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Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common chronic
liver diseases in developed western countries. Non-alcoholic steatohepatitis (NASH) is the
most severe form of NAFLD, and can progress to more severe forms of liver disease, includ-
ing fibrosis, cirrhosis, and even hepatocellular carcinoma.The activation of hepatic stellate
cells plays a critical role in NASH-related fibrogenesis. Multiple factors, such as insulin resis-
tance, oxidative stress, pro-inflammatory cytokines and adipokines, and innate immune
responses, are known to contribute to the development of NASH-related fibrogenesis. Fur-
thermore, these factors may share synergistic interactions, which could contribute to the
process of liver fibrosis. Given the complex etiology of NASH, combined treatment regimes
that target these different factors provide potential treatment strategies for NASH-related
liver fibrosis.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD), affects one-third of
adults and an increasing percentage of children in developed
countries (Cohen et al., 2011). The disease spectrum of NAFLD
includes simple steatosis, which is relatively benign, non-alcoholic
steatohepatitis (NASH), NASH-related hepatic fibrosis, and cir-
rhosis (Jou et al., 2008). The disease begins with the aberrant
accumulation of triglycerides in the liver, resulting in simple
steatosis which is described as the benign form of NAFLD; most
patients who develop steatosis are stable and further disease does
not develop. However, some individuals progress to NASH, the
severe form of NAFLD (Cohen et al., 2011). NASH is charac-
terized by hepatocellular ballooning, lobular inflammation and
hepatic fibrosis, besides steatosis (Brunt, 2004; Kleiner et al., 2005;
Farrell and Larter, 2006). In NASH, 5–8% patients will develop
cirrhosis within 5 years, and up to 20% of patients with NASH
progress into cirrhosis in the end (Krawczyk et al., 2010). NASH
is considered to be the most important subcategory of NAFLD,
and has the largest influence on the prognosis of NAFLD. Char-
acterizing the mechanisms of hepatic fibrogenesis in NASH is
critical for preventing disease progression and improving the prog-
nosis of patients with NAFLD. Similar to liver fibrosis caused
by hepatitis B virus (HBV) or hepatitis C virus (HCV) infec-
tion, the activation of hepatic stellate cells (HSCs) is critical in
hepatic fibrogenesis. The specific factors involved in the patho-
genesis of NAFLD, such as insulin resistance, oxidative stress, pro-
inflammatory cytokines, adipocytokines, and the innate immune
response, may also contribute to disease progression and the
development of NASH-related hepatic fibrogenesis. Understand-
ing NASH-related hepatic fibrogenesis is an important research
area and will be valuable for identifying potential therapeutic tar-
gets to prevent the progression of NAFLD to NASH and more
severe disease.

ACTIVATION OF HEPATIC STELLATE CELLS
Hepatic fibrosis, which is characterized by the excessive deposi-
tion of extracellular matrix (ECM) proteins, is considered to be a
wound-healing process that results from a variety of chronic stim-
uli (Tsukada et al., 2006), such as viral hepatitis, NASH, or alcoholic
liver disease. In adult NASH-related fibrosis, ECM is deposited pri-
marily in the zone three perisinusoidal space of Disse, and then
spreads to surround hepatocytes and thicken the space of Disse;
forming characteristic“chicken-wire”fibrosis. Eventually, the peri-
central fibrosis forms septa to isolate regenerating nodules (Law
and Brunt, 2010; Pinzani, 2011).

The normal liver is composed of hepatocytes and non-
parenchymal cells, which include kupffer cells, sinusoidal endothe-
lial cells, and HSCs. HSCs are the major source of ECM in the
fibrotic liver (Vera and Nieto, 2006). Normally, HSCs maintain a
quiescent state and store a large amount of vitamin A. However,
when the liver is injured HSCs undergo a phenotypic transition
from a quiescent to activated phenotype. Accompanying this phe-
notypic transition, vitamin A is lost from the HSC, while the
expression of smooth muscle α-actin (α-SMA) is increased. After
activation, the proliferation of HSCs is increased, and their gene
expression profile is altered, especially the expression of type I and
III collagen (Tsukada et al., 2006). In addition to the proliferation
and secretion of collagen, the contraction of activated HSCs is
greatly strengthened, which could result in portal hypertension in
patients with hepatic fibrosis (Tsukada et al., 2006). In addition to
the transforming growth factor (TGF)-β signaling pathway, which
is known to play major role in the activation of HSCs in liver
fibrosis, many other signaling pathways are implicated in liver
fibrosis in NAFLD, such as the hedgehog (Hh), PI3K/AKT, and
JAK/STAT signaling pathways. Although the role of HSC activa-
tion in NAFLD has not been clarified completely, several studies
have reported increased HSC activation in NASH (Kaji et al.,2011).
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The well-known role of HSCs in the pathogenesis of liver fibro-
sis suggests that they may play key role in NASH-related hepatic
fibrosis, in which ECM deposition in the pericellular space forms
a characteristic “chicken-wire” pattern (Marra et al., 2005).

INSULIN RESISTANCE
Insulin resistance plays key role in pathogenesis of NAFLD, espe-
cially in hepatic steatosis (Krawczyk et al., 2010). Genetic poly-
morphisms and acquired factors contribute to insulin resistance
(Williams et al., 2011). Several studies have demonstrated that
insulin resistance is associated with NAFLD (Chitturi et al., 2002;
Bloom et al., 2008; Fracanzani et al., 2008). Serum levels of insulin
and glucose are increased in either genetic or acquired insulin
resistance. Insulin resistance also has effects on HSCs, which play
a key role in liver fibrosis (Rombouts and Marra, 2010). Insulin
itself promotes mitogenesis of HSCs, mainly through binding to
insulin receptors and the receptors for insulin-like growth factor-
I. Glucose is also thought to significantly increase the expression
of connective tissue growth factor, and slightly increase type I
collagen expression in HSCs, both of which participate in NASH-
related fibrogenesis (Paradis et al., 2001). In humans, insulin
resistance is closely associated with advanced stages of fibrosis in
patients with NAFLD (Bugianesi et al., 2004). In contrast, insulin
sensitizers, such as pioglitazone (Promrat et al., 2004; Sanyal et al.,
2004; Aithal et al., 2008), rosiglitazone (Ratziu et al., 2008), and
metformin (de Oliveira et al., 2008), can attenuate NASH-related
hepatic fibrosis. These data suggest that insulin resistance plays an
important role in NASH-related fibrogenesis.

OXIDATIVE STRESS
Oxidative stress reflects an imbalance between pro-oxidants and
anti-oxidants with increased reactive oxygen species (ROS), (Cha-
lasani et al., 2004) or decreased anti-oxidants (Koek et al., 2011).
The generation of oxidative stress in NAFLD is associated with
mitochondria, peroxisomes, and lipid peroxidation (Koek et al.,
2011). In the context of NASH, it is known that oxidative stress
induces the activation of HSCs (Guimaraes et al., 2006). For
example, ROS can induce α-SMA, type I collagen and MMP-2
expression in HSCs via the p38/MAPK signaling pathway (Ikeda
et al., 2011; Li et al., 2011). Furthermore, CYP2E1, which plays a
key role in the generation of oxidative stress in NAFLD, activate
HSCs, and increase the secretion of type I collagen; moreover, anti-
oxidants and CYP2E1 inhibitors could block these effects (Urtasun
et al., 2008). NADPH, which is present in many kinds of cells in
the liver, such as kupffer cells, hepatocytes, and HSCs, participates
in liver fibrosis (De Minicis et al., 2006, 2010). This is linked to
the renin–angiotensin system, which also plays an important role
in liver fibrogenesis through the activation of NADPH oxidase
(Bataller et al., 2005). More importantly, anti-oxidants, such as
vitamin E and astaxanthin, can alleviate NASH-related fibrogen-
esis, which suggests oxidative stress plays a role in NASH-related
fibrogenesis (Sanyal et al., 2004; McCarty, 2011).

ADIPOKINES AND PRO-INFLAMMATORY CYTOKINES
Adipocytokines, which specifically refer to adipose tissue-derived
cytokines, are composed of various factors secreted primarily by
adipocytes, as well as inflammatory cells, including macrophages,

and other infiltrating monocytes (Marra and Bertolani, 2009).
Examples of adipokines include adiponectin, leptin, resistin,
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and more
recently discovered adipokines, such as visfatin, chemerin, vaspin
(Kukla et al., 2011). It is thought that adipokines affect not only
lipid metabolism, but also inflammatory and fibrotic processes in
NAFLD (Marra and Bertolani, 2009).

Adiponectin is present in multimeric complexes in the plasma,
and assembles into adiponectin trimers, hexamers, and 12- and
18-mers by means of its collagen domain (Rombouts and Marra,
2010). The effects of adiponectin are mediated by the two kinds of
receptors,AdipoR2 and AdipoR1, which are primarily expressed in
the liver and skeletal muscle, respectively (Marra et al., 2011). Adi-
poR2 expression was significantly decreased in rats fed a high-fat
(HF) and cholesterol rich diet to induce inflammation and fibrosis
in the liver, suggesting that AdipoR2 plays a major role in NAFLD
(Matsunami et al., 2010). Several studies have also demonstrated
that adiponectin has antifibrogenic effects in liver injury, and
adiponectin deficiency exacerbates hepatic fibrosis induced by car-
bon tetrachloride (CCl4) in mice. In vitro, adiponectin suppresses
HSC proliferation and migration, and attenuates the gene expres-
sion stimulated by TGF-β1 which is one of the most important
pro-fibrogenic cytokines in liver injury induced by virus, NASH,
and alcohol (Kamada et al., 2003). In adiponectin knockout mice
fed a HF-diet, the pericellular fibrosis was more severe compared
with WT mice (Asano et al., 2009). Similar results appeared in
adiponectin knockout mice fed a choline-deficient l-amino acid-
defined (CDAA) diet (Kamada et al., 2007). Furthermore, plasma
adiponectin levels in patients with NASH are decreased, indepen-
dent of the presence of obesity (Gastaldelli et al., 2010); however,
another study found that adiponectin was elevated in patients with
cirrhosis (Salman et al., 2010). Taken together, these data suggest
that adiponectin is an important mediator of liver fibrosis.

Leptin is primarily secreted by adipocytes, but can also be
produced by non-adipocyte cells, including HSCs (Zhang et al.,
1994). The ob/ob mice, in which leptin is knocked out, developed
less severe liver fibrosis induced by either CCl4 or thioacetamide
(TAA), but when leptin levels were restored liver fibrosis was aggra-
vated, suggesting that leptin is a potential pro-fibrogenic adipocy-
tokine (Tsukada et al., 2006). Furthermore, it has been shown that
leptin can promote the phenotypic transition of HSCs by acti-
vating the Hh pathway, altering gene expression programs that
promote liver fibrosis. Meanwhile, the activation of the PI3K/AKT
and JAK/STAT signaling pathways via binding to ObR (leptin
receptor) contributes to the activation of the Hh pathway and
mesenchymal gene expression, respectively (Choi et al., 2010).
However, Cao et al. (2007) have reported that leptin could down-
regulate MMP-1 gene expression in LX-2 cell line via the synergistic
actions of the JAK/STAT pathway and the JAK-mediated ERK1/2
and p38 pathways. Recent studies found that the serum level of
leptin was elevated in NASH patients (Uygun et al., 2000), and
levels of soluble leptin receptor in serum were positively corre-
lated with the stage of fibrosis in NAFLD patients (Medici et al.,
2010).

Data related to visfatin, chemerin, and vaspin in NASH-related
liver fibrosis are limited. The expression of visfatin in the liver was
significantly higher in NAFLD patients with liver fibrosis and was
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positively correlated with the stage of fibrosis (Kukla et al., 2010a).
It has also been separately shown that serum levels of chemerin
and vaspin were both increased in patients with NAFLD (Kukla
et al., 2010b; Yilmaz et al., 2011a), and the level of chemerin was
modestly associated with liver fibrosis (Sell et al., 2010; Yilmaz
et al., 2011b). The effects of chemerin and vaspin on liver fibrosis
in NAFLD need to be studied in order to better understand their
importance in the pathogenesis of NASH.

TNF-α is considered an important pro-inflammatory cytokine
produced predominantly by the immune cells in the liver in NASH.
IL-6, a multifunctional cytokine, promote insulin resistance (Kim
et al., 2004), protect hepatocytes in steatotic liver by restraining
oxidative stress and mitochondrial dysfunction (Cressman et al.,
1996; El-Assal et al., 2004). Jin et al. (2006) reported that short-
term IL-6 treatment protects mice from Fas-mediated liver injury
and apoptosis, while result of long-term IL-6 treatment is paradox-
ical. These cytokines are involved in the transformation of HSCs
into myofibroblasts, which contribute to the progression of liver
fibrosis. TNF-α affects HSCs via binding to the TNF receptor-1,
which is required for HSC proliferation and increasing MMP-9
expression (Tarrats et al., 2011). Serum levels of IL-6 in patients
with NASH is associated with liver fibrosis (Lemoine et al., 2009).
Taken together, these data suggest cytokines may play roles in liver
fibrosis in NAFLD, and may present as targets for the treatment of
liver fibrosis.

TOLL-LIKE RECEPTORS
The multiple parallel hits hypothesis was proposed recently by
Tilg and Moschen (2010) to explain the pathogenesis of NASH.
This hypothesis states that various parallel factors, including gut-
derived and adipose tissue-derived factors contribute to the devel-
opment of liver fibrosis in NAFLD. The endotoxin lipopolysaccha-
ride (LPS), derived from bacteria cell walls in the gut is known to
play a role in the development of liver inflammation and fibro-
sis (Day and James, 1998; Jou et al., 2008). LPS has its effect by
binding to the pattern-recognition receptors, especially Toll-like
receptor (TLR)-4, where it triggers multiple intracellular signaling
pathways, and then amplifies and maintains the inflammatory and
fibrogenic signals in the liver (Brun et al., 2005; Seki et al., 2007). In
brief, LPS activates HSCs through binding to TLR4 on the cellular
surface, this promotes HSC proliferation and collagen production.
TLR9, another TLR, was reported to promote HSC activation and
to upregulate collagen production in vitro (Watanabe et al., 2007).
Recently, Miura et al. (2010) also showed that TLR9 knockout mice
developed less steatohepatitis and liver fibrosis in a murine NAFLD
model, through suppressing the IL-1β produced by kupffer cells.

NATURAL KILLER T CELLS
Natural killer T (NKT) cells, a subset of lymphocytes that secretes
not only Th1-type cytokines such as interferon-γ, but also Th2-
type cytokines such as IL-4 (Hegde et al., 2010). Studies reported
that the HF-diet mice induced NKT cell apoptosis in the liver,
which resulted in the decrease of hepatic NKT cells (Li et al., 2005;
Deng et al., 2009). Oral immune regulation may alleviate steato-
sis in ob/ob mice through increasing hepatic NKT cells (Elinav
et al., 2006). However, the population of hepatic NKT cells in
NAFLD patients is controversial. Kremer et al. (2010) reported

that hepatic NKT cells were decreased in NASH patients, and
was associated with worse degrees of steatosis grade. In contrast,
Tajiri et al. (2009) found that NKT cells in the liver and peripheral
blood was increased with increasing NAFLD activity score. Adler
et al. (2011) reported that NKT cells in the liver and blood sig-
nificantly increased in patients with moderate to severe steatosis.
CD1d-knockout mice, lacking NK1.1+ T cells, developed mini-
mal hepatic fibrosis following chronic TAA treatment, compared
to wild type mice (Ishikawa et al., 2011). Recently, it was shown
that activation of the Hh pathway lead to hepatic accumulation of
NKT cells that may activate HSC cells, resulting in progression of
liver fibrosis in NASH (Syn et al., 2010). These data suggest that
NKT cells may play pivotal roles in pathogenesis of NAFLD, not
only in inflammation and steatosis, but also in fibrosis.

NUCLEAR RECEPTORS
Nuclear receptors regulate the expression of genes via bind-
ing directly to DNA. Several nuclear receptors, such as retinoid
acid receptors (RAR), retinoid X receptor (RXR), and peroxi-
some proliferator-activated receptors (PPARs), participate in the
process of phenotypic transition from quiescent HSCs to activated
myofibroblastic-like cells (Wagner et al., 2011).

PPARs also play a key role in HSC biology and fibrosis
in NAFLD, especially PPARγ (De Minicis and Svegliati-Baroni,
2011). It is known than PPARγ plays a role in the maintenance
of a quiescent HSC phenotype, and that PPARγ agonists suppress
the fibrogenic potential of HSCs in vitro and in vivo; specifically,
pioglitazone and rosiglitazone, two kinds of PPARγ agonists, have
been shown to alleviate liver inflammation and fibrosis in murine
NASH models (Polyzos et al., 2010; Nakagami et al., 2012). Fur-
thermore, pioglitazone also decreased liver fibrosis in patients with
NASH (Gastaldelli et al., 2010; Ratziu et al., 2010); though another
study reported pioglitazone could decrease inflammation in liver,
but did not affect liver fibrosis (Belfort et al., 2006).

The farnesoid X receptor (FXR), also known as the bile acid
receptor, induces expression of the small heterodimer partner,
which may induce PPARγ gene expression and then inhibit the
activation of HSCs (Fiorucci et al., 2004; Renga et al., 2011).
GW4064, an agonist of FXR, has been shown to inhibit the trans-
differentiation of HSCs, and reduce their contractile response to
endothelin-1. (Li et al., 2010) The liver X receptors (LXRs) are
members of the metabolic nuclear receptor family that plays roles
in the regulation of cholesterol absorption, efflux, transport, and
excretion, amongst others. Beaven et al. (2011) found that LXR
ligands suppressed the activation of primary mouse stellate cells
and expression of fibrosis-related genes, leading such ligands to
be considered new antifibrogenic factors (Mallat and Lotersztajn,
2011).

ANIMAL MODELS OF NASH-RELATED FIBROGENESIS
Dietary models of NASH include methionine-and choline-
deficient (MCD) diet, the F diet and atherogenic diets (Schat-
tenberg and Galle, 2010). Mice or rats fed with a MCD diet
develop hepatic steatosis, which then progresses into steatohep-
atitis, and eventually leads to pericellular fibrosis (George et al.,
2003; Sahai et al., 2004). The MCD diet is the most commonly
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FIGURE 1 | Mechanism of HSC activation in NASH-related fibrogenesis.

used animal model to study pathogenesis of NASH-related fibro-
genesis. However, the pathogenesis of fibrosis in mice fed with
the MCD diet, including weight loss, increased peripheral insulin
sensitivity, and loss of white adipose tissue are not characteris-
tic of NASH-related fibrogenesis in human beings (Rinella and
Green, 2004; Leclercq et al., 2007). Mice fed with a CDAA diet,
display a similar liver phenotype to mice fed a MCD diet, but
without weight loss, which suggests that this may be a bet-
ter model (Kodama et al., 2009). Although a HF-diet increases
metabolic risk factors in mice or rats, such as obesity, glucose
intolerance, and increased lipogenic transcription factors, it rarely
progress into liver fibrosis; however, 46% of mice overfed with a
HF-diet (using an intragastric feeding protocol), developed steato-
hepatitis, and sinusoidal and pericellular fibrosis (Deng et al.,
2005), although the high mortality rate and requirement for
technical expertise means that the application of this model is
limited.

Genetic models of NAFLD, including ob/ob mice, db/db mice,
fa/fa mice, KK-Ay/a mice, do not develop liver fibrosis, except for
mice that overexpress of SREBP-1c (Halaas et al., 1995; Nakayama
et al., 2007; Schattenberg and Galle, 2010). Recently, Ota et al.
reported a combination of a genetic and feeding model, called the
Otsuka Long-Evans Tokishima Fatty (OLETF) rat. When such rats

is fed with a MCD diet or a fat-enriched MCD diet, they progress
to severe liver fibrosis (Ota et al., 2007).

CONCLUSION
NASH currently represents one of the most prevalent liver dis-
eases in humans, which is secondary to the increasing prevalence
of obesity and the metabolic syndrome. It is well-known that the
activation of HSCs is one of the critical events in NASH-related
fibrogenesis. Insulin resistance, oxidative stress, pro-inflammatory
cytokines, adipokines, and the innate immune response are
involved in the phenotypic transition of HSCs (Figure 1), which
then results in the development of NASH-related hepatic fibrogen-
esis. Of course, there are other factors we not mentioned here, such
as endocannabinoid system and renin-angiotensin-aldosterone
system. Because they are not as characteristic as insulin resistance
and oxidative stress in NASH, although they play roles in NASH-
related fibrogenesis. All these factors may interact with each other,
and form a unique network that leads to the pathogenesis of liver
fibrosis. Combined treatments targeted to these different factors
are a feasible strategy in NASH-related liver fibrosis. In addition,
an ideal animal model of NASH will help us to characterize the
mechanisms of liver fibrosis in metabolic syndrome and to identify
novel therapeutic approaches in the treatment of liver fibrosis.
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