predominant enzymes in both secretomes corresponded
to cellobiohydrolase I (CBHI). The enzymatic cocktails
produced by both fungi were further compared to commercial
lignocellulolytic cocktails and provided an alternative for
enzymatic cocktail formulations.

Three original papers focus on specific CAZyme families.
Two articles report on carbohydrate esterases (CE) and
feruloyl esterases (FEA), which are vital accessory enzymes for
hemicellulose deconstruction. Li et al. heterologously produced
and characterized four new fungal enzymes belonging to
the CE family, three showing acetyl xylan esterase activity
and one presenting both feruloyl esterase and acetyl xylan
esterase activities. The enzymes displayed promising properties,
including high pH stability, thereby showing their potential for
biotechnological applications. Underlin et al. characterized 14

feruloyl esterases from different subfamilies using synthetic and
plant cell wall-derived substrates. The study revealed unique
enzymatic profiles and diverse applicability of the various
feruloyl esterases in the biorefinery context. On the other
hand, Zeuner et al. report on the activity of four different
pectin lyases from Aspergilli on different substrates and finds
that the enzymes only displayed subtle differences in activity
and product formation profiles. The highest reaction rate was
found on apple pectin, while the lowest efficiency was observed
for sugar beet pectin. A finding that are of high relevance
for the biotechnological industries that utilize pectin lyases
for food and biorefinery processes. Finally, a very interesting
review concerning carbohydrate-binding modules (CBMs) and
CAZymes were prepared by Sidar et al. CBMs are found in
many CAZymes and are known to increase the proximity of
the enzyme to its substrate, especially for insoluble ones. The
review emphasizes cellulases and amylases produced by the
filamentous microorganisms from the genera of Streptomyces
and Aspergillus known as efficient secretors of polysaccharide
degrading enzymes.

Collectively, the included articles provide a broad
introduction to the major experimental strategies currently
utilized to further the biorefinery field via a better understanding
of CAZymes.
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