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Abstract

Traditional neuroimage analysis pipelines involve computationally intensive, time-consuming 

optimization steps, and thus, do not scale well to large cohort studies with thousands or tens of 

thousands of individuals. In this work we propose a fast and accurate deep learning based 

neuroimaging pipeline for the automated processing of structural human brain MRI scans, 

replicating FreeSurfer’s anatomical segmentation including surface reconstruction and cortical 

parcellation. To this end, we introduce an advanced deep learning architecture capable of whole-

brain segmentation into 95 classes. The network architecture incorporates local and global 

competition via competitive dense blocks and competitive skip pathways, as well as multi-slice 

information aggregation that specifically tailor network performance towards accurate 

segmentation of both cortical and subcortical structures. Further, we perform fast cortical surface 

reconstruction and thickness analysis by introducing a spectral spherical embedding and by 

directly mapping the cortical labels from the image to the surface. This approach provides a full 

FreeSurfer alternative for volumetric analysis (in under 1 min) and surface-based thickness 

analysis (within only around 1 h runtime). For sustainability of this approach we perform 

extensive validation: we assert high segmentation accuracy on several unseen datasets, measure 

generalizability and demonstrate increased test-retest reliability, and high sensitivity to group 

differences in dementia.
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1. Introduction

The rapid emergence of standardized robust non-invasive imaging methods and 

infrastructure for big data analysis over the years has promoted the advent of a variety of 

large-scale neuroimaging studies. Different initiatives aim to understand the variability, 

development and anatomical layout of the human brain in e.g. neurodegeneration (ADNI 

(Mueller et al., 2005), OASIS (Marcus et al., 2007, 2010)), psychiatric diseases (LA5c 

(Poldrack et al., 2016)), neurodevelopmental disorders (ABIDE (Di Martino et al., 2017), 

MIRIAD (Malone et al., 2013)) or within populations (Rotterdam Study (Ikram et al., 2017), 

Human Connectome Project (Van Essen et al., 2012), UKBiobank (Sudlow et al., 2015), 

Rhineland Study (Breteler et al., 2014)). A core challenge within all neuroimaging studies is 

the need to process and analyze the continuing stream of data in a timely manner. As 

Magnetic Resonance Imaging (MRI) is one versatile imaging modality and integral part of 

all these studies, developing efficient tools to identify clinically-relevant imaging biomarkers 

with MRI are in high demand. In this work we, therefore, develop a fast method for 

volumetric segmentation, reconstruction of cortical geometry, and morphometric estimation 

of brain structures including cortical thickness. It is the first work that aims at integrating an 

advanced deep learning method for image segmentation into a complete processing pipeline 

that includes cortical surface reconstruction and segmentation.

1.1. Neuroimage analysis

To date, a few well maintained neuroimage processing pipelines such as FreeSurfer (Fischl 

et al., 2002), BrainSuite (Shattuck and Leahy, 2002), SPM (Friston et al., 2007), ANTs 

(Avants et al., 2009), or FSL (Jenkinson et al., 2012) are the only means available to process 

and evaluate the incoming flow of data. These pipelines usually employ multiple image 

transformation steps, some of which require careful fine-tuning of parameters such as 

convergence thresholds, smoothing levels, or iteration numbers. Furthermore, due to 

extensive numerical optimization, e.g. non-linear registration or Bayesian segmentation, 

these approaches are computationally expensive and suffer from long runtimes. Hence, 

several hours are required to process a single volume, significantly limiting scalability to 

large cohort studies with thousands of cases or to clinical workflows where immediate 

results are essential.

Supervised deep learning approaches are an attractive alternative to replace time-intensive 

steps within these pipelines such as whole-brain segmentation because of their faster 

runtimes. Fully convolutional neural networks (F–CNN), for example, are able to learn the 

correct feature representations in an end-to-end fashion from the image itself without 

requiring lengthy pre-processing steps. These methods can be effectively parallelized on 

graphical processing units (GPU) resulting in an enormous speed-up (seconds instead of 

hours). Additionally, these networks often outperform traditional approaches with respect to 

accuracy and have become increasingly popular for pixel or voxel-wise semantic 
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segmentation tasks in computer vision and biomedical imaging (Long et al., 2015; 

Ronneberger et al., 2015; Noh et al., 2015; Badrinarayanan et al., 2017; Milletari et al., 

2016; Jégou et al., 2017). In this work we propose a neuroimaging pipeline based on an 

advanced neural network architecture for whole-brain segmentation that induces local and 

global competition in the dense block and skip-connections.

1.2. Deep learning for whole-brain segmentation

The task of whole-brain segmentation in particular is challenging due to the complex 3D 

architecture and spatial dependency between slices, the large number of labels, the size of 

the scanning volumes (memory requirements), and variability across scanners and subjects. 

While several deep learning based approaches have been proposed for specific tasks, such as 

tumor segmentation (Rani and Vashisth; Dong et al., 2017; Arunachalam and Savarimuthu, 

2017; Havaei et al., 2017; Amin et al., 2018; Brainless Glioma , 2018), brain lesion 

segmentation (Kamnitsas et al., 2017; Varghese et al., 2017; Rezaei et al., 2017; Roa-Barco 

et al., 2017; Chen and Konukoglu, 2018), MR image reconstruction (Jin et al., 2017; 

Mardani et al., 2019; Schlemper et al., 2018; Yang et al., 2018; Dedmari et al., 2018), 

prediction of brain related diseases and their progression (Payan and Montana, 2015; Qi and 

Tejedor, 2016; Hosseini-Asl et al., 2016; Lee et al. Kim) or segmentation of a smaller 

number of brain (sub-)structures (Zhang et al., 2015; Akkus et al., 2017; Milletari et al., 

2017; Fedorov et al., 2017; Dolz et al., 2018; Thyreau et al., 2018; Chen et al., 2018; 

Nogovitsyn et al., 2019; Li et al., 2019; Sun et al., 2019; Ito et al., 2019) full brain 

segmentation into more than 25 classes has - so far - only been achieved by a few groups (de 

Brêbisson and Montana, 2015; Moeskops et al., 2016; Mehta et al., 2017; Wachinger et al., 

2018; Roy et al., 2017, 2019; Jog et al., 2019; Huo et al., 2019; Coupé et al., 2019) - yet with 

the exception of (Roy et al., 2019) only with direct comparison of segmentation accuracy on 

a test-set, lacking extensive validations, e.g., of reliability and sensitivity to real 

neuroanatomical effects.

Most of these brain segmentation networks were trained on extracted 3D patches (de 

Brêbisson and Montana, 2015; Wachinger et al., 2018; Mehta et al., 2017) or 2D slices 

(Moeskops et al., 2016; Roy et al., 2017, 2019; Jog et al., 2019). Both approaches loose 

spatial information critical for correct classification of a given structure. Due to memory 

constraints of existing GPUs it is, however, currently not feasible to train a full 3D deep 

neural segmentation network with a large number of labels for a whole-brain MRI volume at 

full resolution. Even for a lower number of labels, batch size can usually not be larger than 

1, which would be another detrimental factor. Segmenting downsampled images is also not 

an option, e.g. due to small cortical structures, that may not be sufficiently resolved at lower 

resolutions. Additionally, full 3D networks have a much higher demand for training data as 

one MRI volume constitutes a single training case. Recently, approaches to overcome 

memory demands for whole-brain segmentation have been proposed, such as the 

combination of multiple (up to 250) patch-based 3D CNNs that process overlapping sub-

volumes of the divided whole-brain input (Huo et al., 2019; Coupé et al., 2019). These 

segmentation tools, however, require a number of additional and potentially error-prone 

processing steps including image registration to a standard space and bias field removal, as 

well as inference for a large number of networks. Overall, most of the architectures proposed 
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for brain segmentation so far have runtimes of around 15–60 min on the GPU (de Brêbisson 

and Montana, 2015; Moeskops et al., 2016; Mehta et al., 2017; Wachinger et al., 2018; Huo 

et al., 2019; Coupé et al., 2019) which makes them unattractive for integration into a 

maximally fast neuroimaging pipeline. The networks presented in (Roy et al., 2017) and 

(Roy et al., 2019) can produce a whole-brain segmentation in less than 1 min and are thus 

most relevant to our work.

The SkipDeconv-Net (SD-Net (Roy et al., 2017)) was the first whole-brain segmentation F–

CNN and is based on a classic encoder-decoder architecture reminiscent of the U-net 

(Ronneberger et al., 2015). The SD-Net introduces a novel loss-function that addressed the 

inherent class imbalance problem and alleviated segmentation errors along anatomical 

boundaries. Subsequently, the network architecture was extended into an F–CNN called 

Quick segmentation of Neuroanatomy (QuickNAT (Roy et al., 2019)), which allows 

segmentation of a whole 3D brain volume into 27 structures. In this architecture, short-range 

skip connections were employed within each encoder-decoder block - these dense blocks 

were introduced in (Huang et al., 2017) for classification tasks. Further, QuickNAT uses 

three 2D F-CNNs to produce predictions for axial, coronal and sagittal slices which are 

combined in a final multi-view aggregation step and thus allows partial recapture of spatial 

information in the third dimension (e.g. 2.5D approach). Here, we compare to the different 

2D architectures (with multi-view aggregation switched on for all of them for better 

comparability) and additionally include a modified patch-based 3D version of the UNet 

(Çiçek et al., 2016) which allows inference within a similar time frame. To this end, we use 

the self-adapting framework “no-new-Net” (nnU-Net) (Isensee et al., 2019) to fine-tune a 3D 

UNet architecture to the given image geometry and number of classes in our application.

Here, we propose FastSurferCNN a deep learning architecture capable of segmenting a 

whole brain into 95 classes in merely 1 min on the GPU (and 14 min sequential processing 

on the CPU). The basic architecture is inspired by QuickNAT (Roy et al., 2019). Each F–

CNN has the same encoder/decoder-based architecture with skip connections (Ronneberger 

et al., 2015), enhanced with unpooling layers (Noh et al., 2015) and dense connections 

(Huang et al., 2017) within each block. The main methodological improvements of 

FastSurferCNN compared to QuickNAT are the introduction of competition within each 

block (competitive dense blocks) by replacing concatenation with maxout operations 

(Goodfellow et al., 2013; Estrada et al., 2018, 2019), as well as the inclusion of a wider 

image context within each 2D F–CNN (spatial information aggregation) in order to retain 

enough spatial information for the accurate segmentation of neuroanatomical structures, 

such as cortical gray matter regions.

Note, that voxel-based image segmentation, on its own, is limited with regard to neuroimage 

analysis and biomarker extraction. Especially surface-based analysis has proven pivotal for 

e.g. correct estimation of thickness - an issue which has so far not been addressed in 

comparative publications on deep learning. Existing traditional pipelines go far beyond 

image segmentation and provide utilities such as creation of cortical surface models, 

estimation of thickness, construction of fiber tracts or functional connectivity graphs, and 

tools for group comparison, such as registration and statistical frameworks. A major focus of 
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this work is to fill this gap by integrating the developed deep learning framework 

(FastSurferCNN) into a complete, self-contained imaging pipeline called FastSurfer (Fig. 1).

Starting from the accurate 3D whole-brain segmentation, provided by our deep learning 

framework, we perform cortical surface reconstruction and fast spherical mapping via a 

novel spectral approach that quickly maps the cortex using Laplace Eigenfunctions. 

Furthermore, we map cortical labels and include traditional point-wise and ROI thickness 

analysis, resulting in a full FreeSurfer alternative with approximately 60 min runtime 

(depending on image quality and process parallelization) of which only 1 min is attributed to 

the whole-brain segmentation. Hence, FastSurfer combines the speed of supervised deep 

learning approaches and the convenience of the broad spectrum of surfaced-based features 

and analysis methodologies provided by traditional neuroimaging pipelines.

We extensively validate the quality of our deep learning based neuroimaging pipeline 

through assessment of segmentation accuracy, generalizability to unseen datasets and 

acquisition parameters, test-retest reliability, and sensitivity to group level differences in 

imaging cohorts in a number of publicly available datasets. In fact, this is the first work 

within deep learning approaches with such an exhaustive validation. We demonstrate that 

despite being orders of magnitude faster than traditional approaches, FastSurfer increases 
reliability and sensitivity making it a dependable tool for future large-scale population 

analysis tasks. The source code of FastSurfer is available on Github: https://github.com/

Deep-MI/FastSurfer.

2. Methodology

2.1. Datasets

MRI volumes from eight publicly available datasets were selected for training, testing, and 

for extensive validation of the FastSurfer pipeline. In brief, selected subjects from the 

Autism Brain Imaging Data Exchange II (ABIDE II) (Di Martino et al., 2017), the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005), the UCLA 

Consortium for Neuropsychiatric Phenomics LA5c Study (LA5c) (Poldrack et al., 2016), 

and the Open Access Series of Imaging Studies 1 and 2 (OASIS-1 (Marcus et al., 2007) and 

OASIS-2 (Marcus et al., 2010)) were used for network training. Further, subjects never 

encountered during training from ADNI and OASIS-1, the Minimal Interval Resonance 

Imaging in Alzheimer’s Disease (MIRIAD) (Malone et al., 2013), the Human Connectome 

Project (HCP) (Van Essen et al., 2012), a multi-subject, multi--model neuroimaging dataset 

(MMND) (Wakeman and Henson, 2015), the Traveling Human Phantom (THP) (Magnotta 

et al., 2012) as well as the Mindboggle-101 dataset (Klein and Tourville, 2012) were used 

for validation and testing of the FastSurfer pipeline. For a detailed description of these 

datasets as well as a usage summary see Appendix Section 5.1 and Table A.1.

All datasets were processed using FreeSurfer v6.0. FreeSurfer is an open source neuroimage 

analysis suite (Fischl et al., 2002; Fischl, 2012) (http://surfer.nmr.mgh.harvard.edu/). 

Freesurfer morphometric procedures have been demonstrated to show good test-retest 

reliability across scanner manufacturers and across field strengths (Han et al., 2006; Reuter 

et al., 2012). In this work FreeSurfer parcellation following the “Desikan–Killiany–
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Tourville” (DKT) protocol atlas (Klein and Tourville, 2012; Desikan et al., 2006) is used for 

training and evaluation. In order to limit the number of segmentation labels, cortical regions 

touching each other across the hemispheres, are lateralized while all others are combined 

thus reducing the total number of labels from 95 (DKT without corpus callosum 

segmentations which are added later) to 78 during network training. Association to the left 

or right hemisphere is restored in the final prediction by estimating the closest white matter 

centroid (left or right hemisphere) to each label cluster. A list of all segmentation labels is 

provided in the appendix (see Table A.2). In accordance with FreeSurfer, all MRI brain 

volumes are conformed to standard slice orientation and resolution (1 mm isotropic) before 

feeding them to the different deep learning networks. No further image processing is 

required afterwards (e.g. no skull stripping or intensity normalization).

2.2. FastSurfer CNN

Here, we introduce the network architecture (FastSurferCNN) for whole-brain segmentation 

into 95 classes (excluding background) in under 1 min on the GPU (and approximately 14 

min on the CPU). FastSurferCNN is composed of three F-CNNs operating on coronal, axial 

and sagittal 2D slices and a final view aggregation stage. The basic architecture of all three 

F-CNNs follows that of (Roy et al., 2019), namely a sequence of 4 dense encoder and 

decoder blocks separated by a bottleneck layer as illustrated in Fig. 2. Within 

FastSurferCNN, we integrate two improvements - competitive dense blocks and spatial 

information aggregation - targeted to promote information recovery and increase network 

connectivity. In the following sections, each of these elements will be explained in detail.

2.2.1. Competitive dense block—With the exception of our recent work in (Estrada et 

al., 2018, 2019), dense connections within convolutional blocks have been implemented via 

concatenation of feature maps (see QuickNAT (Roy et al., 2019)) - effectively doubling the 

numbers of learnable parameters (Fig. 3 top) within each encoder and decoder block and 

thus considerably increasing memory requirements. Here, we employ competitive dense 

blocks in which concatenations are replaced with maxout activations (Goodfellow et al., 

2013; Estrada et al., 2018, 2019). The maxout activations induce competition between 

feature maps and significantly reduce the number of parameters compared to the classical 

dense blocks, thus creating a lightweight model (Fig. 3 bottom). Instead of stacking the 

output of previous layers on top of each other, only the maximum value at a given position is 

retained, keeping the number of input channels as well as parameters constant in each 

convolution layer. Assuming L inputs, denoted as X = {xl}l = 1
L , with each xl = [xijk

l ]i, j, k = 1
H, W , G , 

where H is height, W is width and C are number of channels for a particular feature map 

(xl), the maxout(X) output is given by:

maxout X = [yijk]i, j, k = 1
H, W , C whereyijk = max xijk

1 , ⋯, xijk
L . (1)

The difference between dense blocks and competitive dense blocks can thus be described as:

Xl = H3
l (y2) (2)
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y2 = concat H2
l (y1), y1, Xl − 1 (3)

y1 = concat H1
l (Xl − 1), Xl − 1

Densely Connected Block
(4)

Xl = H3
l (y2) (5)

y2 = maxout H2
l (y1), y1 (6)

y1 = maxout H1
l (Xl − 1), Xl − 1

Competitive Dense Block
(7)

Here, Hj
l represents a composite function of three consecutive operations: parametric 

rectified linear unit (PReLU) followed by convolution and batch normalization (BN) with 

exception of the very first encoder block. In the first block, the raw inputs are passed through 

BN, convolution and another BN before following the previously described architecture (see 

Fig. 2, CDBi vs. CDB block). The sequence of operations in Hj
l guarantees normalized 

inputs to the maxout activation thereby improving convergence (Liao and Carneiro, 2016) 

and increasing the exploratory span of the created sub-networks (Liao and Carneiro, 2017) 

simultaneously. Furthermore, filter co-adaptation is implicitly discouraged by the short-

range skip-connections within the dense blocks (Liao and Carneiro, 2017).

In addition to the competitive dense blocks we also implement competition across long-

range skip connections. Instead of concatenating the unpooled information from the decoder 

arm with the corresponding feature maps from the encoder arm, we perform a maxout 

operation before further feeding the inputs to the competitive dense decoder blocks. All our 

competitive dense blocks are designed such that the inputs to this operation are already 

normalized (unpooling and skip transfer after BN; see Fig. 2).

2.2.2. Spatial information aggregation—As mentioned in the introduction, training a 

full 3D deep neural network for whole brain segmentation is currently not feasible for a 

large number of classes. However, 2D networks with single slice inputs loose information on 

the 3D spatial dependency between the inputs which can be crucial for correct segmentation 

of neuroanatomical structures. In order to retain as much information as possible, we 

provide the network with a larger volumetric context by passing a multi-slice input similar to 

(Ding et al., 2017; Yu et al., 2018; Ghavami et al., 2018) where a sequence of neighbouring 

slices instead of a single 2D slice are used for network training.

Our spatial information aggregation approach consists of passing a 7-channel image by 

stacking the three preceding, the current, and the three succeeding slices for segmenting only 

the middle slice. Fundamentally, this spatial information aggregation combines the 
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advantages of 3D patches (local neighbourhood) and 2D slices (global view). We, 

furthermore, analyze the impact of multi-slice images by comparing directly to single slice 

inputs.

2.2.3. View aggregation—In order to account for the inherent 3D geometry of the 

brain, one F–CNN per anatomical plane is trained and their outputs combined in a final view 

aggregation step. Depending on the orientation of the 2D slices, each network therefore 

learns the anatomical representation of the brain structures within the coronal, axial or 

sagittal view. The final segmentation is generated by aggregating the probability maps of 

each model through a weighted average. Combination of the three principal views can boost 

accuracy for cortical folds and subcortical structures, some of which are better represented in 

one of the individual planes. In addition, view aggregation acts as a regularizer to reduce 

erroneous predictions. As it is not possible to differentiate between the left and right 

hemispheres in the sagittal view, we merge lateral labels, effectively reducing the number of 

classes from 78 to 50 in the sagittal network. The probability maps of these lateralized 

classes are finally restored by copying the softmax output of the combined label to both left 

and right hemispheres. To account for this remapping step, the weight with which the 

sagittal predictions influence the final segmentation is reduced by one half compared to the 

other two views.

2.2.4. Model learning

Training Dataset:  140 representative subjects from ABIDE-II, ADNI, LA5C, and OASIS 

(see Section 5.1) were selected for training the F–CNN models and 20 subjects from 

MIRIAD were used for validation. Empty slices were filtered from the volumes, leaving on 

average 145 single view planes per subject and a total training size of above 20 k images per 

network. In addition, we use data augmentation (random translation of maximally 16 mm) to 

artificially increase the training set size further.

The training set is balanced with regard to gender, age, diagnosis, and spans various other 

parameters (i.e. scanners, field strength, and acquisition parameters); the distribution of the 

subset is presented in Table 1. Sufficient anatomical and acquisition variety in training 

images can be expected to improve network robustness, generalizability, and ultimately 

segmentation accuracy on most unseen scans without the need to fine-tune model weights. 

We will analyze generalizability to unseen datasets below.

F–CNN Implementation:  Independent models for coronal, axial, and sagittal plane are 

implemented in PyTorch (Paszke et al., 2017) and trained for 30 epochs using two NVIDIA 

Titan Xp GPU with 12 GB RAM and the following parameters: batch size of 16, constant 

weight decay of 10−04, and an initial learning rate of 0.01 decreased by 95% every 5 epochs. 

The networks are trained with Adam optimizer (Kingma and Ba, 2015) and a composite loss 

function of median frequency balanced logistic loss and Dice loss (Roy et al., 2017). This 

loss function encourages correct segmentation of tissue boundaries and counters class 

imbalances by up-weighting less frequent classes.
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2.3. FastSurfer pipeline

Based on FreeSurfer methods and novel contributions, we also introduce a surface 

processing pipeline, that integrates our neural network architecture at its core to provide 

FreeSurfer volume and surface results, including cortical surfaces, thickness maps, and 

summary statistics in cortical regions following the DKT protocol atlas (Klein and Tourville, 

2012; Desikan et al., 2006).

Traditionally, surfaces are generated via a pipeline of several time-consuming processing 

steps: First, based on a white matter segmentation, which is patched to remove holes and 

ensure connectivity, initial surface triangle meshes are created for each hemisphere (Dale et 

al., 1999; Fischl et al., 2001). Meshes are smoothed, mapped to a sphere to localize 

topological defects (i.e. holes or handles should not exist as each hemisphere should be 

topologically equivalent to the sphere) (Fischl et al., 1999a; Ségonne et al., 2007). Once all 

defects are fixed, surface placement along the white matter is fine-tuned and a second 

expanded surface (pial surface) is placed at the outer gray matter (GM) boundary, also 

providing thickness estimates at every point on the cortex (Dale et al., 1999; Fischl and 

Dale, 2000). Then, surfaces are carefully mapped to the sphere a second time (minimizing 

metric distortions), registered to a spherical atlas (Fischl et al., 1999b), and segmented into 

cortical parcellations (DKT atlas) (Desikan et al., 2006; Fischl et al., 2004; Klein and 

Tourville, 2012).

Based on the DKT volume segmentation available from the FastSurferCNN we modify the 

above FreeSurfer pipeline to yield surface results of FreeSurfer (including thickness and 

cortical ROI measures). A significant speed-up compared to FreeSurfer can be achieved by 

omitting several steps that have become obsolete, such as skull stripping and non-linear atlas 

registration, given that a high-quality full brain segmentation has already been achieved. 

Furthermore, we innovate some traditional approaches by developing novel modules based 

on spectral mesh processing. Specifically:

1. We use the full DKT brain volume segmentation to create a brainmask by 

closure, i.e. dilation and erosion, of the labels (including the ventricle label). This 

mask covers all labeled areas. Cortical regions are padded by one voxel layer to 

allow the pial surface to find its final position in some partial volume voxel 

between GM and CSF. Exceptions are the lateral orbital frontal and pars orbitalis 

to avoid capture of the optic nerve.

2. We retrospectively construct a quick bias field corrected brain image and a linear 

Talairach registration as these results are needed later for some relevant statistics 

(e.g. intracranial vault volume for head size estimation (Buckner et al., 2004)). 

Here we follow FreeSurfer, except that we can initialize the NU correct (Sled et 

al., 1998) with the already existing brainmask.

3. We generate initial surfaces by using a marching cube (Lorensen and Cline, 

1987) algorithm rather than the traditional approach (Dale et al., 1999) aiming at 

higher mesh quality at a slightly reduced number of vertices.

4. We develop a fast mapping to the sphere using the Eigenfunctions of the Laplace 

operator to perform a spectral embedding of the original white matter surfaces 
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quickly (for the topology fixer). Precisely, we solve the Laplace-Beltrami 

Eigenvalue problem Δf = −λf (Reuter et al., 2006; Reuter, 2010) on the original 

cortical surface mesh to obtain the first three non-constant Eigenfunctions with 

smallest Eigenvalues. After correcting sign flips and swaps, these functions 

parametrize the surface smoothly in anterior-posterior, superior--inferior and 

lateral-medial directions. The spherical map can then be quickly obtained by 

projecting the 3D spectral embedding to the sphere, i.e. by scaling the 3D 

Eigenfunction vector to unit length for each vertex.

5. After topology fixing and GM surface creation, we map the DKT GM 

segmentations from the image onto the surface and compute surface ROI 

statistics, such as mean thickness and curvature averages per region - mimicking 

FreeSurfer’s surface segmentation pipeline without requiring the non-linear 

spherical atlas registration and segmentation. Spherical atlas registration can, 

however, be included if cross-subject correspondence is required, e.g. for local 

surface-based thickness analysis.

Overall, this yields a fast alternative to the FreeSurfer pipeline. We will evaluate the speed-

up, reliability, and sensitivity of the full FastSurfer pipeline below.

2.4. Statistics

We will thoroughly validate the novel FastSurfer pipeline in terms of accuracy, 

generalizability, reliability and sensitivity using, Dice overlap, intraclass correlation and 

group analyses on volume and thickness ROI’s, as well as thickness maps. In the following 

sections we explain these statistical methods in detail.

2.4.1. Dice similarity coefficient—The Dice similarity coefficient (DSC) is a metric to 

evaluate the segmentation performance of the deep learning networks and can 

mathematically be expressed as

DSC(G, P) = 2 × G ∩ P
G + P (8)

with binary label maps of ground truth G and prediction P (pixels of the given class 

indicated with 1, all others with 0). Here, the DSC is used two fold: first, to directly compare 

the performance of different network architectures against each other, and second, to 

estimate similarity of the predictions achieved with FastSurferCNN and FreeSurfer v6.0 for 

a number of previously unseen datasets (generalizability). The DSC will be calculated 

separately for each cortical and subcortical structure. Note, that neural networks tend to 

smooth results, e.g. removing segmentation noise such as incorrect protrusions that are 

encountered in only a few training images and usually in random locations. While this kind 

of smoothing can improve segmentation accuracy, it can decrease the DSC which is partially 

affected by noise in the ground truth data. This is one reason why it is essential to perform 

additional validations (such as reliability or sensitivity analysis).
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2.4.2. Average Hausdorff distance—The average Hausdorff distance (AVG HD) is a 

metric for measuring the similarity between two sets of points and is often used to evaluate 

the quality of segmentation boundaries. It is defined as

AV G HD(G, P) = 1
∣ G ∣ ∑

g ∈ G
minp ∈ Pd(g, p) +

1
∣ P ∣ ∑

p ∈ P
ming ∈ Gd(p, g)

(9)

with ∣G∣ and ∣P∣ representing the number of voxels in the binary label maps of ground truth 

G and prediction P, respectively. In contrast to the DSC, a smaller AVG HD indicates a 

better capture of the segmentation boundaries with a value of zero being the minimum 

(perfect match). Here, we use the AVG HD to evaluate the segmentation performance of the 

different network architectures against each other.

2.4.3. Intraclass correlation coefficient—The intraclass correlation coefficient (ICC) 

is a widely used metric to assess both, the degree of correlation and agreement between 

measurements. Thus, it is an ideal metric to judge the reliability of a given method. The ICC 

ranges from 0 to 1, with values close to 1 representing high reliability. Here, we use the 

degree of absolute agreement among measurements also known as criterion-referenced 

reliability (McGraw and Wong, 1996) to compare the FastSurfer pipeline (deep learning 

segmentation + post-processing) to FreeSurfer. To this end, we calculate the agreement 

between cortical thickness and subcortical volumes in consecutive scans using the OASIS1 

test-retest set. Prior to ICC calculations, volume and thickness estimates of the subcortical 

and cortical structures are extracted from the segmented brains. After averaging across 

hemispheres, the ICC as well as the upper and lower bound with α = 0.05 level of 

significance are calculated for each region using the method described in (McGraw and 

Wong, 1996). Additionally, cortical thickness maps are mapped to a common space 

(fsaverage) and smoothed at 15 FWHM before calculating the ICC separately for each 

hemisphere. The resulting overlay maps are visualized on the semi-inflated fsaverage 
surfaces.

2.4.4. Group analysis—A segmentation method can potentially reach high ICC while 

being insensitive to actual effects in the data. Therefore, it is important to validate the 

sensitivity of a given method with respect to its capability to detect known significant 

variations in brain morphology between diagnostic groups (group separability). We, 

therefore, fit identical linear models to FreeSurfer and to FastSurfer results each, explaining 

thickness or volume (dependent variable) by diagnosis controlling for age, sex, and (only for 

volume analysis) head size, using FreeSurfer’s mri_glmfit. The p-values of the diagnosis 

effect are monotonically connected to the absolute value of the t-statistic (effect size divided 

by standard error) which in turn is a scaled version of Cohen’s d, where the scaling factor 

depends on sample size. Given that here both methods operate on the same input images 

(and thus same sample sizes), a direct comparison of p-values across processing methods is 

meaningful, where a smaller p-value indicates a better group separability.
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These analyses are performed for volume of subcortical structures and average thickness of 

cortical regions of interest (ROIs), as well as for vertex-wise cortical thickness maps on both 

hemispheres. ROI measures are reported for structures that reach p < 10−5 and are averaged 

across hemispheres for the sake of brevity. Cortical thickness is calculated as the minimal 

distance between the white matter and pial surface (Fischl and Dale, 2000). Prior to 

statistical analysis, thickness estimates of each subject were mapped to a common space 

(fsaverage) and smoothed at 15 FWHM. Significance cut-off is set to p < 0.05 without 

correction for multiple comparison as we are only interested in the relative differences 

between the two methods (FastSurfer and FreeSurfer). The p-value maps for each 

hemisphere are displayed on the semi-inflated fsaverage surfaces.

3. Results

3.1. Accuracy

In this section we evaluate segmentation performance with respect to FreeSurfer as a 

reference and with respect to manual labels. The comparison with FreeSurfer is relevant, 

given that the main goal of this work is to replicate FreeSurfer at faster processing speed 

without sacrificing quality. Furthermore, the comparison with manual labels is important to 

validate accuracy and rank the methods with respect to a manual reference standard.

3.1.1. Comparison to FreeSurfer—To evaluate segmentation accuracy, we first 

compute the DSC and AVG HD of each candidate method with FreeSurfer labels on five 

testsets (ADNI, OASIS1, HCP, MIRIAD, and THP). Here, scans from subjects used for 

network training and validation (i.e. 40 subjects each from OASIS and ADNI, 20 from 

MIRIAD) are excluded. No subjects from HCP and THP have been included in the training 

set at any point. Five subjects from OASIS1 were further excluded from the testset due to 

heavy white matter lesion load and resulting downstream topological surface defects in 

FreeSurfer and FastSurfer.

We benchmark our proposed network against traditional whole-brain segmentation F-CNNs 

namely SDNet (Roy et al., 2017) and QuickNAT (Roy et al., 2019), as well as a patch-based 

3D UNet. Additionally, we incrementally test the importance of our network modifications. 

First, we evaluate the effects of competition within the dense blocks and across the long-

range skip connections (CDB, see Section 2.2.1). For this we compare to QuickNAT which 

inherently uses only vanilla dense blocks within its architecture. Second, we increase the 

information input to the network by passing the stacked 7-channel image to the network 

(spatial information aggregation (SPI), see Section 2.2.2). Both architecture changes 

together comprise our final proposed FastSurferCNN. To permit a fair comparison, all 

benchmark networks were trained on the same data and - with exception of the 3D UNet - 

follow the same architectural design of 4 encoder and decoder blocks separated by a 

bottleneck block. Each block contains the same convolutional layer architecture as 

illustrated in Fig. 2. The baseline architectures were further suitably adopted by modifying 

the final classification layer to predict 78 classes as the original implementations do not 

target cortical parcellations and hence comprise a much lower number of output labels (27 

for QuickNAT (Roy et al., 2019) and 26 for SDNet (Roy et al., 2017)). Furthermore, all 
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comparative 2D models were implemented with the above-mentioned view aggregation (see 

Section 2.2.3). Care was taken to confirm that the adaptations are acceptable to the first 

author of the original papers. The 3D UNet was optimized such that it allows segmentation 

at 1 mm isotropic resolution with a patch size of 128 × 128 × 112,a batch size of 2, and 32 

feature maps in the highest layer using a self-adapting framework (Isensee et al., 2019).

In Fig. 4, we report the DSC (left side) and AVG HD (right side) against 649 previously 

unseen scans from ADNI (180 subjects), OASIS1 (370 subjects), HCP (45 subjects), 

MIRIAD (49 subjects) and THP (5 subjects). We calculate the average DSC and AVG HD 

on 33 subcortical structures and 62 cortical regions (31 per hemisphere after remapping). For 

a complete list of structures the reader is referred to Appendix Table A.2. The AVG HD 

should be as small as possible (optimal value: 0). An optimal segmentation in terms of DSC 

should be close to 100.

In comparison to the 2.5D network approaches, the 3D UNet has the overall lowest DSC on 

the subcortical structures (average DSC of 87.27 - see Fig. 4 left, gray bars), and is 

comparable only to the SDNet on the cortical structures (average DSC of 83.90, a 0.4% 

increase compared to SDNet, light green bars). However, it has by far the highest AVG HD 

(see Fig. 4 right, gray bars) for both subcortical and cortical structures (0.5063 and 0.5357, 

respectively). The errorbars for the 3D UNet were cropped at 0.76 in the AVG HD plot.

Each successive network modification within the 2.5D network results in an increase of the 

DSC (see left part of Fig. 4) and a decrease of the AVG HD (see right part of Fig. 4) for all 

five datasets. Introduction of competition within the network (blue, CDB) already 

outperforms QuickNAT (green) and SDNet (light green) with an up to 0.3% improvement of 

the DSC and 5% of the AVG HD for both, subcortical and cortical structures. On average, 

competition increases the DSC to 88.74 and 84.55 for the subcortical and cortical structures, 

respectively. The AVG HD is decreased to 0.247 on the cortex and 0.1486 on the subcortex. 

Note, that this improvement is achieved while simultaneously reducing the number of 

trainable parameters by one half (from approx. 3.6*106 to 1.8*106)! The final 

FastSurferCNN (CDB + SPI, dark blue) further increases segmentation accuracy on average 

by 0.6% (DSC) and 5.7% (AVG HD) on the subcortical and 1.9% (DSC) or 12.7% (AVG 

HD) on the cortical structures compared to QuickNAT (final DSC of 89.08 and 85.88; AVG 

HD of 0.1400 and 0.2222). Therefore, increasing the local information content provided to 

the network via the spatial information aggregation (SPI) is particularly useful for 

recognizing cortical folding patterns. The same trend can be observed when analyzing the 

worst instead of the average DSC (data not shown). Statistical testing further confirmed a 

highly significant increase in DSC and decrease in AVG HD for both improvements 

(competition and information aggregation) compared to QuickNAT (Wilcoxon signed-rank 

test, p < 10−20 after Bonferroni correction for multiple testing).

FastSurferCNN also outperforms all other models on the challenging THP dataset. This data 

source contains scans from eight different sites and scanning conditions with strong 

variations in data quality (e.g. motion artifacts). FastSurferCNN, however, maintains high 

accuracy for all eight sites (average DSC 89.00, AVG HD: 0.1426 (QuickNAT: 88.37 and 

0.1514, respectively) for subcortical and DSC: 86.16, AVG HD: 0.2136 (QuickNAT: 84.43 
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and 0.2465, respectively) for cortical structures). Interestingly, MRI data acquired on Philips 

Scanner (DART, JHU and UW) are segmented quite accurately even though the training set 

predominantly included Siemens scans. Additionally, the AVG HD and DSC are more stable 

across imaging sites for FastSurferCNN compared to QuickNAT on the cortical structures 

(40% less difference in DSC and 25% less difference in AVG HD between best (JHU) and 

worst (IOWA) site). Notably, the algorithm also generalizes well to defaced and down-

sampled input images (HCP dataset) even though such examples are absent from the training 

set (DSC of 85.21 for the cortical and 87.36 for the subcortical structures, AVG HD of 

0.2474 and 0.1643, respectively).

3.1.2. Comparison to manual reference—Here we compare segmentation 

performance of the networks to a manual standard. We compute the DSC and AVG HD on 

the Mindboggle-101 dataset (78 subjects) with manually labeled cortical as well as manual 

subcortical segmentations on 20 of these subjects.

In Fig. 5, we report the DSC (left side) and AVG HD (right side) for the subcortical and 

cortical structures separately. The DSC on the subcortical structures are very similar for all 

five networks: between a DSC of 80.15 for 3D UNet, SDNet and QuickNAT and 80.19 for 

the final FastSurferCNN (CDB + SPI). On the cortical structures the difference is more 

pronounced, with the final FastSurferCNN (CDB + SPI) reaching a value of 80.65 (1% 

increase compared to CDB (blue) and QuickNAT (green), 2% compared to SDNet (light 

green) and 3D UNet (gray)). The same trend is observed for the AVG HD (right plot). Here, 

introduction of competition (CDB) decreases the distance between segmentation and the 

manual labels by 0.025% on the subcortical and 1.56% on the cortical structures (CDB 

(blue) versus QuickNAT (green)). The final FastSurferCNN (CDB + SPI, dark blue) reaches 

a value of 0.2909 for the subcortical (0.085% improvement compared to SDNet (light green) 

and QuickNAT (green)) and 0.3973 on the cortical structures (10% and 5% compared to 

SDNet and QuickNAT, respectively). The 3D UNet is again the lowest performing out of all 

the five networks with an AVG HD of 0.3443 for the subcortical and 0.7472 for the cortical 

structures, indicating large inaccuracies in especially the cortical regions.

The improved segmentation performance of FastSurferCNN on the manual cortical labels 

with respect to DSC and AVG HD was further confirmed by statistical testing (Wilcoxon 

signed-rank test, p < 10−10 after Bonferroni correction for multiple testing).

Inherently, cortical regions are usually defined on the cortical surface based on folding 

patterns and curvature, e.g. to determine boundaries inside the sulcii. Thus, assessment of 

cortical segmentation quality may not be optimal in a volume based comparison. Therefore, 

we also calculate the surface-based DSC for Mindboggle-101 (manual surface labels). To 

this end, the volumetric segmentation of FastSurferCNN are projected onto the 

Mindboggle-101 surfaces where the area-related DSC of the mapped regions are then 

directly calculated. Overall, a high average surface DSC of 86.35 on the right and 86.97 on 

the left hemisphere is reached. Further, no structure has a DSC below 72.3 (see Fig. 6). The 

good performance of the surface analysis corroborates the volume based DSC comparisons 

and underlines the high segmentation quality achieved with FastSurferCNN.
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3.2. Generalizability

High generalizability will ensure that the proposed method can be applied across different 

sites, vendors, field strengths, and for large multicenter studies. Fig. 4 indicates that 

networks generalize well across these parameters and respective image qualities, as the DSC 

remains quite stable. For example, the HCP dataset consists of 0.7 mm isotropic images, 

downsampled to 1 mm and de-faced, which were never encountered during training. 

MIRIAD is a IR-FSPGR sequence on a GE scanner. Furthermore, in the THP dataset DSC 

scores vary only around 1 or 2% across the 8 sites spanning Siemens and Philips scanners. 

The five subjects of THP, however, might not be representative, which is why in this section 

we quantify generalizability by computing the agreement of FastSurferCNN with FreeSurfer 

across different scanner types (Siemens, Philips and GE) as well as disease states (CN, MCI 

and AD patients) in a larger dataset. For this purpose we employ an independent testset 

consisting of 180 scans from ADNI balanced with regard to vendor, disease group, gender 

and age.

In the upper part of Fig. 7 the DSC across different disease states is shown. Scans from 

subjects with later-stage dementia are more difficult to segment, potentially due to increased 

motion and lower gray-white contrast. Specifically, the increase in ventricle volume, 

subsequent shrinkage of GM and/or increased white matter lesion load can have a profound 

effect and are frequently difficult to segment with traditional neuroimaging pipelines such as 

FreeSurfer. A small decrease in segmentation DSC (i.e. increased deviation from FreeSurfer) 

can be observed with disease progression (CN to AD) in our proposed method (cortical 

structures: DSC decreases from 86.8 to 85.8, subcortical structures: DSC decreases from 

90.3 to 89.6). However, with FastSurferCNN DSC scores do not decrease more than 1.11% 

between diseased (MCI, AD) and control state (CN) for cortical and 0.77% for subcortical 

structures. A similar trend is observed with regard to generalizability across vendors (lower 

part of Fig. 7). Even though FastSurferCNN was predominantly trained on MRI scans 

acquired on Siemens scanners, the segmentations of Philips and GE scans are comparable to 

FreeSurfer with only a minor decrease in DSC of 1.6% for the cortical structures (see Fig. 

7). Here, GE and Philips scans can be segmented similarly well (DSC of 85.50 and 85.57, 

respectively). Segmentation of subcortical regions is equally consistent on Siemens and GE 

scans (DSC of 90.30 and 90.23, respectively). Philips scans show more variation with a 

difference similar to the one observed for the cortical structures (1.6% difference compared 

to Siemens; DSC of 88.85). These findings in combination with the high DSC scores 

achieved on MIRIAD (1.5 T GE Scanner) and HCP (downsampled and defaced 0.7 mm 3 T 

Siemens), see Fig. 4, show that FastSurferCNN is capable of generalizing stably across 

disease stages, field strength, vendors and pre-processing.

While very few GE scans were used in training (only 3 cases of ADNI), still the network has 

at least seen some images spanning the above parameters which might explain its good 

generalizability. All datasets so far acquire some kind of MPRAGE sequence, except for 

MIRIAD with IR-FSPGR (note, MIRIAD was not used in training, only for validation). We 

now test generalizability across sequences to an unseen MEF sequence (MMND dataset, see 

Section 5.1). This datasets provides 16 subjects each with MEF and MPRAGE scans. We 

first confirm, see Fig. 8 (orange column), that FastSurferCNN obtains a high DSC in 
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comparison to FreeSurfer on the MPRAGE images, again corroborating good 

generalizability to Philips scanners. A 6.7% point drop in DSC can be observed when 

comparing both segmentation methods on the MEF images (red column). Reduced 

agreement on MEF images can, of course, be explained by a deviation of either (or both) 

methods from ground truth. In the absence of ground truth, we set FreeSurfer’s MPRAGE 

segmentation as the standard. To test how well FreeSurfer generalizes to MEF, we compare 

FreeSurfer’s own segmentations across MEF and MPRAGE after robust rigid registration 

(Reuter et al., 2010) and observe a significantly reduced DSC (82.37 on subcortical and 

75.70 on cortical structures) (Fig. 8 dark blue). In comparison FastSurferCNN’s MEF 

segmentation (using the same registrations) slightly outperforms FreeSurfer’s 

generalizability as it is actually closer to ground truth (FreeSurfer MPRAGE) than 

FreeSurfer itself for subcortical structures (DSC of 83.17) and similar for the cortex (DSC of 

75.67) (Fig. 8 bright blue). These results highlight an excellent generalizability of FastSurfer 

to the unseen T1-weighted MEF sequence.

The above DSC comparisons assume accurate labels provided by FreeSurfer or a human 

rater respectively. This is of course not granted, as both automated and manual segmentation 

quality can degrade across scanners, sequences, or advanced neurodegeneration. 

Furthermore, highly folded 3D structures such as cortical gray matter are difficult to 

segment manually on a voxel grid when viewing 2D slices. Whenever “ground truth” cannot 

be trusted, it is difficult to quantify performance with direct comparisons, as a small DSC 

can also indicate noisy or erroneous ground truth. Therefore, we also perform validations in 

the next sections that are independent of ground truth labels but rather rely on the 

assumptions, that (i) anatomy remains stable in small time frames (test-retest reliability) and 

that (ii) established disease effects should be detectable with high statistical significance 

(sensitivity). For these comparisons we run the full FastSurfer pipeline, extending the 

FastSurferCNN with subsequent surface processing.

3.3. Reliability

Test-retest reliability is assessed as the agreement between the evaluations of two scans in a 

short time frame. We calculate the intraclass correlation coefficient (McGraw and Wong, 

1996) on the OASIS1 test-retest dataset with 20 participants. Note, that the acquisition 

source of variation (motion, noise etc.) will be identical for different image processing 

methods. Higher agreement can therefore be taken as an index of method stability and 

consistency of results.

Fig. 9 shows the ICC value for each structure separately including the upper and lower 

bound at significance level α = 0.05 (black error bar) for FastSurfer (dark blue bars) and 

FreeSurfer (light blue bars). A higher ICC indicates a better reliability with the maximum 

being 1. The ICC values for the volume of subcortical structures are higher for FastSurfer on 

all 13 structures (0.99 on average versus 0.97 with FreeSurfer). On six structures (including 

Hippocampus, Putamen, Caudate and Thalamus) the agreement between scans is above 

0.99. Furthermore, all confidence intervals (lower to upper bound) are smaller for FastSurfer 

indicating better segmentation consistency across the 20 participants. The ICC values for the 

thickness of cortical regions show a similar pattern, with FastSurfer achieving higher ICC on 
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both hemispheres in 30 out of 31 regions. On average, an ICC of 0.92 is achieved with 

FastSurfer (0.87 with FreeSurfer) and 24 structures show a correlation of above 0.9. No 

cortical structure has an ICC below 0.78 (0.73 for FreeSurfer). Correspondingly, 

visualization of the ICC directly on the surface (see Fig. 10) demonstrates that FastSurfer 

segmentations yield larger regions on the cortex with high ICC values (light blue) compared 

to FreeSurfer. Here, it is further apparent that the majority of the cortex reaches ICC values 

of more than 0.8 (blue areas).

3.4. Sensitivity to group differences in dementia

Sensitivity to group differences in dementia is an essential component of our evaluation. 

While the segmentation accuracy of our approach (as quantified by the DSC to a manual 

standard) has already been established, we now determine to what extent our results are 

relevant and useful in an applied research setting. To this end, we analyze whether our 

proposed method is capable of reproducing well-known group differences in dementia: The 

sensitivity of both FreeSurfer and FastSurfer is determined by evaluating their ability to 

separate diagnostic groups in OASIS1 (AD versus CN), as indicated by the p-value.

In Fig. 11 structures with p-values below 10−5 are shown (based on both FreeSurfer and 

FastSurfer). The signed p-values presented in the figure indicate the direction of the effect 

(below zero represent atrophy and above zero volume increase). Consequently, one can 

directly observe that the ventricle volume (lateral ventricles, inferior lateral ventricles) 

increases while all other structures atrophy for both, FreeSurfer and FastSurfer. In the 

subcortical domain, a volume reduction is specifically detected for the hippocampus, the 

amygdala and the thalamus, which is congruent with other research results on AD (de Jong 

et al., 2008; Henneman et al., 2009; Schuff et al., 2009; Poulin et al., 2011; Aggleton et al., 

2016; Pini et al., 2016). FastSurfer reaches lower p-values for all three structures indicating a 

higher sensitivity to differences between the groups. FastSurfer and FreeSurfer are further 

capable of detecting significant differences in areas related to disease progression in the 

cortex (e.g. bilateral frontal, temporal and parietal lobe (Braak and Braak, 1995; Baron et al., 

2001; Wenk, 2003; Lerch et al., 2004; Poulin et al., 2011)). Specifically, parts of the 

temporal (superiortemporal, middletemporal, inferiortemporal, entorhinal) and parietal lobes 

(inferiorparietal, supramarginal) are significantly thinner (p < 10−11 detected with FastSurfer 

for all areas). The overall thickness also correlates with disease progression (MeanThickness 

p < 10−12 for FastSurfer). These results remain stable when analyzing lateralized ROI 

measures instead of the mean (not shown).

Fig. 12 depicts the detected differences of cortical thickness in patients with AD compared 

to CN subjects with the original FreeSurfer stream (left) and our proposed FastSurfer 

pipeline (right) directly on the surface (vertex-wise analysis). The visualization 

complements the results of Fig. 11, clearly indicating the ability of FreeSurfer and 

FastSurfer to detect thinning effects across hemispheres. Again, the differences between 

groups are more pronounced with the FastSurfer pipeline (smaller uncorrected p-value, as 

indicated by larger yellow regions on both hemisphere). The proposed pipeline is thus able 

to separate groups in this dataset very clearly.
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3.5. Pipeline innovations

As described in Section 2.3, FastSurfer is a full surface reconstruction pipeline based on 

FreeSurfer. Additionally to skipping/replacing some steps the two main modifications are (i) 

reconstructing surfaces with the marching cube algorithm and (ii) implementing a novel, fast 

spectral mapping to the sphere. Here we compare these two changes with a pipeline that 

uses the original FreeSurfer modules (mri_tessellate and mris_sphere) in these two steps and 

is otherwise identical to FastSurfer. We quantify a) the number of topological surface 

defects, b) the overall processing time for the surfaces, and c) the average quality of the 

produced surface triangle meshes. Surface meshes should be topologically equivalent to the 

sphere, which is why topological defects introduced during surface construction, i.e. handles 

and tunnels, as well as selfintersections have to be corrected in time-intensive downstream 

processing (Fischl et al., 1999a; Ségonne et al., 2007). This is why a smaller number of 

topological defects on the original meshes is favourable. The mesh quality is computed by 

averaging triangle qualities Q = 4 3A ∕ (e1
2 + e2

2 + e3
2), where A is the triangle area and ei the 

edges (Bank, 1990). Q is 1 for the equilateral triangle and close to zero for degenerated 

triangles.

To evaluate the two new modules, the following statistics are based on the OASIS1 dataset 

and summarized in Table 2. The average number of defects in the pipeline with FreeSurfer 

modules (27.2 defects per hemisphere) decreased by 12% (24.0 defects) when constructing 

the surfaces with marching cube, and 15.3% (23.1 defects) when the proposed pipeline 

(FastSurfer: marching cube + spectral spherical projection) was used. Also the average 

surface processing time decreased significantly by 15 min per hemisphere with FastSurfer. 

Finally the triangle mesh quality index of FastSurfer (Q = 0.902) was significantly higher 

than for the pipeline with the traditional modules (Q = 0.888), due to the marching cube 

algorithm. Additionally, construction of surfaces with marching cube instead of 

mri_tessellate slightly reduces the number of vertices on average by 120 per hemisphere 

(133,154 versus 133,034 for tessellate and marching cube, respectively). All three tests 

(defects, time, quality) of the final FastSurfer pipeline with respect to the one with original 

modules are highly significant: the Wilcoxon signed-rank test reports a p-value below 

machine precision (p < 10−16).

Overall, in addition to these methodological innovations, our pipeline saves time by 

replacing many FreeSurfer steps, such as skull stripping, spherical segmentation etc., since 

we can directly build on the high-quality image segmentations provided by the deep neural 

network. Here, we compare runtimes of three approaches: (i) complete regular FreeSurfer 

processing, (ii) FastSurfer pipeline without spherical registration, (iii) and complete 

FastSurfer with spherical registration (Table 3). Note, while spherical registration is not 

needed to obtain surface segmentations and ROI thickness measures in FastSurfer, it is 

required to construct cross-subject correspondence, e.g. when performing vertex-wise 

surface thickness analyses. All pipelines are evaluated on identical subjects (10 

representative subjects from OASIS1, balanced with regard to gender (5 male, 5 female), age 

range (21–86 years), and diagnosis (4 AD, 6 CN)) and identical hardware (CPU: Intel Xeon 

Gold 6154 @ 3 Ghz) using both, sequential processing and parallel processing (4 threads 

and simultaneous processing of the two hemispheres).
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In our test a complete FreeSurfer run takes approximately 7 h (4 h parallel) on the CPU, 

which can vary depending on image quality, disease severity etc. Obtaining only the 

aseg.mgz (36 labels including subcortical structures) takes approximately 2–3 h for 

FreeSurfer. However, improved GM and WM segmentations as well as cortical segmentation 

(DKT Atlas) is only available after surface reconstruction and remapping to the volume as 

one of the final steps. Thus, obtaining the final segmentation takes the full processing time 

(7 h, 4 h parallel). The proposed FastSurfer pipeline achieves the volumetric segmentation 

(both subcortical and cortical regions) in only 1 min (on the GPU, 14 min on the CPU), 

surface processing including cortical ROI thickness measures in 1.7 h (0.9 h parallel), or 

complete processing including the spherical registration for potential subsequent group 

analysis of surface maps in 3.7 h (1.6 h parallel) on the CPU.

4. Discussion

In this work we introduce an advanced semantic segmentation neural network architecture 

and a fast pipeline for the processing of neuroanatomical surfaces that outperforms 

FreeSurfer with respect to runtime, reliability and sensitivity. We contribute a deep learning 

architecture (FastSurferCNN) by incorporating competition into the network (within dense 

blocks and long-range skip connections) and increasing the initial information content 

provided to the network via spatial information aggregation. Competition significantly 

reduces the number of network weights resulting in a slimmer architecture with lower 

memory requirements. We demonstrate its superior performance for the fast and detailed 

(close to 100 structures) segmentation of whole-brain MRI compared to existing deep 

learning approaches. FastSurferCNN outperforms 3D UNet, SDNet and QuickNAT in terms 

of accuracy by a significant margin both with respect to FreeSurfer and a manual standard. 

Across five different datasets our network achieves the highest DSC compared to FreeSurfer 

as a reference on the subcortical and cortical structures (89.08 and 85.87 on average), as well 

as the lowest AVG HD (0.1400 and 0.2222 on average). In addition, FastSurferCNN is the 

best performing network on the manually labeled Mindboggle-101 dataset with a DSC of 

80.19 and 80.65 and an AVG HD of 0.2909 and 0.3973 on the subcortical and cortical 

structures, respectively.

Of note, the optimized 3D UNet was not able to outperform the other view-aggregating 

(2.5D) architectures. Specifically in terms of the AVG HD, the 3D UNet demonstrated 

underwhelming performance. In general, it can be expected that full 3D approaches 

eventually outperform 2.5D networks for whole-brain segmentation due to their potential to 

better capture the inherent 3D geometry of the cortex. The better performance of the 2.5D 

approaches here might in part be explainable by their advanced architectures which are 

difficult to directly translate to a full 3D approach due to the increase in parameters and 

hence memory requirements. Furthermore, adding spatial information (SPI) as well as view-

aggregating the three 2D networks provides spatial context at a much lower memory prize 

and training effort. In depth comparison of 2.5D versus 3D networks as well as 

improvements of 3D architectures is however out of scope of this work and an important 

topic for future exploration.
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Further, FastSurferCNN’s segmentation results for a 3D 1 mm isotropic MRI brain scan are 

achieved at a processing time below 1 min. Fast MRI segmentation opens up multiple 

avenues of potential applications, ranging from direct feedback or field-of-view localization 

during image acquisition, fast clinical decision support by quantitative personalized 

measurements, and scalability to very large cohort data sets. Many such applications require 

no surface models and can terminate after the 1 min image segmentation step, allowing rapid 

processing of the incoming data.

One frequently quoted limitation of learning-based approaches is the uncertain 

generalizability beyond image types encountered during training. This limitation is valid and 

it remains unclear how far networks generalize, e.g. to different sequences, disease or age 

groups. Various domain-adaptation approaches have been introduced to accommodate fine-

tuning a network to a new type of data, and should be considered when network 

performance degrades. In this work, we put an emphasis on evaluating generalizability of 

our method. We first demonstrate good generalizability to different sites, vendors, field 

strength, scanner types, and across disease groups. Analysis on HCP further highlights 

generalizability to de-faced and down-sampled high-resolutional images, which were never 

encountered during training. Furthermore, we were able to demonstrate good 

generalizability to an unseen multi-echo FLASH sequence, even outperforming FreeSurfer. 

These results are very promising, yet, as with any automated software, we recommend users 

to visually inspect images to ensure good quality for their acquisition setting as stable 

generalizability to any T1-weighted sequence can certainly not be guaranteed.

Extending the image segmentation network, our full FastSurfer pipeline permits the fast 

analysis of cortical thickness (vertex-wise and region-wise) following the DKT atlas. This is 

achieved by both optimizing and replacing multiple steps of the FreeSurfer pipeline, e.g. by 

mapping segmentation results from the image to the surfaces. Processing of a single MRI 

volume with parallelization can thus be achieved in below 1 h including thickness ROI 

analysis, and 1.6 h including surface registration for cross-subject correspondence - a 

fraction of the time a whole FreeSurfer run needs to complete (4 h with parallelization). 

Some of this speed-up can also be attributed to the reduced number of detected topological 

defects. Marching cube seems to be reducing the number of defects on the initial surfaces 

already, but also the new spectral spherical mapping helps further reduce detected defects, 

potentially due to the smooth embedding of the Eigenfunctions and resulting reduction of 

self-folds. Future work will focus on increasing processing speed further, e.g. by including 

deep learning based registration procedures. Also note, that ongoing activities to parallelize 

and speed-up traditional FreeSurfer code will directly impact multiple components of the 

FastSurfer pipeline (such as the topology fixer, surface reconstruction, cross subject 

registration etc.).

Our extensive validation of FastSurfer further includes test-retest reliability and sensitivity 

studies. FastSurfer exhibits improved test-retest reliability relative to FreeSurfer. This is 

reflected in higher ICC values across both hemispheres for FastSurfer (on average 0.92 for 

all cortical and 0.99 for all subcortical structures). Given that increased reliability can be 

bought by extensive smoothing, potentially at the cost of sensitivity, we evaluate 

FastSurfer’s capability to separate groups in dementia. Here, we can replicate group 
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differences between CN and AD patients with high sensitivity. Specifically, AD-related 

significant volume reductions in amygdala and hippocampus, increased ventricle volume, as 

well as cortical thinning in the temporal and parietal lobes were detected with both 

FastSurfer and FreeSurfer.

While these group differences may not purely reflect neurodegeneration, but can include 

indirect factors such as head motion (Reuter et al., 2015; Tisdall et al., 2016) or hydration 

levels (Biller et al., 2015) the good agreement of FastSurfer with FreeSurfer and with 

established findings (Braak and Braak, 1995; Baron et al., 2001; Wenk, 2003; Lerch et al., 

2004; de Jong et al., 2008; Henneman et al., 2009; Schuff et al., 2009; Poulin et al., 2011; 

Aggleton et al., 2016; Pini et al., 2016) indicate the validity of our method. FastSurfer’s 

smaller p-values in the majority of these discrimination tasks could potentially be explained 

by its implicit noise reduction: While consistent boundaries in FreeSurfer segmentations will 

be learned, random segmentation noise such as local inaccuracies or protrusions are 

averaged out and might allow the network to achieve superior results, as also corroborated 

by the improved test-retest reliability results.

The inherent training paradigm of FastSurferCNN can be considered another contributing 

factor. During training, the network has been exposed to various pathological scans with 

high anatomical and acquisition variability in contrast to the limited number of cases (40) 

within the FreeSurfer atlas. The larger corpus likely improves the resulting segmentations 

and derived volume and thickness estimates. In fact, it is remarkable that the 140 training 

cases (plus augmentation) are sufficient to provide these excellent results. This is put into 

perspective by considering that in fact 20 k 2D images (plus augmentation, some of these 

highly correlated - of course) are used for training each view. Still it can be expected that 

training with more cases will improve accuracy and generalizability further, leaving space 

for future exploration.

Finally, one of the major advantages of supervised learning over traditional pipelines is that 

consistent errors can be removed by manually fixing existing or adding new training cases. 

This is in stark contrast to model based pipelines, where updates or fixes to the algorithm 

can only be introduced by a handful of experts and often have unintended consequences. 

Future work can thus explore training on very large and heterogeneous datasets, as well as 

the inclusion of manual labels or manually corrected automated labels to improve 

segmentation quality even further.

It should, however, be noted that availability of manually labeled or corrected training data is 

often inherently limited due to time intensive production, restricting the applicability of deep 

learning approaches to domains were enough training data exists. This is especially true for 

full 3D segmentation networks were one whole-brain MRI is equivalent to a single training 

case. 2D networks operating on slices or 3D patch approaches are more forgiving due to the 

much larger number of training inputs. In this work, training on FreeSurfer generated 

outputs allows us to generate a wide range of training cases with the disadvantage that 

consistent FreeSurfer segmentation errors may be learned by the networks. Our successful 

comparison to a manual reference standard (Mindboggle-101) is, therefore, helpful to 
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ascertain high segmentation quality. Yet, it does not replace quality control when applying 

FastSurfer to new images, as is the case with any automated processing method.

Overall we introduce a fast, stable, reliable and sensitive pipeline for automated neuroimage 

analysis that scales well to large datasets and enables various new applications where 

segmentation speed is essential, for example: to localize structures during image acquisition, 

to provide quantitative measures in clinical workflows, or to process large cohort studies 

efficiently.
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Appendix A

Datasets

ABIDE II: The Autism Brain Imaging Data Exchange II (Di Martino et al., 2017) contains 

cross-sectional data and focuses on autism spectrum disorders covering a wide age rage (5–
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64 years of age). The dataset contains 1044 MRI scans from 19 different institutions. The 

3D magnetization prepared rapid gradient echo (MP-RAGE) sequence, or a vendor specific 

variant, was used to acquire all data. The corresponding sequence parameters vary 

depending on the site (see Table 2 of the corresponding paper for details (Di Martino et al., 

2017)). With the exception of a single collection (IP_1, 1.5 T, Philips Achieva), all MRI data 

were acquired using 3 T scanners (1 Ingenia and 4 Achieva (Philips), 2 MR750 (GE), 7 

TriTim (Siemens), 3 Allegra (Siemens) and 1 Skyra (Siemens)) at voxel resolutions varying 

from 1.30 mm to 0.7 mm (majority at 1.0 mm) and is available at: http://

fcon_1000.projects.nitrc.org/indi/abide/abide_II.html. 20 cases from the ABIDE-II were 

used for training.

ADNI: The Alzheimer’s Disease Neuroimaging Initiative (Mueller et al., 2005) was 

launched in 2003 as a public-private partnership, led by principal investigator Michael W. 

Weiner, MD. The dataset contains 1.5 T and 3 T-MRI scans acquired at a resolution of 1.0 × 

1.0 × 1.2 mm with scanners from the three largest MRI vendors (GE, Philips and Siemens) 

and includes Alzheimer’s disease patients, mild cognitive impaired subjects, and elderly 

controls. Data were acquired with a MP-RAGE sequence whose parameters are optimized 

for the different vendors (see (Jack et al., 2008) for details). The ADNI database has > 2000 

participants and is available at: http://adni.loni.usc.edu. 40 cases from ADNI where used for 

training. 180 different cases were used for assessing accuracy and generalizability across 

disease groups and scanners.

HCP: The Human Connectome Projects Young Adult (Van Essen et al., 2012) is a cross-

sectional dataset and contains 1200 healthy participants from ages 22 to 35. The 3 T MR 

images were acquired with a single scanner (customized Connectome Skyra, Siemens) using 

a MP-RAGE sequence with a repetition time (TR) of 2.4 s, echo time (TE) of 2.14 ms, an 

inversion time (TI) of 1 s, and a flip angle of 8°. Images are 0.7 mm isotropic with a field of 

view of 224 × 224, and are de-faced. Data is available at: https://

www.humanconnectome.org/study/hcp-young-adult. 45 cases from HCP were used for 

assessing accuracy and generalizability to inputs with pre-processing (de-facing, 

downsampling).

LA5c: The UCLA Consortium for Neuropsychiatric Phenomics LA5c Study (Poldrack et 

al., 2016) is a cross-sectional study and includes 142 participants diagnosed with a 

neuropsychiatric or neurodevelopmental disorder (schizophrenia, bipolar disorder, ADHD) 

and 130 normal controls (ages 21–50). T1-weighted MP-RAGE images were acquired on a 3 

T Siemens Trio at a single-center with field of view of 250, 256 × 256 matrix, and 176 1.0 

mm sagittal partitions. An TI of 1.1 s, TE of 3.5–3.3 ms, TR of 2.53 s and flip angle of 7° 

was used for all scans. This data was obtained from the OpenfMRI database (https://

openfmri.org/dataset/ds000030/). Its accession number is ds000030.20 cases from LA5c 

were used for training.

Mindboggle-101: a manually corrected set of 101 labeled brain images based on a 

consistent human cortical labeling protocol (DKTatlas) (Klein and Tourville, 2012). It is the 

largest and most complete set of free, publicly accessible, manually labeled human brain 

images. The dataset consists of anatomically labeled brain surfaces and volumes derived 
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from T1-weighted brain MRIs of healthy individuals and is available at: https://osf.io/nhtur/. 

Five subjects were scanned specifically for this dataset (MMRR-3T7T-2, Twins-2, and 

Afterthought-1), all others are from publicly available datasets (i.e. Test-Retest OASIS1 

(Marcus et al., 2007), the Multi-Modal Reproducibility Resource (Landman et al., 2011), 

Nathan Kline Institute Test-Retest and Nathan Kline Institute/Rockland Sample, Human 

Language Network subjects (Morgan et al., 2009), and Colin Holmes 27 template (Holmes 

et al., 1998), see (Klein and Tourville, 2012) for details). The OASIS1 Test-Retest portion 

(20 subjects) also includes manually labeled subcortical segmentations (labelings by 

Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) released under Creative 

Commons License BY-NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0) 

within Mindboggle-101). Here, we use all volumes with isotropic voxel sizes (78 in total) 

from Mindboggle-101 to evaluate network performance with respect to a manual reference.

MIRIAD: The Minimal Interval Resonance Imaging in Alzheimer’s Disease (Malone et al., 

2013) dataset includes longitudinal scans from 46 elderly individuals (ages 55+) diagnosed 

with Alzheimer’s disease and 23 elderly normal controls. The 3D MR images were acquired 

at a single center with a 1.5 T Signa MRI scanner (GE Medical systems), using an IR-

FSPGR (inversion recovery prepared fast spoiled gradient recalled) sequence, field of view 

of 24 cm, 256 × 256 matrix, 124 1.5 mm coronal partitions (voxel size 0.9 × 0.9 × 1.5), TR 

15 ms, TE 5.4 ms, flip angle 15°, and TI 650 ms. The data is available at: https://

www.ucl.ac.uk/drc/research/methods/minimal-interval-resonance-imaging-alzheimers-

disease-miriad. 20 cases from MIRIAD were used for validation. 49 different cases were 

used to assess accuracy and generalizability to a different T1-weighted acquisition 

sequences (IR-FSGPR) and scanner (GE).

MMND: This multi-subject, multi-model neuroimaging dataset was acquired with multiple 

functional and structural neuroimaging modalities (structural MRI + functional MRI + MEG 

+ EEG) on the same 16 healthy volunteers (Wakeman and Henson, 2015). Here, we only use 

the structural data which include T1-weighted MPRAGE and Multi-Echo Fast Low Angle 

Shot (MEF) sequences. The data was collected from a Siemens 3 T TIM TRIO with a 

standard 1 mm isotropic resolution. For each participant, a T1-weighted image was acquired 

using an MPRAGE sequence (TR 2,250 ms, TE 2.98 ms, TI 900 ms, 190 Hz/pixel; flip angle 

9°) as well as two bandwidth-matched MEF sequences (651 Hz/pixel; TR 20 ms) at both 5° 

and 30° flip angles for each of 7 echo-times (TE 1.85 ms; 4.15 ms; 6.45 ms; 8.75 ms; 11.05 

ms; 13.35 ms; 15.65 ms). This data was obtained from the OpenNeuro database. Its 

accession number is ds000117. All MMND cases were used to assess generalizability to 

MEF sequences.

Oasis-1 (Marcus et al., 2007) and Oasis-2 (Marcus et al., 2010): The Open Access Series of 

Imaging Studies 1 and 2, both contain scans from a 1.5-T Vision scanner and a TIM Trio 3 T 

MRI scanner (both Siemens) acquired in a single-center from non-demented and demented 

individuals diagnosed with very mild to moderate Alzheimer’s disease. All subjects were 

scanned in sagittal orientation with a voxel resolution of 1.0 × 1.0 × 1.25 mm and a MP-

RAGE sequence with the following parameters: TR 9.7 ms, TE 4.0 ms, flip angle 10°, and 

TI 20 ms. The Oasis-1 set is cross-sectional and contains 416 subject aged 18 to 96. In 

addition, it contains a test-retest component consisting of 20 subjects that were scanned no 
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more than 90 days apart (all except 5 less than 30 days). The Oasis-2 set focuses on older 

adults (age 60+) and contains longitudinal scans from 150 subjects. Both dataset are 

available at: https://www.oasis-brains.org/. 40 cases from Oasis-1 and 20 from Oasis-2 were 

used for training. 20 different cases from Oasis-1 where used to assess test-retest reliability 

and 370 cases for quantifying sensitivity to group effects.

THP: The Traveling Human Phantom (Magnotta et al., 2012) is a dataset collected for 

assessing multi-site neuroimaging reliability. The THP includes 3D MP-RAGE MRI scans at 

1.0 mm isotropic voxel resolution from 5 healthy subjects acquired at 8 different imaging 

centers. The sites involved in this study had either a Siemens 3 T TIM Trio scanner (five 

sites: IOWA, UMN, UCL, MGH, CCF) or a Philips 3 T Achieva scanner (three sites: JHU, 

DART, UW). The data is available at: https://openneuro.org/datasets/ds000206. All THP 

cases were used to quantify accuracy and generalizability across sites and scanners.

Participants of the individual studies gave informed consent in accordance with the 

Institutional Review Board at each of the participating sites. Complete ethic statements are 

available at the respective study webpages.

Table A.1

Summary of training, validation and testing sets. Table lists the usage, scanner, field 

strength, (disease) state, age range and number of used subjects for each dataset.

Usage Dataset Scanner 1.5 T/3 T State Age Subjects

Training ABIDE-II Phillips 3 T Autism/Normal 20–39 20

ADNI Philips, GE, Siemens 1.5 T/3 T AD/MCI/Normal 56–90 40

LA5C Siemens 3 T Neuropsych/Normal 23–44 20

OASIS1 Siemens 1.5 T Normal 18–60 40

OASIS2 Siemens 1.5 T AD/Normal 66–90 20

Validation MIRIAD GE 1.5 T AD/Normal 60–77 20

Accuracy ADNI Philips, GE, Siemens 1.5 T/3 T AD/MCI/Normal 58–85 180

HCP Siemens 3 T Normal 22–35 45

OASIS1 Siemens 1.5 T AD/Normal 18–96 370

MIRIAD GE 1.5 T AD/Normal 55–80 49

THP Philips, Siemens 3 T Normal – 5

Mindboggle-101 Philips, Siemens 1.5 T/3 T Normal 19–61 78

Generalizability ADNI Philips, GE, Siemens 3 T AD/MCI/Normal 58–85 180

HCP Siemens 3 T Normal 22–35 45

MIRIAD GE 1.5 T AD/Normal 55–80 49

MMND Siemens 3 T Normal 23–31 16

THP Philips, Siemens 3 T Normal – 5

Mindboggle-101 Philips, Siemens 1.5 T/3 T Normal 19–61 78

Reliability OASIS1 Siemens 1.5 T Normal 19–34 20

Sensitivity OASIS1 Siemens 1.5 T AD/Normal 18–96 370

Labels
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Table A.2

FastSurferCNN (proposed) segmentation labels and mapping to FreeSurfer (FS) for 

subcortical (left) and cortical (right) structures.

Subcortical Structures Proposed FS Cortical Structures Proposed FS

Cortical white matter (lh) 1 2 caudalanteriorcingulate (lh) 34 1002

Lateral Ventricle (lh) 2 4 caudalmiddlefrontal (lh, rh) 35 1003, 2003

Inferior Lateral Ventricle (lh) 3 5 cuneus (lh) 36 1005

Cerebellar White Matter (lh) 4 7 entorhinal (lh, rh) 37 1006, 2006

Cerebellar Cortex (lh) 5 8 fusiform (lh, rh) 38 1007, 2007

Thalamus (lh) 6 10 inferiorparietal (lh, rh) 39 1008, 2008

Caudate (lh) 7 11 inferiortemporal (lh, rh) 40 1009, 2009

Putamen (lh) 8 12 isthmuscingulate (lh) 41 1010

Pallidum (lh) 9 13 lateraloccipital (lh, rh) 42 1011, 2011

3rd-Ventricle 10 14 lateralorbitofrontal (lh) 43 1012

4th-Ventricle 11 15 lingual (lh) 44 1013

Brain Stem 12 16 medialorbitofrontal (lh) 45 1014

Hippocampus (lh) 13 17 middletemporal (lh, rh) 46 1015, 2015

Amygdala (lh) 14 18 parahippocampal (lh) 47 1016

CSF 15 24 paracentral (lh) 48 1017

Accumbens (lh) 16 26 parsopercularis (lh, rh) 49 1018, 2018

Ventral DC (lh) 17 28 parsorbitalis (lh, rh) 50 1019, 2019

Choroid Plexus (lh) 18 31 parstriangularis (lh, rh) 51 1020, 2020

Cortical white matter (rh) 19 41 pericalcarine (lh) 52 1021

Lateral Ventricle (rh) 20 43 postcentral (lh) 53 1022

Inferior Lateral Ventricle (rh) 21 44 posteriorcingulate (lh) 54 1023

Cerebellar White Matter (rh) 22 46 precentral (lh) 55 1024

Cerebellar Cortex (rh) 23 47 precuneus (lh) 56 1025

Thalamus (rh) 24 49 rostralanteriorcingulate (lh, rh) 57 1026, 2026

Caudate (rh) 25 50 rostralmiddlefrontal (lh, rh) 58 1027, 2027

Putamen (rh) 26 51 superiorfrontal (lh) 59 1028

Pallidum (rh) 27 52 superiorparietal (lh, rh) 60 1029, 2029

Hippocampus (rh) 28 53 superiortemporal (lh, rh) 61 1030, 2030

Amygdala (rh) 29 54 supramarginal (lh, rh) 62 1031, 2031

Accumbens (rh) 30 58 transversetemporal (lh, rh) 63 1034, 2034

Ventral DC (rh) 31 60 insula (lh, rh) 64 1035, 2035

Choroid Plexus (rh) 32 63 caudalanteriorcingulate (rh) 65 2002

WM-hypointensities 33 77 cuneus (rh) 66 2005

isthmuscingulate (rh) 67 2010

lateralorbitofrontal (rh) 68 2012

lingual (rh) 69 2013

medialorbitofrontal (rh) 70 2014

parahippocampal (rh) 71 2016
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Subcortical Structures Proposed FS Cortical Structures Proposed FS

paracentral (rh) 72 2017

pericalcarine (rh) 73 2021

postcentral (rh) 74 2022

posteriorcingulate (rh) 75 2023

precentral (rh) 76 2024

precuneus (rh) 77 2025

superiorfrontal (rh) 78 2028
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Fig. 1. 
FastSurfer - A fast and accurate deep learning based neuroimaging pipeline.
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Fig. 2. 
FastSurfer Network Architecture. The network consists of four competitive dense blocks 

(CDB) in the encoder and decoder part, separated by a bottleneck layer. Each block is 

composed of three sequences of parametric rectified linear unit (PReLU), convolution 

(Conv) and batch normalization (BN) with exception of the very first encoder block. In the 

first block, the PReLU is replaced with a BN to normalize the raw inputs.

Henschel et al. Page 35

Neuroimage. Author manuscript; available in PMC 2021 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The standard “concat” operation (top) appends the two incoming blocks doubling memory 

requirements in each step. The efficient “maxout” operation (bottom) retains the max value 

at each position, hence inducing local competition between the blocks while keeping 

memory requirements constant.
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Fig. 4. 
Dice similarity coefficient (DSC, left, larger = better) and average Hausdorff distance (AVG 

HD, right, smaller = better) comparison of baselines and the proposed FastSurferCNN on 

four different datasets (mean ± standard deviation). Network modifications (i) competitive 

dense blocks (CDB) and (ii) spatial information aggregation (SPI) are incrementally tested. 

The final FastSurferCNN (dark blue, CDB + SPI) outperforms all other models on both, 

subcortical and cortical structures.
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Fig. 5. 
Dice similarity coefficient (DSC, left, larger = better) and average Hausdorff distance (AVG 

HD, right, smaller = better) comparison across networks with respect to a manual reference 

(Mindboggle-101). FastSurferCNN outperforms all other models on both subcortical and 

cortical structures.
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Fig. 6. 
Surface Dice similarity coefficient per region of the proposed FastSurferCNN for the 31 

cortical parcels on manual surface labels from Mindboggle-101. FastSurferCNN achieves 

accurate results across structures with an average DSC of above 86.
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Fig. 7. 
Comparison of the DSC (mean ± standard deviation) across neurodegenerative states 

(cognitive normal (CN), mild cognitive impaired (MCI), demented (AD); top) and vendor 

(GE, Philips, Siemens; bottom). FastSurfer achieves high accuracy and low variability across 

all of them.
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Fig. 8. 
Comparison of segmentation accuracy between different image acquisition sequences 

(MPRAGE versus Multi-echo FLASH (MEF)). FreeSurfer’s MPRAGE segmentations are 

considered ground truth. FastSurferCNN generalizes well to MEF acquired images and 

achieves closer results to FreeSurfers MPRAGE than FreeSurfer itself on the subcortical 

structures.
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Fig. 9. 
Intraclass correlation coefficient on the Test-Retest OASIS1 dataset for FastSurfer (dark 

blue) and FreeSurfer (light blue). Error bars indicate upper and lower bound of the 

calculated ICC (significance level α = 0.05).
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Fig. 10. 
Visualization of the intraclass correlation coefficient on the Test-Retest OASIS1 dataset for 

FreeSurfer (left) and FastSurfer (right). ICC ranges from 0.8 (dark blue) to 1.0 (light blue) 

are shown.
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Fig. 11. 
Significance (p-value) of cortical thickness changes in disease groups on the OASIS1 dataset 

for FastSurfer (red) and FreeSurfer (light red). Structures with p-values below 10−5 are 

shown. Effect directions are indicated by the sign (atrophy: negative values, enlargement: 

positive values). Volume of ventricles increases while all other structures show atrophy. 

FastSurfer and FreeSurfer detect significant changes in areas related to disease progression.
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Fig. 12. 
Group Analysis of cortical thickness variations in Alzheimer’s disease compared to controls 

based on the OASIS1 dataset for FreeSurfer (left) and FastSurfer (right). The color-coded 

uncorrected p-value map ranges from 0.05 (red) to 10−7 (yellow). Differences in cortical 

thickness are more pronounced in the FastSurfer analysis stream.
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Table 1

Characteristics of the participants (n = 160) showing mean (± standard deviation) for continuous and counts 

(PCT) for categorical variables.

Dataset Subjects Age (± SD) Women,
n(%)

Controls,
n(%)

LA5c (Poldrack et al., 2016) 20 35 (± 6.25) 10 (50) 10 (50)

MIRIAD (Malone et al., 2013) 20 68.85 (± 5.60) 10 (50) 10 (50)

OASIS-1 (Marcus et al., 2007) 40 37.48 (± 13.54) 21 (52.5) 40 (100)

OASIS-2 (Marcus et al., 2010) 20 77.70 (± 7.23) 11 (55) 10 (50)

ABIDE II (Di Martino et al., 2017) 20 25.94 (± 4.89) 10 (50) 10 (50)

ADNI (Mueller et al., 2005) 40 74.65 (± 6.71) 20 (50) 20 (50)

Total 160 53.97(± 22.19) 82 (51.25) 100 (62.5)
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Table 2

Average number of topological defects, mesh quality and processing time per hemisphere when using original 

FreeSurfer modules, marching cube, and spectral spherical projection in the FastSurfer pipeline.

Defects Quality Time/hemi

orig 27.2 0.888 41.6 min

+ mc 24.0 0.902 25.7 min

+ qspec 23.1 0.902 25.4 min
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Table 3

Runtime comparisons of the different pipelines (recon-all, recon-surf and recon-surf including registration 

(reg) of the orig surface to the spherical atlas for cross-subject correspondence). Average processing times and 

standard deviation in minutes. Parallel = parallelization of hemispheres, 4 threads.

Sequential Parallel

FreeSurfer 424 min (± 37) 244 min (± 20)

FastSurfer 104 min (± 20) 54 min (± 27)

FastSurfer + sphere.reg 223 min (± 53) 97 min (± 31)
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