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Abstract: The main cause of most skin cancers is damage from UVB from sunlight, which penetrate
the skin surface and induce inflammation. For this reason, this study aims to identify natural
products with photo-protection properties and their mode of action by using the UVB-irradiated
HaCaT keratinocyte model. Antidesma thwaitesianum fruit extracts at 25, 50, and 100 µg/mL recovered
cell viability following UVB exposure in a dose-dependent manner. Cell survival was associated with
the reduction in intracellular ROS and NO. In addition, we showed that the pre-treatment with the
fruit extract lowered the phosphorylation level of two MAPK-signaling pathways: p38 MAPKs and
JNKs. The resulting lower MAPK activation decreased their downstream pro-inflammatory cascade
through COX-2 expression and subsequently reduced the PGE2 proinflammatory mediator level.
The photoprotective effects of the fruit extract were correlated with the presence of polyphenolic
compounds, including cyanidin, ferulic acid, caffeic acid, vanillic acid, and protocatechuic acid, which
have been previously described as antioxidant and anti-inflammation. Together, we demonstrated
that the pre-treatment with the fruit extract had photo-protection by inhibiting oxidative stress
and subsequently lowered stress-induced MAPK responses. Therefore, this fresh fruit is worthy of
investigation to be utilized as a skincare ingredient for preventing UVB-induced skin damage.

Keywords: keratinocyte; Antidesma thwaitesianum Müll. Arg. fruit extract; antioxidant; anti-inflammation;
ultraviolet B (UVB)

1. Introduction

The epidermis is the first layer of defense against invasive pathogens and protects
us from external damage, such as ultraviolet (UV) irradiation [1]. Among the ultraviolet
radiation, UVB radiation (280–320 nm) from sunlight is a major cause of skin inflammation
or “sunburn” [2]. Several previous studies indicated that UVB-irradiated fibroblast and
keratinocyte cells revealed an elevation of reactive oxygen species (ROS) in all epidermal
cell layers [3–5], which contributes to cellular oxidative damage and high damage of lipids,
proteins, and nucleic acids, consequently leading to skin inflammation and death [6].
Keratinocytes are the predominant cells residing in the epidermis. They are responsible for
crucial functions, such as skin immune response [7]. Upon sunlight exposure, UVB directly
penetrates through the epidermal layer and damages human epidermal cells. Keratinocytes
are one of the targets that quickly respond to UVB radiation. They generate intracellular
ROS. Overexposure to UVB results in uncontrolled inflammation [8]. In addition, UVB
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penetration may result in DNA damage and chronic skin inflammation, which leads to skin
cancer development [9,10].

Following keratinocyte exposure to UVB radiation, a variety of ROS, including su-
peroxide anion, hydrogen peroxide, and hydroxyl radicals, were immediately elevated
within 1 h [11]. This caused DNA deterioration, DNA damage, and inflammation [6].
Two MAPK signaling pathways, p38 and JNK, are crucially responsible for keratinocytes
upon UVB-induced inflammation [12]. Previous studies demonstrated that UVB radiation
triggered the activation of p38 and JNK signaling, which increased the phosphorylation
and stabilization of p53 [3,13]. Consequently, it upregulated the inflammatory mediator
cyclooxygenase-2 (COX-2) expression [12,14], which in turn elevated the synthesis of its
metabolite product, prostaglandin E2 (PGE2) [15]. Therefore, the attenuation of these in-
flammatory signaling may be a promising effective strategy to prevent and delay chronic
skin inflammation and eventually tumorigenesis.

Nowadays, doctors typically prescribe nonsteroidal anti-inflammatory drugs (NSAIDs),
especially celecoxib, to treat inflamed skin. Celecoxib inhibits COX-2 enzyme, which is highly
associated with skin cancer [16]. Thus, it is used to treat skin inflamed from sunburn. In
addition, celecoxib also possesses antioxidant properties. Therefore, it has been developed
for transdermal delivery, such as in topical form, for cutaneous disease treatments [17,18].
In addition to conventional drugs, many researchers, including our research group, are
interested in studying the photoprotective effects of natural products. Previous studies
showed that anthocyanins, an antioxidant from apple, blackberry, elderberry, peach, pear,
cherry, and gooseberry, can be used to treat inflammation and oxidative stress from UVB
exposure [12,19]. Over the past few years, natural extracts have gathered interest as herbal
remedies to help to prevent photoaging and UV-induced skin inflammation. In this study,
we found high anthocyanin contents in a tropical fruit, Antidesma thwaitesianum [20]. Thus,
this study presents an alternative source of natural products that can be used for UVB-
induced skin inflammation treatment [21].

Antidesma thwaitesianum (A. thwaitesianum) is a tropical plant in the Euphorbiceae
family. This plant is widely cultivated in Northeast Thailand [22]. Its ripe red fruits are
edible and taste sweet and sour. Thus, it has been added as an ingredient in jam, wine,
and juice. Significant amounts of bioactive compounds of polyphenols and flavonoids,
such as anthocyanin, catechin, gallic acid, quercetin, rutin, terpene, alkaloids, luteolin,
tannin, sterols, and saponins, have been found in this fruit. The beneficial effects of the
bioactive compounds contained in these plant extracts have been revealed in previous
studies, including antioxidant, anti-inflammation, and hypoglycemic effects [23]. Due to its
polyphenolic contents, the hexane extract from seed and bark exhibited anti-inflammation
following TPA treatment on MCF10A human breast epithelial cells by inhibiting the cy-
toplasmic IκBα degradation [24]. In addition, these extracts also prevented hydrogen
peroxide-induced apoptosis by suppressing pro-apoptotic BAX [24]. It has been shown that
extracts from plants in the Antidesma genus exhibit anti-inflammation effects both in vivo
and in vitro [25,26]. However, there exists no information regarding the photo-protective
effects of A. thwaitesianum fruit extract to date. Thus, in this study, we aim to identify the
anti-apoptosis and anti-inflammatory effects of A. thwaitesianum fruit extracts by using
UVB-irradiated HaCaT keratinocytes. This finding can help to elucidate the scientific
mechanism of protection and suggest the use of this fruit extract in skin care products.

2. Results
2.1. In Vitro Antioxidant and Total Phenolic and Flavonoid Contents

Polyphenolic compounds are a chemical structure containing hydroxyl groups at-
tached to an aromatic ring, whereas flavonoid compounds contain two aromatic benzene
rings connected with a heterocyclic pyran ring as the linker [27]. Based on their chemical
structures, polyphenolic and flavonoid compounds are capable of scavenging free radicals
through the electron and proton transfer on hydroxyl groups and generating stable radical
intermediates. Thus, it exerts a powerful antioxidant ability [28]. As shown in Table 1, the
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extract exhibited a total phenolic content equal to 29.115 ± 0.528 mg gallic acid equivalent/g
crude extract and flavonoid contents of 1.237 ± 0.104 mg quercetin equivalent/g crude
extract. In addition, we showed the DPPH scavenging property of this extract with IC50
of 10.94 mg/mL compared with the antioxidant control; Trolox had IC50 of 0.17 mg/mL.
Along with the scavenging capability of DPPH radical, we further investigated the chemical
constituents of this fruit extract using HPLC analysis. We found that the highest peak
(most predominant) was cyanidin with the retention time of 25.567 min, while the second
peak was ferulic acid, with the retention time of 28.266 min. In addition, we also identified
three more peaks, which were identified as caffeic acid, vanillic acid, and protocatechuic
acid (Figure 1). The contents of the active compounds present in the A. thwaitesianum fruit
extract were quantified from the equation of the standard curve, as shown in Table 2. These
results indicate that the fruit extract was enriched with polyphenols and flavonoids. In
addition, it also displayed free radical scavenging effects, which may be correlated with the
presence of their chemical constituents.

Table 1. The active compounds contained in the A. thwaitesianum fruit extract quantified by
HPLC analysis.

Compounds A. thwaitesianum Fruit Extract (µg/mL)

Ferulic acid 798.13
Caffeic acid plus Vanillic acid 510.79

Protocatechuic 487.76
Cyanidin 52.70

Table 2. IC50 DPPH and total phenolic and flavonoid contents of the A. thwaitesianum fruit extract.

A. thwaitesianum
Fruit Extract

Phenolic Content
(mg Gallic Acid

Equivalent/g Crude
Extract)

Flavonoid Content
(mg Quercetin

Equivalent/g Crude
Extract)

IC50 of DPPH
(mg/mL)

EtOH extract 29.115 ± 0.528 1.237 ± 0.104 10.94
Trolox - - 0.17

2.2. Non-Toxic Concentration and Photo-Protective Effects of the Extract on UVB-Irradiated
Keratinocyte Cells

To identify the protective effect against UVB-induced cytotoxicity, we firstly deter-
mined a safety dose used in this study. We measured cell viability following the treatment
with fruit extracts at various concentrations, 0–200 µg/mL for 24 h as well as the positive
control celecoxib in the same range. Celecoxib is a commercial anti-inflammatory drug
that is prescribed for skin inflammation. We found that the fruit extract had negligible
cytotoxicity at all dosages, while celecoxib exhibited cytotoxicity at 200 µg/mL (Figure 2A).
We, therefore, experimented with the highest dose of 100 µg/mL (Figure 2B). We found that
UVB induced cytotoxicity and lowered cell viability to 34.56 ± 2.58%. The pre-treatment
with the fruit extract recovered cell viability to 53.18 ± 0.89, 64.44 ± 3.35, and 79.65 ± 5.26%
following 25, 50, and 100 µg/mL, respectively. All treated doses exhibited significant cell
recovery compared to the untreated cells. In addition, the pre-treatment with the fruit
extract exhibited a greater cell survival compared to celecoxib, about 35% at the same dose
of 100 µg/mL. This result suggests the potential effect of the fruit extract at 100 µg/mL,
effectively protecting cells from UVB-induced cytotoxicity.
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Figure 1. Chromatograms (HPLC/UV) of the fruit extract of A. thwaitesianum. The upper figure
shows the control compounds, whereas the lower figure shows the active compounds present in
the extract. The retention time of the flavonoids was shown as follows: (a) protocatechuic acid,
(b) chlorogenic acid, (c) caffeic acid, (d) vanillic acid, (e) cyanidin, and (f) ferulic acid. Compared with
the standard compound, the A. thwaitesianum fruit extract found five active substances compared to
the standard compounds.
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Figure 2. The photoprotective effect of the fruit extract on the keratinocyte cells. (A) shows cell
viability following treatment with various concentrations of the fruit extract or celecoxib control for
24 h. (B) shows cell viability after pre-incubating with the fruit extract for 2 h, exposing a single UVB
irradiation and further incubating for 24 h. The results are represented as mean ± SEM (n = 6) and
analyzed with Tukey’s test. ### p < 0.001 versus the control group; * p < 0.05 and *** p < 0.001 versus
UVB-irradiated cells alone. The statistical difference between the extract and celecoxib at 100 µg/mL
was at $$$ p < 0.001.
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2.3. The Antioxidant and Anti-Apoptotic Effects of the Extract on UVB-Irradiated
Keratinocyte Cells

The UVB irradiation increased the intracellular NO in keratinocytes. The UVB expo-
sure at 40 mJ/cm2 rose the nitrite concentration to 22.27 ± 0.65 µM. We showed that the
treatment with the fruit extract at all the tested dosages did not induce NO generation
compared with the non-irradiation conditions. The pre-treatment with the fruit extract 2 h
before UVB exposure resulted in a decrease in NO generation, which subsequently dimin-
ished nitrite levels, a stable metabolite of NO. Following UVB irradiation, the fruit extract
at 25, 50, and 100 µg/mL significant diminished the nitrite concentration to 12.11 ± 0.95,
4.89 ± 0.59, and 1.92 ± 0.31 µM, respectively. Celecoxib at 100 µg/mL had a moderate
NO inhibitory effect, while the fruit extract at the lowest dose of 25 µg/mL could prevent
NO production in a greater level than the positive control, and this inhibitory effect was
displayed in a dose-dependent manner. This result indicates that the fruit extract did not
induce intracellular NO, which plays an important role in inflammation. In addition, we
showed that the fruit extract had a protective property against UVB-induced NO produc-
tion in keratinocytes. Together, these findings indicate the anti-inflammatory effect of the
fruit extract through the prevention of NO production (Figure 3).
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Figure 3. The NO free-radical scavenging effect of the fruit extract on UVB-irradiated keratinocyte
cells. The cells were pre-incubated with various concentrations of the fruit extract before exposure to
single UVB irradiation, followed by additional cell incubation for 24 h. The results are represented
as mean ± SEM (n = 8) and analyzed with Tukey’s test. ### p < 0.001 versus the control group,
*** p < 0.001 versus UVB-irradiated cells alone. The statistical difference between the extract and
celecoxib at 100 µg/mL was at $$$ p < 0.001.

In addition, we further determined the ROS scavenging capacity of the extract and
celecoxib by using the ROS assay (Figure 4). Upon single UVB exposure, the cells in-
creased the intracellular ROS to about 1.56 ± 0.12-fold that of the non-irradiated conditions
(control). We found that the pre-treatment with the extract at 100 µg/mL reduced the
intracellular ROS to about 0.99 ± 0.05 that of the control, while celecoxib at the same dose
had less a potent effect. Celecoxib treatment significantly lowered the intracellular ROS to
1.40 ± 0.59-fold that of the control. This indicates that the fruit extract contained antioxidant
properties, while the anti-inflammatory drug celecoxib had a small effect on preventing
ROS production. In addition to NO and ROS production, we showed that a single UVB
exposure of 40 mJ/cm2 led to the apoptosis of more than 40% (Figure 5). The pre-incubation
with celecoxib at 100 µg/mL alleviated UVB-induced cell death, while the fruit extract
exhibited a greater potential than celecoxib at the same concentration. We showed that
UVB exposure decreased cell viability. The majority of cell death was related to nuclear
chromatin condensation and DNA fragmentation, after which cells ultimately undergo
apoptosis. Along with DNA damage, we found an increase in intracellular NO and ROS,
which was a stress response to prevent further damage. However, the accumulation of



Molecules 2022, 27, 5034 6 of 15

NO and ROS was also harmful to the cells. In this study, we showed that the fruit extract
reduced the intracellular NO and ROS following UVB-induced cytotoxicity. The reduction
in NO and ROS with the fruit extract treatment correlated with the recovery of cell survival
and alleviated UVB-induced apoptosis. In addition, the fruit extract protected cells from
UVB-induced apoptosis in a greater manner than celecoxib of about 25%, which may be
the case by the synergistic effect of the multiple antioxidants in the fruit extract.
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Figure 4. Intracellular ROS production was determined by H2DCFDA staining assay. The ROS
scavenging effect of the fruit extract was monitored by the reduction in fluorescence. (A) shows the
DCF fluorescent staining after pre-incubating with the fruit extract for 2 h, exposed to single UVB
irradiation, and further incubating for 45 min. (B) shows the relative fluorescence intensities, which
are presented as mean ± SEM (n = 6) and analyzed with Tukey’s test. ### p < 0.001 versus the control
group, *** p < 0.001 versus UVB-irradiated cells alone. The statistical difference between the extract
and celecoxib at 100 µg/mL was at $$$ p < 0.001.

2.4. The Effects of the Extract on UVB-Induced Cellular p38 and JNK Phosphorylation

UVB has been previously described as a stress activator of two MAPK signaling
pathways: p38 and JNK [13,14]. The activation of MAPK occurs through the phos-
phorylation of their tyrosine residue. In this study, the level of phospho-p38 increased
2.21 ± 0.19-fold after UVB exposure, while p38 protein level was similar in all conditions.
The pre-treatment with the fruit extract could attenuate the UVB-induced MAPK activation
in a dose-dependent manner. We showed that the pre-treated cells with the extract 25,
50, and 100 µg/mL significantly decreased the phospho-p38 to 1.6 ± 0.11, 1.38 ± 0.11,
1.18 ± 0.18, respectively (Figure 6A). The reduction in phospho-p38 mediated by the fruit
extract was better than celecoxib. In addition, we showed that the level of phospho-JNK
was negligible under non-irradiation conditions, while UVB exposure increased phospho-
JNK to 2.78 ± 0.23 but not JNK protein level. The UVB-induced JNK activation was also
diminished following the pre-treatment with the fruit extract. We found that phospho-
JNK reduced to 2.0 ± 0.17, 1.97 ± 0.18, 1.33 ± 0.07 following pre-treatment with 25, 50,
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and 100 µg/mL fruit extract, respectively (Figure 6B). The reduction in phospho-p38 and
phospho-JNK by the fruit extract was exhibited in a dose-dependent manner and was more
potent than celecoxib at the same dose (p-value < 0.05).
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Figure 5. The photoprotective effect of the fruit extract following UVB-induced apoptosis. (A) shows
the Hoechst 33342 nuclei staining after pre-incubating cells with the fruit extract for 2 h, exposed to
single UVB irradiation, and further incubating for 24 h. (B) shows the relative fluorescence intensities,
which are represented as mean ± SEM (n = 6) and analyzed with Tukey’s test. The inserted image
shows the magnified apoptotic nuclei of the UVB-treated cells (40× magnification of objective lens).
### p < 0.001 versus the control group, * p < 0.05 and *** p < 0.001 versus UVB-irradiated cells alone.
The statistical difference between the extract and celecoxib at 100 µg/mL was at $$$ p < 0.001.
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Figure 6. The dose-dependent effects of the fruit extract on p38 and JNK phosphorylation. Cells were
pre-incubated with the fruit extract for 2 h before exposure to single UVB irradiation and further
incubated for (A) 6 h and (B) 1 h. The proteins of interest were determined by Western blot analysis.
The results are presented as mean ± SEM (n = 8) and analyzed with Tukey’s test. ### p < 0.001 versus
the control group; * p < 0.05, ** p < 0.01, and *** p < 0.001 versus UVB-irradiated cells alone. The
statistical difference between the extract and celecoxib at 100 µg/mL was at $ p < 0.05.

2.5. The Effects of the Extract on UVB-Induced COX-2 and PGE2 Production

The activation of the MAPK signaling pathway resulted in several cellular responses,
such as apoptosis and inflammation. Several previous studies revealed that MAPK acti-
vates gene expression through the translocation of transcription factors. One of the gene
inductions in responding to UVB exposure was COX-2, which in turn stimulates the pro-
inflammatory response [29,30] and subsequently generates skin tumorigenesis [31,32].
In this study, we found that UVB induced the expression level of COX-2 mRNA to
2.48 ± 0.20-fold that of the non-irradiation control, as well as increased COX-2 protein level
to 3.92 ± 0.27-fold that of the control. We showed that the pre-treatment with the fruit
extract at 25, 50, and 100 µg/mL significantly downregulated COX-2 mRNA expression
to 1.54 ± 0.05, 1.39 ± 0.02, 1.15 ± 0.17, respectively (Figure 7A). Additionally, COX-2
protein levels corresponded to mRNA levels, which were 2.85 ± 0.34, 2.34 ± 0.41, and
1.46 ± 0.14 following the pre-treatment with the fruit extract at 25, 50, and 100 µg/mL,
respectively (Figure 7B). This result indicates that the fruit extract modulated the COX-2
protein level through the downregulation of the gene expression, and the repression of the
gene occurred in a dose-dependent manner. We found that celecoxib at 100 µg/mL also
reduced the COX-2 mRNA and protein levels, but was less potent than the fruit extract.
This result also correlated with the attenuation of its upstream MAPK signaling pathway.

The induction of the COX-2 enzyme increased its target PGE2 catabolism. PGE2 is the
pro-inflammatory mediator that stimulates skin redness, sunburn, and inflammation. In
this study, UVB-irradiated cells increased the production of PGE2 to 1,082 ± 40.40 pg/mL,
while the pre-treatment with the fruit extract lowered PGE2 production. We showed that the
level of PGE2 was associated with the level of COX-2 enzyme. The reduction in PGE2 levels
corresponded with the decrease in COX-2 levels, which were 286.3 ± 129.1, 38.64 ± 6.7,
and 10.92 ± 1.35 pg/mL upon treatment with 25, 50, and 100 µg/mL extract, respectively
(Figure 8). We conclude that the fruit extract mediated UVB-irradiated protection through
the inhibition of intracellular NO and ROS and subsequently attenuated MAPK-activated
apoptosis and pro-inflammation.
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Figure 7. The alterations of (A) mRNA and (B) protein expression levels of COX-2 upon treatment
with various concentrations of the fruit extract. Cells were pre-incubated with the fruit extract before
exposure to single UVB irradiation and further incubated for 24 h. The mRNA was determined by
real-time PCR and the proteins were determined by Western blot analysis. The results are presented
as mean ± SEM (n = 6) and analyzed with Tukey’s test. ### p < 0.001 versus the control group;
* p < 0.05, ** p < 0.01, and *** p < 0.001 versus UVB-irradiated cells alone. The statistical difference
between the extract and celecoxib at 100 µg/mL was $ p < 0.05.
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Figure 8. The dose-dependent effects the fruit extract on PGE2 level. Cells were pre-incubated with
the fruit extract for 2 h before exposure to single UVB irradiation and further incubated for 24 h. The
cell culture media were used to determine the PGE2 level by ELISA assay. The results are represented
as mean ± SEM (n = 6) and analyzed with Tukey’s test. ### p < 0.001 versus the control group,
*** p < 0.001 versus UVB-irradiated cells alone. The statistical difference between the extract and
celecoxib at 100 µg/mL was $$$ p < 0.001.

3. Discussion and Conclusions

In the past few years, the discovery of new herbal medicines harboring UV-protection
properties has gained great interest in the skincare industry. In this study, we utilized
the HaCaT cell line to evaluate the photo-protective effects of the A. thwaitesianum fruit
extract upon single UVB exposure. HaCaT is a keratinocyte cell line that is widely used
as a cell-based model for studying cellular responses to UV and molecular mechanisms
underlying anti-inflammatory activities [13,33]. UVB refers to radiation at the wavelength
of 280–320 nm. It is an extrinsic environmental stimulus that can penetrate deeply through
the epidermis layer of the skin. UVB exposure induces the generation of intracellular ROS



Molecules 2022, 27, 5034 10 of 15

and is mainly attributed to skin inflammation, such as erythema and edema [34]. In this
study, we demonstrated the antioxidant and nitric oxide scavenging properties of this fruit
extract. In addition, the molecular analysis revealed the decrease in MAPK-activated stress
response, including cell death and inflammation, following fruit extract pre-treatment.

In correlation with previous studies, we found that a UVB exposure of 40 mJ/cm2 had
a significant reduction in cell viability and increment in NO and ROS production [11,12,14].
However, the pre-incubation with the ethanol extract of A. thwaitesianum fruit (25, 50,
and 100 µg/mL) before UVB irradiation increased the percentage of cell viability in a
concentration-dependent manner (Figure 2B). In addition, the A. thwaitesianum fruit extract
at all tested dosages had minimal cytotoxicity, which indicates the low toxicity of this
fruit extract. We believe that the protective effect of the A. thwaitesianum fruit extract may
be related to its chemical components, polyphenols, and flavonoids. We identified the
presence of ferulic acid, caffeic acid, vanillic acid, protocatechuic acid, and cyanidin, which
have been previously described as antioxidant compounds with anti-inflammatory and
photo-protective properties [35–39]. The DPPH assay revealed that the fruit extract could
act as electron and proton donors that stabilize DPPH free radicals. In addition, we found
that the increase in intracellular ROS and NO following UVB exposure was eliminated by
the pre-treatment with the A. thwaitesianum fruit extract. Additionally, we found that the
fruit extract attenuated apoptosis and recovered cell viability (Figures 2B and 5).

Following UVB exposure, we monitored the MAPK signaling pathway, p38, and JNK, in
response to stress activation. The phosphorylation of MAPK via their canonical upstream ki-
nase activates the downstream response through the induction of gene expression and cellular
response. The activation of MAPK in response to UVB exposure resulted in DNA damage and
cell death. We showed that the single exposure of UVB increased the phosphorylated-p38 and
-JNK but did not affect p38 and JNK protein levels. Thus, the reduction in the phosphorylated
form could attenuate stress-induced MAPK responses. We showed that the inhibition of the
MAPK pathway by the A. thwaitesianum fruit extract occurred at the upstream level, and
thus resulted in cell recovery (Figure 6A,B). Despite the aforementioned cell survival, we
demonstrated the reduction in the COX-2 gene and protein expression levels (Figure 7A,B).
COX-2 is the enzyme that is expressed in response to prostanoid biosynthesis in inflammation,
particularly PGE2. Following UVB exposure, previous studies revealed the upregulation of
COX-2 and PGE2 involving skin cancer [15,40]. In this study, we showed that the pre-treatment
with the A. thwaitesianum fruit extract reduced COX-2 as well as lowering the synthesis of
the pro-inflammatory mediator PGE2 (Figure 8). This result indicates the anti-inflammatory
effect of the A. thwaitesianum fruit extract, which can be an effective adjuvant strategy for
preventing skin inflammation and cancer after chronic exposure to UVB radiation. Our results
are correlated with previous studies showing anti-inflammatory activity and free-radical
scavenging activity [24,25,41].

Celecoxib has been described as a COX-2 inhibitor that is prescribed to treat skin
inflammation. It has been reported to reduce the risk of skin tumorigenesis and contain
anti-inflammation properties upon chronic UVB exposure [42,43]. In this study, we used
celecoxib as a positive control. We demonstrated that the A. thwaitesianum fruit extract
exhibited a greater potential than celecoxib at the same dose. This may be due to the
presence several antioxidants, which exerted their synergistic effect [35–39].

Taken together, the molecular mechanisms underlying UVB-triggered keratinocyte
cytotoxicity and inflammatory response were initiated by excess intracellular ROS and
NO generation, which subsequently induced oxidative stress. The stress activation of p38
and JNK signaling pathways, in turn, stimulated cellular responses, such as cell death
and inflammation. The pre-treatment with the A. thwaitesianum fruit-extract-enriched
polyphenolic and flavonoid contents could alleviate cellular stress response, which results
in the cell survival recovery and the decrease in the inflammatory mediator.

In conclusion, the present study firstly demonstrated the potential photo-protective
and anti-inflammation effects of the ethanol extract of the A. thwaitesianum fruit against
UVB-activated keratinocyte toxicity. Its effects were directly involved in the antioxidant



Molecules 2022, 27, 5034 11 of 15

properties of polyphenolic contents. Our finding offers a new herbal medicine as an
alternative ingredient for skincare products to alleviate UVB-induced skin inflammation.
However, the safety usage and the application of this fruit extract should be further
investigated in animal models.

4. Materials and Methods
4.1. Plant Preparation and Extraction

A. thwaitesianum fruits were obtained from Lam Takhong Research Station, Thailand
Institute of Scientific and Technological Research, Thailand. The oval shape of the ripe
red fruits was blended using an electronic blender. Then, the sample was lyophilized in a
freeze dryer. A total of 50 g of sample was immersed in 500 mL of 95% ethanol for 3 days at
room temperature and percolated through Whatman No. 1 filter paper to remove residues.
The residues were repeatedly immersed in the same volume of ethanol three times and
followed by filtration. The total filtrate was evaporated and concentrated to dried powder
by using a vacuum rotary evaporator. The powder was kept at −20 ◦C in a sterile tube
or dissolved in dimethyl sulfoxide (DMSO) to 200 mg/mL stocking solution. The final
concentration of DMSO in all tested experiment was 0.1% in every concentration.

4.2. Determination of Phenolic and Flavonoid Contents

As described in previous studies, the total phenolic content was determined by the
Folin–Ciocalteu colorimetric method, while the total flavonoid content was determined by
aluminum chloride colorimetric methods [44,45]. In brief, a mixture of 10 µL of the extract
in 790 µL deionized water was mixed with 50 µL Folin–Ciocalteu’s phenol reagent. The
mixture was incubated at room temperature for 5 min before being added with 150 µL
saturated Na2CO3 solution and incubated at room temperature for 50 min. The total
polyphenol contents were determined by spectrophotometry at 765 nm. The data were
expressed as milligram gallic acid equivalents (GAE) per gram of extract. For the determi-
nation of flavonoid content, 100 µL of the extract was dissolved in 560 µL deionized water
and then mixed with 20 µL potassium acetate and 300 µL of 95% ethanol. A total of 20 µL
of 10% aluminum chloride was added to the mixture and incubated at room temperature
for 30 min. The flavonoid contents were determined by spectrophotometry at 415 nm and
showed as quercetin equivalents (QE) per gram of extract.

4.3. Determination of In Vitro DPPH Scavenging Activity

This assay aimed to evaluate the DPPH scavenging capability of the extract in vitro.
As mentioned in our previous work [46], the reduction in DPPH radical absorbance was
monitored using a microplate reader (Bio-Tek Instruments, Winooski, VT, USA) at 515 nm.
The percentage inhibitions of DPPH radical scavenging activity were calculated using the
following formula.

DPPH radical scavenging % = [(A0 − A1)/A0] × 100

A0 is the absorbance of the DPPH solution.
A1 is the absorbance of the sample.

4.4. High-Performance Liquid Chromatography (HPLC) Analysis of the Extract

HPLC analysis was performed to identify the bioactive compounds in the extract. The
method was previously described with some modifications [47]. In brief, the extract was
dissolved with deionized water to obtain four different concentrations and subjected to
HPLC analysis (Waters 2695 HPLC System with 2487 UV-VIS Detector, Marshall Scientific,
Hampton, NH, USA). The sample mixture was diluted with 0.5% of acetonitrile and
trifluoroacetic acid solution as a mobile phase. The retention time peaks were analyzed
using a gradient system with a flow of 1 mL/min. The signal was detected using a UV-VIS
detector with a wavelength of 280 nm and a run time of 60 min.
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4.5. Cell Culture and UVB Treatment

HaCaT cells, an immortalized human keratinocyte line, was purchased from Cell
Lines Service (Eppelheim, Baden-Württemberg, Germany) and used to evaluate the anti-
inflammatory mechanism of the extract in vitro [33]. Cells were cultured in high glucose
Dulbecco’s modified Eagle medium (DMEM) (GIBCO, Carlsbad, CA, USA), with 10%
heat-inactivated fetal bovine serum (HiMedia, Mumbai, India), and maintained in the CO2
incubator at 37 ◦C, 5% CO2 air atmosphere, and 95% humidity. The attached cells were
rinsed with phosphate-buffered saline (PBS) before being irradiated with UVB irradiation at
40 mJ/cm2 (BIO-LINK®, Vilber Lourmat UV-Crosslinker, Deutschland GmbH, Eberhardzell,
Germany). The cells were immediately added to a cell culture medium and placed in the
37 ◦C, CO2 incubator before performing further experiments [12].

4.6. Cell Viability Determination by Resazurin Assay

The cells were seeded at a density of 4 × 104 cells/well in 96-well plates and allowed
to attach overnight. To determine the sublethal dose, different concentrations of the extract
or celecoxib were added to each well and incubated at 37 ◦C, 5% CO2 incubator for 24 h. To
assess the photoprotective effect, the cells were pre-incubated with the extract or celecoxib
for 2 h before exposing a single UVB irradiation. Cells were then incubated in 37 ◦C, CO2
incubator for 24 h before measuring cell viability using Resazurin assay. In brief, 20 µL
resazurin solution was directly added to each well (Resazurin assay kit; Sigma-Aldrich,
St. Louis, MO, USA). After incubation for 3 h, the fluorescent intensities were measured at
emission 530/excitation 590 nm using a microplate reader (Bio-Tek Instrument, Winooski,
VT, USA). The cell viability was calculated as a percentage compared to untreated cells.

4.7. Nitric Oxide (NO) Scavenging Activity by Griess Assay

As previously described, the NO production produced was investigated by measuring
the accumulated nitrite in the culture media [12]. The cells were plated onto a 6-well plate
at a seeding density of 2.5 × 106 cells/well and pre-incubated with the extracts for 2 h
before being exposed to UVB. After the exposure, cells were then incubated in 37 ◦C, 5%
CO2 incubator for 24 h. A total of 100 µL of the culture media of each condition was mixed
with 100 µL of Griess reagent in a 96-well plate and incubated at room temperature for
10 min (NO assay kit; Sigma-Aldrich, St Saint Louis, MO, USA). The absorbance of the
reaction mixtures was measured at 540 nm using a microplate reader (Bio-Tek Instrument,
Winooski, VT, USA).

4.8. Antioxidant Activity by ROS Assay

The 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) assay kit (Sigma-Aldrich,
St Saint Louis, MO, USA) was used to evaluate intracellular reactive oxygen species upon
UVB exposure [48]. The purpose of this experiment was to compare the antioxidant effects
of the extract and celecoxib. Cells were seeded into an 8-chamber cover glass and treated
with 20 µM of H2DCFDA for 30 min in the dark. The cells were then washed with PBS and
pretreated with the extract or celecoxib for 2 h before UVB exposure and incubated for a
further 45 min. The fluorescent images were promptly taken using the confocal fluorescent
microscope (Olympus, Japan). The ROS fluorescent intensity was calculated from the data
average of three different areas by using Olympus software.

4.9. Determination of Interested Proteins by Western Blot Analysis

Cells were pre-incubated with the extract at 25, 50, and 100 µL for 2 h before single
exposure to UVB radiation and further incubation at 37 ◦C, 5% CO2 incubator for optimal
time points. Following treatment, the cells were lysed in RIPA buffer containing with 1%
protease inhibitor cocktail and phosphatase inhibitor cocktail. The lysates were centrifuged
at 12,000 rpm at 4 ◦C for 15 min. The supernatants were then collected for the determination
of protein amount using a Bradford assay kit (Cell Signaling Technology, Danvers, MA,
USA). Equal amounts of total protein (60 µg) were boiled for 5 min and ran on a 12.5% SDS-
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polyacrylamide gel. The protein on a gel was then transferred to nitrocellulose membranes
and blocked in 5% nonfat dry milk in TBS-T buffer (Tris-buffer saline containing 0.1%
tween 20) for 1 h at room temperature on the shaker. After being blocked, the Western
blot membranes were subsequently incubated with primary antibodies against p-p38
(Cell Signaling Technology, Danvers, MA, USA), p-JNK, and COX-2 (Abcam, Cambridge,
MA, USA). The anti-GADPH monoclonal antibody was used as an internal control of
the interested proteins. The Western membranes were further incubated with secondary
antibodies at 4 ◦C overnight on the shaker. The protein bands were developed using an
Immobilon Forte Western HRP substrate (Merck KGaA, Darmstadt, Germany) and imaged
using gel documentation: Alliance Q9 Advanced Chemiluminescence Imager (UVITEC,
Cambridge CB4 OWS England, and United Kingdom). The relative protein intensities were
analyzed using the ImageJ program and calculated as a fold of control.

4.10. Determination of PGE2 Level by ELISA Assay

Cells were pre-treated with extract at various concentrations for 2 h and then exposed
to UVB. The ELISA technique was carried out to evaluate the PGE2 level in cell culture
media following the manufacturer’s recommendations (Abcam, Cambridge, MA, USA).
In brief, the cell culture media were added to the ELISA plate and incubated at room
temperature. The level of PGE2 was determined by colorimetric absorbance at 405 nm
using a microplate reader (Bio-Tek Instrument, Winooski, VT, USA).

4.11. Determination of Gene Expression by Real-Time PCR

RNA was extracted by using an RNA extraction kit (Favorgen, Ping-Tung, Taiwan).
The total amount of RNA (2 µg) was used to synthesize cDNA by using iScriptTM reverse
transcription Supermix (Bio-Rad, Hercules, CA, USA). The synthesized cDNA was then
amplified by SentiFast SYBR® Hi-ROX mix (Bioline, TN, USA), according to the manufac-
turer’s recommendations. The relative quantification of gene expression was analyzed with
StepOnePlus (Applied biosystem, Waltham, MA, USA). The relative gene expression was
calculated based on the reference gene; GADPH using the delta delta Ct’ values. List of
primers used in the experiment was showed in Table 3.

Table 3. List of primers used in this study.

Genes Forward Primer Reverse Primer

COX-2 TGAGCATCTACGGTTTGCTG TGCTTGTCTGGAACAACTGC
GAPDH TGAGCATCTACGGTTTGCTG TGCTTGTCTGGAACAACTGC

4.12. Statistical Analysis

The four to six biological replicates were analyzed with one-way ANOVA analysis
followed by Tukey’s test using GraphPad Prism program version 8 (GraphPad software,
San Diego, California, USA). All data were expressed as mean ± SEM. The given p-values
of less than 0.05 was considered statistically significant.
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